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Abstract. Power-law relationships are among the most well-studied functional relation-
ships in biology. Recently the common practice of fitting power laws using linear regression
(LR) on log-transformed data has been criticized, calling into question the conclusions of
hundreds of studies. It has been suggested that nonlinear regression (NLR) is preferable, but
no rigorous comparison of these two methods has been conducted. Using Monte Carlo
simulations, we demonstrate that the error distribution determines which method performs
better, with NLR better characterizing data with additive, homoscedastic, normal error and
LR better characterizing data with multiplicative, heteroscedastic, lognormal error. Analysis
of 471 biological power laws shows that both forms of error occur in nature. While previous
analyses based on log-transformation appear to be generally valid, future analyses should
choose methods based on a combination of biological plausibility and analysis of the error
distribution. We provide detailed guidelines and associated computer code for doing so,
including a model averaging approach for cases where the error structure is uncertain.
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INTRODUCTION

Power-law relationships of the form y¼axb are one of

the most common patterns in biology. They have been

documented in a variety of different areas including the

relationships between body size, physiological rates, and

life history traits (Brown et al. 2004), the scaling

between body parts in morphology (Farlow et al.

1995), and the species–area relationship in biogeography

(Martin and Goldenfeld 2006). These fitted relationships

have been used to test the validity of biological theories

(Brown et al. 2004), to infer the characteristics of extinct

species (Farlow et al. 1995), to assess the effect of

evolutionary processes (Mortola and Limoges 2006),

and to predict the consequence of habitat loss on

biodiversity (Brooks et al. 2002).

Conventional analysis of power-law data uses the fact

that log-transforming both sides of the equation yields a

linear relationship, log(y) ¼ log(a) þ blog(x), allowing

log-transformed data to be modeled using linear

regression. However, it has been suggested that analysis

on logarithmic scales is flawed and that instead, analysis

should be carried out on the original scale of measure-

ment using nonlinear regression (Fattorini 2007, Pack-

ard and Birchard 2008, Packard 2009, Caruso et al.

2010, Packard et al. 2010). If these claims are correct, the

validity of decades of published research in ecology,

evolution, and physiology would be called into question.

One of the fundamental differences between linear

regression on log-transformed data (hereafter, LR) and

nonlinear regression on untransformed data (hereafter,

NLR) lies in the assumptions about how stochasticity

manifests in the model (Gingerich 2000, Kerkhoff and

Enquist 2009). InNLR, it is assumed that the error term is

normally distributed and additive on the arithmetic scale

(Bates and Watts 1988:67–70, Ritz and Streibig 2008):

y ¼ axb þ e e ; N ð0; r2Þ: ð1Þ

In contrast, LR assumes that error is normally distributed

and additive on the logarithmic scale (Kerkhoff and

Enquist 2009):

logðyÞ ¼ logðaÞ þ b logðxÞ þ e e ; N ð0; r2Þ

which corresponds to lognormally distributed, multipli-

cative error on the arithmetic scale,

y ¼ axbee e ; N ð0; r2Þ: ð2Þ

For a single data set, both assumptions cannot be correct.

Violation of statistical assumptions of error can lead to

biased point estimates as well as inaccurate confidence
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intervals (Bates and Watts 1988:23–26; see Fig. 1 for an

illustration).

Despite its importance in statistical model fitting, the

issue of error distribution has been largely ignored in

discussions about best practices for fitting power laws to

data. While both additive and multiplicative errors have

been posited to occur in biological systems (Kerkhoff

and Enquist 2009, Packard 2009, Cawley and Janacek

2010), to our knowledge there has been no systematic

analysis that evaluates how NLR and LR estimation

methods perform on different error structures, or what

form the error structure actually takes in biological

systems. This is surprising given the potential implica-

tions of these methodological issues for understanding

biological systems and the strong arguments regarding

appropriate methods being made in the literature (e.g.,

Packard 2009). Here we use Monte Carlo simulations to

test the role of error structure on the performance of the

two methods across empirical parameter space. For

cases where the better model cannot be clearly deter-

mined, we develop an alternative estimation method

based on model averaging. Based on these results,

detailed guidelines for the analysis of biological power

laws, and computer code for their implementation, are

provided.

ERROR DISTRIBUTION DETERMINES THE BEST METHOD

FOR FITTING POWER LAWS

Previous arguments regarding the performance of

different methods have typically been based on empirical

data (but see Hui et al. 2010), despite the fact that the

true data-generating mechanism is generally unknown.

As such, previous studies provide little insight into the

best methodological approach. Monte Carlo simulation,

where data are simulated from known distributions,

allows for a direct comparison between statistically

estimated parameters and their true values. Here we

implement the Monte Carlo approach based on

parameterizations from empirical data sets so that our

results will be valid for the range of empirically observed

parameter values. Results from these empirically moti-

vated simulations were consistent with standard Monte

Carlo simulations based on hypothetical parameteriza-

tions (see Appendix A).

We compiled 471 data sets published between 2004

and 2008 in the fields of ecology and evolution where

significant power-law relationships were reported. The

selected data sets were either morphological or physio-

logical allometries between organismal traits (for details

of data selection and the full list of data sets, see

FIG. 1. An illustration of (A) additive normal error and (B) multiplicative lognormal error displayed on both arithmetic and
logarithmic scales, and how the underlying relationships can be distorted by the application of inappropriate methods. For additive
error, x was generated from a uniform distribution ranging from 10 to 10 000, y was generated using Eq. 1 with a¼ 10, b¼ 0.2, r¼
10. For multiplicative error, x was generated from a log-uniform distribution ranging from 1 to 10 on the logarithmic scale, y was
generated using Eq. 2 with a¼ 0.3, b¼ 0.75, and r¼ 0.3. The dashed curves correspond to the true underlying relationships. Solid
lines show linear (LR, blue) and nonlinear (NLR, red) regression.
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Appendix B; for the complete compilation of data sets,

see Supplement 1). To generate the parameters for

simulations each empirical data set was assumed to have

(1) a multiplicative lognormal error structure, and a, b,

and r were estimated with LR (with r estimated as the

standard deviation of the residuals), and (2) an additive

normal error structure, and the parameters were

estimated with NLR. For each data set, 105 independent

simulations were carried out using the estimated

parameters under the assumption of each error struc-

ture. Each simulated data set was analyzed with both

LR and NLR, and the performance of the two methods

was compared to determine which method had the

better point estimation of a and b, as well as more

accurate confidence interval (CI) coverage measured by

the percentage of simulations where the true parameter

value falls within the estimated 95% CI. Only 239 data

sets generated valid simulations under the assumption of

additive error (see Appendix C for technical details on

the procedure of the simulations). All simulations and

analyses were carried out using R version 2.9.1 (R

Development Core Team 2009). The ‘‘nlrwr’’ package

(Ritz and Streibig 2008) was used to compute asymp-

totic CIs for NLR.

Our simulations confirm the importance of correctly

identifying the error distribution when fitting statistical

models. Among 471 empirical data sets LR outper-

formed NLR under the assumption of multiplicative

error in all of the data sets (100%) for a and 427 data sets

(90.7%) for b. Similarly, NLR outperformed LR under

the assumption of additive error in 196 data sets (82.0%)

for a, and 238 data sets (99.6%) for b (out of n ¼ 239

valid parameterizations). The method with the appro-

priate error assumption also had excellent confidence

interval (CI) coverage, whereas CI coverage for the

inappropriate method was highly variable, reaching

levels as low as 0.2 (Fig. 2).

ERROR FORMS OBSERVED IN NATURE

Given the critical nature of the error distribution in

determining the appropriate method for analyzing

power-law data, it is necessary to understand the form

of the error distribution in nature. Previous papers have

argued for both normal error (Packard 2009) and log-

normal error (Kerkhoff and Enquist 2009), but no

FIG. 2. Comparison of bias in point estimation and CI coverage among LR, NLR, and AICc-weighted average models in
simulations with parameters (A, D) a and (B, C, E, F) b estimated from 239 empirical data sets for (A–C) additive error structure
and 471 empirical data sets for (D–F) multiplicative error structure. Relative bias (mean estimate divided by true value) is depicted
because a spans a wide range across empirical data sets. For point estimation, each curve represents the relative frequency
distribution of relative bias. An appropriate method peaks at 0 (on logarithmic scale) with small dispersion, while an inappropriate
method shows a wide range of relative bias. For CI coverage, the horizontal dashed line represents the nominal 0.95 level. Note that
point estimates were generated based on 105 simulated data sets, while CIs were based on 400 additional simulated data sets due to
computational limitation. Point estimate comparisons are shown for both parameters a and b, while CI coverage comparisons are
shown only for b.
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systematic analysis of biological power laws has been

conducted.

Taking a likelihood approach to compare the

appropriateness of the two error forms for the 471

empirical data sets described above, we used Akaike’s

information criterion (AIC), which measures the

goodness of fit of a statistical model by incorporating

both the likelihood of the model and a penalty for extra

parameters (Burnham and Anderson 2002). For each of

the 471 empirical data sets, we computed likelihoods

and the values of AICc (a second-order variant of AIC

that corrects for small sample size; see Burnham and

Anderson 2002) for both the LR- and NLR-based

models. We compared the AICc values by following the

conventional rule that if jDAICcj (the magnitude of the

difference between the two values of AICc) is less than

2, the two models have relatively equal support and

cannot be distinguished from each other; otherwise, the

model with the lower AICc is considered to have better

data support (Burnham and Anderson 2002). Since

AICc for the LR model is based on the likelihood from

a lognormal distribution conditioned on untrans-

formed data, such comparison does not violate the

assumption of identical response variable in AIC-based

model selection (Burnham and Anderson 2002: Section

2.11.3).

Consistent with previous suggestions that multiplica-

tive error is biologically more realistic (Gingerich 2000,

Kerkhoff and Enquist 2009, Cawley and Janacek 2010),

our likelihood analysis of 471 allometric data sets shows

that lognormal error distributions are substantially more

common than normal error distributions, with 68.6% of

relationships being better characterized by lognormal

error, 16.6% by normal error, and 14.8% having

uncertain error structure.

MODEL AVERAGING: AN ALTERNATIVE APPROACH WHEN

ERROR FORM IS UNCERTAIN

Monte Carlo simulations show that if the underlying

error structure is known, then the model assuming the

appropriate error form (i.e., NLR with normal error,

and LR with lognormal error) will perform well for

estimating both the parameters of the power law and the

CIs of those parameters. However, the underlying error

form of real data sets is not known and our likelihood

analysis shows that identification of the error form will

not be clear-cut in all empirical data sets; in part because

the error form in real data sets may be more complex

than what is assumed by the two standard methods.

Even in our simulation models where one distinct error

structure has been specified, likelihood tests sometimes

failed to identify the correct error structure. For over

half of the parameterizations (50.7% when error was

assumed to be lognormal and 71.1% when error was

assumed to be normal), error structure was either

miscategorized or deemed uncertain by likelihood tests

in more than 10% of the simulated data sets.

When two or more models with appreciably different

parameter estimates have similar support, model

averaging provides a way to incorporate information

from multiple models so that more stable inference can

be made based on the weighted average of the entire set

(Burnham and Anderson 2002, Link and Barker 2006).

The most common weighting strategies are AIC weight

(Burnham and Anderson 2002) and BIC weight (Link

and Barker 2006). In our analysis we adopted AIC

weight (see Appendix C for the detailed procedure).

Based on point estimates and CIs, we assessed whether

the weighted model was able to accurately capture the

underlying relationship under the assumption of the

two error structures, i.e., whether it indicated the

correct error structure if one existed. The R package

‘‘boot’’ was used to construct CIs for the weighted

average model (Davidson and Hinkley 1997, Canty and

Ripley 2009).

Comparison of relative bias among LR, NLR and

weighted average models shows that the weighted model

closely resembles the model with the appropriate error

assumption in both point estimation and CI coverage

(Fig. 2) regardless of error structure. Thus the weighted

average model can provide an indication of the

appropriate error distribution.

GENERAL GUIDELINES FOR THE ANALYSIS

OF BIOLOGICAL POWER LAWS

For future analysis of power-law relationships, we

recommend the application of the following three-step

procedure to correctly identify and apply the appropri-

ate method:

1) Determine the appropriate error structure by either

biological reasoning (e.g., Kerkhoff and Enquist 2009,

Cawley and Janacek 2010) or likelihood analysis. The

relative likelihood of the two error structures can be

compared with AICc or other similar measures. To

compute AICc, first fit the two models using NLR and

LR, respectively, and estimate the parameters a, b, and

r2 for each model. Then calculate the likelihood that the

data are generated from a normal distribution with

additive error:

Lnorm ¼
Yn

i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

NLR

p exp
�ðyi � aNLRxbNLR

i Þ2

2r2
NLR

 !" #

and the likelihood that the data are generated from a

lognormal distribution with multiplicative error,

Llogn ¼
Yn

i¼1

1

yi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

LR

p exp
�
�

logðyiÞ � logðaLRxbLR

i Þ
�2

2r2
LR

0
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2
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where n is sample size. AICc for each model can then be

computed as

AICc ¼ 2k � 2 logðLÞ þ 2kðk þ 1Þ
n� k � 1
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where k is the number of parameters (three in both

models) and L is the corresponding likelihood (Burn-

ham and Anderson 2002).

2a) If the assumption of normal error is favored

compared to lognormal error for either biological or

statistical reasons (i.e., AICc-norm – AICc-logn, �2),
proceed with the results obtained from NLR.

2b) If the assumption of lognormal error is favored

compared to normal error for either biological or

statistical reasons (i.e., AICc-norm – AICc-logn . 2),

proceed with the results obtained from LR.

2c) If neither model is favored by either statistical

(i.e., j AICc-norm – AICc-lognj � 2) or biological reasons,

model averaging should be adopted. The point esti-

mates for a and b in the mixed model are then weighted

averages of the corresponding point estimates from the

two original models. The AICc weights of the two

models are computed as

wi ¼ C 3 exp �AICc�i �minðAICc�norm; AICc�lognÞ
2

� �

where C is a normalizing constant so that wnorm and

wlogn sum to 1, and i represents either one of the two

distribution models. CIs for a and b can be generated

by bootstrapping for data sets of sufficient size (Efron

and Tibshirani 1994).

3) Assess the validity of underlying statistical assump-

tions with diagnostic plots or tests (e.g., Packard and

Birchard 2008, Cawley and Janacek 2010), a step that

has often been overlooked in the analyses of biological

power laws. While it is rare that all assumptions are fully

satisfied by empirical data sets, major violations indicate

the inappropriateness of the model and potential

invalidity of the results.

Computer code that implements these recommenda-

tions is available in Supplement 2.

IMPLICATIONS FOR PREVIOUS STUDIES

For decades LR has been the conventional approach

in the analysis of biological power laws. If the current

proposition to replace LR with NLR (e.g., Packard

2009, Packard et al. 2010) were generally legitimate, the

conclusions from large numbers of allometric studies

would be called into question. However, our likelihood

analysis with 471 empirical data sets spanning ecology,

evolution, and physiology shows that lognormal error

generally provides better fit than normal error distribu-

tion. This implies that the majority of previous

allometric studies in these fields are generally valid and

contradicts the recent argument that LR is inherently

flawed and should be replaced by NLR (e.g., Packard

2009, Packard et al. 2010). As our Monte Carlo

simulation studies show, the application of NLR to

such data sets may lead to biased parameter estimates

and potentially erroneous inferences.

The implications of these results for real biological

patterns can be seen by applying the guidelines described

in the previous section to arbitrate two debates

regarding the exponents of morphological and physio-

logical power laws. The first example addresses whether

or not the scaling of mammalian metabolic rate as a

function of body size is consistent with the canonical

0.75 scaling exponent predicted by metabolic theory

(Brown et al. 2004). Savage et al. (2004) analyzed a large

compilation of mammalian basal metabolic rates using

LR and found that the empirical data supported the

predicted form of the relationship (bLR ¼ 0.74, CI0.95 ¼
(0.71, 0.76); see Fig. 3A). However, reanalyzing the

same data using NLR resulted in different parameter

estimates and confidence intervals (bNLR¼ 0.91, CI0.95¼
(0.88, 0.94)), which suggested that the 0.75 exponent

should be rejected as a reasonable description of the

data (Packard and Birchard 2008). A quantitative

analysis of the error structure in this data set shows

that the assumption of multiplicative lognormal error is

strongly supported compared to additive normal error

(AICc-norm � AICc-logn ¼ 306) with no major violations

of the assumptions. This suggests that the data are

consistent with the theoretical exponent.

Another example of how this approach can provide

clear guidance when LR andNLR yield different results is

the scaling relationship between eye size and brain mass.

Burton (2006) analyzed this relationship in fissiped

carnivores using LR and argued that because the exponent

did not differ significantly from one (bLR¼ 0.87, CI0.95¼
(0.55, 1.19)) that eye size is determined (at least in part) by

a simple limitation on the amount of space available in the

head. A reanalysis of this data using NLR suggested that

bears were outliers and that excluding this taxon the

exponent was steeper than the hypothesized value of 1.

(bNLR ¼ 1.42, CI0.95 ¼ (1.13, 1.70); Packard 2009).

However, both the identification of outliers and the use

of nonlinear regression were controversial (Kerkhoff and

Enquist 2009). Likelihood analysis demonstrates that the

assumption of lognormal error is more strongly supported

regardless of whether the bears are included (AICc-norm�
AICc-logn¼35.9) or not (AICc-norm�AICc-logn¼7.88), and
the assumptions of normality and heteroscedasticity are

not strongly violated in either case. Therefore since LR

yields confidence intervals that include one even when the

bears are excluded (bLR ¼ 1.24, CI0.95 ¼ (0.96, 1.53); see

Fig. 3B), the proposed isometric relationship is supported

by the data.

Parallel examples where data sets with normal or

undetermined error structures suffer from methodolog-

ical problems are rarer in the literature due to the

prevalence of the lognormal error distribution observed

in nature. Nonetheless, reanalysis of the original data is

warranted in cases where there is reason to suspect that

an additive normal error structure or an undetermined

error structure is more realistic.

COMPLEXITIES

Apart from making inferences about the parameters,

power functions are also frequently used to make
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predictions for new observations, which is particularly

important in paleontology and conservation biology.

For LR, it should be noted that although the parameter

estimates are unbiased when the error is lognormal and

multiplicative (Ferguson 1986), the model predicts

log(y), and the predicted value of y obtained by anti-

log transformation is biased on arithmetic scale (Hayes

and Shonkwiler 2006, Packard 2009). Measures should

be taken to correct for this bias if predictions are to be

made from log-transformed power functions (Hayes and

Shonkwiler 2006).

One class of commonly observed biological power-law

relationships not included in this study is the scaling

relationship between species richness and attributes of

habitat (e.g., area, resource availability, distance to

mainland, etc.). The most widely studied of these

relationships is the species–area relationship (SAR).

SARs are of fundamental importance in conservation

biology where they are used for making predictions

regarding the effect of habitat loss on biodiversity

(Brooks et al. 2002) as well as the identification of

hotspots (Veech 2000). It has been shown that inference

related to the SAR varies with the method used for fitting

the data (Fattorini 2007). One often overlooked charac-

teristic of SARs is that the response variable, species

richness, is a discrete count, which in principle cannot be

accommodated by either LR or NLR because both

assume a continuous data distribution (which is why this

type of data was not included in our empirical analyses).

The existence of discrete error structure in some

biological power laws highlights the fact that additive

normal error and multiplicative lognormal error are often

not the only options that should be considered when

analyzing error distributions. O’Hara and Kotze (2010)

showed that ignorance of the error characteristics can

lead to failure of the statistical analysis. Our understand-

ing of the validity of previous studies of SARs and other

relationships that potentially violate the distributional

assumptions of LR and NLR would be enhanced by a

systematic comparison between methods that accommo-

date their statistical and biological properties and

currently applied methods such as NLR and LR.

CONCLUSIONS

Power functions are one of the most broadly studied

relationships in biological systems. The current debate

surrounding the methodology used in their analysis has

generated considerable confusion in the field. As a result,

the conclusions of previous studies have been called into

question and the progress of new analyses has been

hampered. Our study provides a clear answer to the

current controversy surrounding the appropriate meth-

odology for analyzing allometric data. Neither linear

regression on log-transformed data nor standard non-

FIG. 3. Examples of biological power-law relationships where an analysis of the error structure of the data can be used to
arbitrate debates regarding the form of the underlying relationship. (A) Basal metabolic rate–body mass relationship from Savage
et al. (2004), reanalyzed in Packard and Birchard (2008). (B) Eye-size–brain-mass relationship from Burton (2006), reanalyzed in
Packard (2009). See Implications for Previous Studies.
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linear regression is inherently superior for fitting power
laws to data. Which method performs better depends on

the distribution of the error. For most allometric data sets
like those we studied, the error is distributed such that log-
transformed linear regression will produce more accurate

parameter estimates and confidence intervals. As a result,
most published results are likely valid. However, the
methodology chosen for future analyses of power laws in

ecology and evolution should be based on explicit analyses
(both statistical and biological) of the underlying error
structure. We recommend that likelihood comparisons be

applied to assess the error structure of the data set. In
cases where the error is approximately multiplicative
lognormal, the log-transformed linear regression should
be used, while nonlinear regression on untransformed

data should be applied to those data sets with additive
normal error. For data sets with an indeterminate error
structure, we recommend using model averaging to

calculate the weighted average of the parameter estimates.
As in all statistical analyses, the assumptions of the chosen
model should be carefully evaluated.
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APPENDIX A

Additional Monte Carlo simulations comparing the performance of LR and NLR estimation methods with hypothetical
parameters (Ecological Archives E092-160-A1).
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APPENDIX B

List of empirical data sets used in Monte Carlo simulations and likelihood analysis (Ecological Archives E092-160-A2).

APPENDIX C

Technical details of the Monte Carlo simulations using empirical parameters and the simulations related to weighted model
averaging (Ecological Archives E092-160-A3).

SUPPLEMENT 1

A file containing 471 data sets compiled from the literature describing power-law relationships in ecology, evolution, and
physiology (Ecological Archives E092-160-S1).

SUPPLEMENT 2

The R source code to implement the recommended guidelines for the analysis of power-law relationships (Ecological Archives
E092-160-S2).

XIAO XIAO ET AL.1894 Ecology, Vol. 92, No. 10
R

ep
or

ts



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00083
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [1200 1200]
  /PageSize [612.000 792.000]
>> setpagedevice


