
Hierarchical spatial models for predicting pygmy

rabbit distribution and relative abundance

Tammy L. Wilson1*, James B. Odei2, Mevin B. Hooten2,1 and Thomas C. Edwards Jr3,1

1Department of Wildland Resources and Ecology Center, Utah State University; 2Department of Mathematics and

Statistics, Utah State University; and 3U.S. Geological Survey Utah Cooperative Fish and Wildlife Research Unit,

Department of Wildland Resources, Utah State University, Logan, UT, USA

Summary

1. Conservationists routinely use species distribution models to plan conservation, restoration and

development actions, while ecologists use them to infer process from pattern. These models tend

to work well for common or easily observable species, but are of limited utility for rare and cryptic

species. This may be because honest accounting of known observation bias and spatial autocorrel-

ation are rarely included, thereby limiting statistical inference of resulting distributionmaps.

2. We specified and implemented a spatially explicit Bayesian hierarchical model for a crypticmam-

mal species (pygmy rabbit Brachylagus idahoensis). Our approach used two levels of indirect sign

that are naturally hierarchical (burrows and faecal pellets) to build a model that allows for inference

on regression coefficients as well as spatially explicit model parameters. We also produced maps of

rabbit distribution (occupied burrows) and relative abundance (number of burrows expected to be

occupied by pygmy rabbits). The model demonstrated statistically rigorous spatial prediction by

including spatial autocorrelation andmeasurement uncertainty.

3. We demonstrated flexibility of our modelling framework by depicting probabilistic distribution

predictions using different assumptions of pygmy rabbit habitat requirements.

4. Spatial representations of the variance of posterior predictive distributions were obtained to

evaluate heterogeneity in model fit across the spatial domain. Leave-one-out cross-validation was

conducted to evaluate the overall model fit.

5. Synthesis and applications. Our method draws on the strengths of previous work, thereby bridg-

ing and extending two active areas of ecological research: species distribution models and multi-

state occupancy modelling. Our framework can be extended to encompass both larger extents and

other species for which direct estimation of abundance is difficult.

Introduction

Ecologists, conservationists and managers often make deci-

sions with incomplete information about the system or species

of interest. The predictive spatial distributionmodel is one tool

often used to make decisions based on incomplete information

about a species (e.g. Zarnetske, Edwards Jr. & Moisen 2007;

La Morgia, Bona & Badino 2008). Such models may be

misleading because they can fail to account for biases in species

distribution data (Carroll & Johnson 2008) due to imperfect

detection (Stauffer, Ralph & Miller 2002) and autocorrelation

(Cressie 1993; Hoeting 2009). Recent species distribution mod-

els have variously addressed these problems, but only a few

have capitalized on count data to produce maps of abundance

that also account for both spatial autocorrelation and

imperfect detection (e.g. Thogmartin, Sauer & Knutson 2004;

Gorresen et al. 2009).

Species that are rare or secretive pose a unique set of prob-

lems for ecologists interested in using predictive species distri-

bution models. If rarity leads to poor detection, then a high

number of zero observations can lead to violations of statistical

assumptions of standard generalized linear models (Cunning-

ham & Lindenmayer 2005), and large variances in occupancy

models (MacKenzie et al. 2009). To improve detection, indi-

rect indices of presence or relative abundance such as burrows,

nests, tracks, faecal material or hair samples (signs) may be

used (Stanley & Royle 2005). Uncertainty is introduced to the

modelling process when indirect detection indices are used to

build habitat models, because it is difficult to know if the

sign was produced by the organism of interest. For example,

a burrow may not be a convincing indicator of presence for

one of many burrowing organisms, but when combined with a*Correspondence author. E-mail: t.w@aggiemail.usu.edu
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species-specific observation (like faecal pellets), the burrow

may become a more convincing argument for presence. Thus,

we observe that all burrows with faecal pellets of any species of

interest (burrow utilization) are completely contained within

the universe of all burrows on the landscape (burrow intensity),

giving these two data levels natural hierarchical structure.

Our objective is to use an empirical Bayesian hierarchical

spatial model to produce maps of ecologically important vari-

ables: distribution and relative abundance of a small rabbit that

is difficult to observe. Our model uses hierarchically related

indirect detection data (counts of burrows and presence of

faecal pellets) in a joint likelihood that incorporates spatial

structure and measurement uncertainty. We show how infer-

ence about spatial distribution is enhanced by location-specific

uncertainty estimates in unobserved variables (burrow inten-

sity and utilization). This allows us to combine information

contained in both levels of data to producemaps of distribution

(burrow occupancy) and relative abundance. We then demon-

strate the flexibility of our approach by presenting burrow

occupancymaps using different assumptions about organismal

resource use.While use of hierarchicalmethods to produce spe-

cies distribution models is continuing to gain popularity (e.g.

Thogmartin, Sauer & Knutson 2004; Gorresen et al. 2009),

ours builds on previous efforts by using hierarchical indirect

detection data as inputs. We also build on multi-level occu-

pancy models (MacKenzie et al. 2009) by producing statisti-

cally rigorous spatial prediction of distribution and relative

abundance.

Materials and methods

STUDY SYSTEM

The pygmy rabbit Brachylagus idahoensis Merriam serves as the

species of interest in the models we present. Pygmy rabbits occur only

in the intermountain western United States, where they depend

primarily on big sagebrush Artemisia tridentata Nutt. for food and

cover. Pygmy rabbits are petitioned to be listed under the United

States Endangered Species Act (Fite et al. 2003), but little is known

about their abundance or distribution. Pygmy rabbits are known to

dig their own burrows, and although burrow use is little understood,

occupied pygmy rabbit burrows tend to be associated with copious

amounts of faecal pellets (Ulmschneider et al. 2004). Observing rab-

bits directly to estimate abundance is difficult because they are small,

secretive, difficult to trap and lack markings that would allow for the

identification of individuals. As a result, monitoring distribution and

relative abundance using indirect indicators of rabbit activity

(burrows and faecal pellets) is an attractive alternative to direct obser-

vation. Several species distribution models have been proposed for

pygmy rabbits using burrows with faecal pellets as inputs (e.g. Simons

& Laundré 2004; Himes &Drohan 2007). These previous efforts were

successful at delineating important habitat variables, but inference

was limited because autocorrelation and detection probability were

both ignored in themodelling process.

STUDY AREA

Modelling was conducted at a 21 600-ha site in Rich County, located

in northern Utah, USA. The site ranges in elevation from 1800 to

2300 m and is predominately covered by sagebrush-steppe vegeta-

tion. Prior to the initiation of sampling, the site was known to be

occupied by pygmy rabbits, but their spatial distribution within the

study area was largely unknown.

We created a prediction domain consisting of systematically spaced

points (300 · 200 m) that formed the centres of 6-ha rectangular

polygons for the entire study area. This spacing was based on esti-

mated maximum adult female home-range (Sanchez & Rachlow

2008). The prediction grid cell that overlapped the majority of the

area sampled by the burrow transects (described below) was selected

as the point for intersecting training data with the grid.

BURROW SAMPLING

We used a modified systematic and stratified design to place 38 sam-

pling locations within the study area. We used a randomly started

2500-m tessellation grid to place 28 of these points. Use of a system-

atic grid for sampling precludes the estimation of spatial structure

that occurred at a finer scale than the tessellation grid (Wintle &

Bardos 2006). To combat this problem, we randomly selected an

additional 10 sampling locations within soil types that could poten-

tially harbour pygmy rabbits. It should be noted that we sampled a

small area of the total domain and prediction would be improved

with additional data collection.

We used distance sampling (Buckland et al. 2004) to conduct bur-

row counts at each sampling location along five parallel 200-m line

transects spaced 50 m apart (1000 m of total line sampled ⁄ site). We

randomly selected one of eight bearings (cardinal and inter-cardinal)

as the direction the line transects were run at each of the 38 sites.

A single observer documented burrows that could be seen directly

from the line. Once a burrow was observed, the following were mea-

sured by additional observers: (i) distance of the burrow from the line,

and (ii) presence or absence of pygmyrabbit faecal pellets.We assumed

100%detectionof all burrows directly on the sample transect line.

HIERARCHICAL MODEL

Ecologists build statistical models using data to make inference about

a process of interest. In the simplest case, a likelihood-based statistical

modelling formulation seeks to maximize the probability of the data

given some assumption about the process and parameters. In the case

of a generalized linear model, the parameters of the process are the

regression coefficients (b). This model assumes that there is only mea-

surement uncertainty, and that it is captured by the error term. If we

are aware of uncertainty in a process of interest, then we can use the

natural hierarchical structure obtained by factoring the joint distribu-

tion of the data and process components to model the uncertainty

affecting measurement in a data model separately from that in the

process model (Cressie et al. 2009). An advantage of this framework

for complicated models is that additional data or process levels, and

information about their associated uncertainty, can be incorporated

easily (Cressie et al. 2009).

In this study, we implemented a spatially explicit linear model

using a Bayesian hierarchical framework described in detail below.

Recall that we are fundamentally interested in making inference

about pygmy rabbit activity at a site based on the spatial distribu-

tion of two hierarchically related levels of indirect evidence of

pygmy rabbit occurrence. The first level of interest is the intensity

of all burrows regardless of their use by pygmy rabbits. It was

impractical to sample all burrows within our large study area, so

we introduced an additional random variable at this level pertain-

ing to the probability of detecting a burrow given it was in the 6-ha
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sampling area. The second level of interest is the number of bur-

rows used by pygmy rabbits. We termed this level utilization, where

counts of burrows with pygmy rabbit faecal pellets are normalized

by the total number of burrows within the domain. We assumed

that if present, the probability of detecting burrows with faecal

pellets was identical to those without. Utilization was therefore

modelled as the probability of finding a burrow with pygmy rabbit

faecal pellets given burrows. We present a joint likelihood (or data

model) based on our observations of burrow counts and pygmy

rabbit use inferred through faecal pellets.

We assumed that both burrow intensity and probability of utiliza-

tion were related to our set of spatial covariates (Table 1) and poten-

tially subject to correlated spatial error. It is impossible to know a

priori the nature of the latent spatial structure of either process

(intensity or utilization). We therefore used geostatistical methods to

estimate spatial dependence parameters in an empirical Bayesian

fashion (Casella 1985; see Appendix S1). Such empirical Bayesian

approaches have proven useful in cases where fully Bayesian estima-

tion is cumbersome in practice (Hooten, Larsen & Wikle 2003).

Specifically, spatial covariance parameters have proven difficult to

estimate when deeply nested in hierarchical models and only small

amounts of spatial data are available (Carlin & Lewis 2009). In this

case, other model parameters can help to absorb any potential uncer-

tainty not accounted for in the empirical Bayes procedure. We also

used preliminary analysis (Appendix S1) to obtain the probability of

detection for burrows using distance sampling (Buckland et al. 2004).

We implemented the hierarchical model using the Bayesian frame-

work described as follows. Let ni and Yi represent observed number

of burrows with faecal pellets and burrows, respectively, at each loca-

tion i (where i = 1, 2, …, m). The true number of burrows for each

location,Ni, was not observed.We therefore considered the two bino-

mial distributions: ni|Yi,hi � Binom(Yi,hi) and Yi|Ni,u � Binom

(Ni,u), where hi is the probability of observing pygmy rabbit faecal

pellets given the observed burrows at a specified location i and u is

the probability of burrow detection. Burrow detection is defined as

F)1(u) � Norm (lu,r
2
u), as provided by the distance sampling anal-

ysis, where F)1(u) denotes the probit transformation of burrow

detectability. As part of our process stage in the hierarchical frame-

work, we modelled the true number of burrows, Ni, with a Poisson

distribution with intensity ki. Noting the availability of our covariates

at all locations, we then specify linear models for the log transforma-

tion of k, where k = (k1,…, km), and probit transformation of h,

where h = (h1,…, hm). Thus,

logðkÞ ¼ Xkbþe eqn 1

U�1 hð Þ ¼ Xhaþ g eqn 2

where, Xk is m · p, Xh is m · q, b is p · 1, a is q · 1, e is m · 1

and g is m · 1. The error terms, e and g were assumed to have

multivariate normal distributions e � Norm (0, r2eRe) and g �
Norm (0, r2

g Rg) where, Re and Rg are spatial correlation matri-

ces, the forms of which (e.g. exponential, Gaussian or spherical)

are dictated by the residual spatial structure in our preliminary

data analysis (Appendix S1). The hierarchical model is summa-

rized as follows:

nijYi; hi � BinomðYi; hiÞ; i ¼ 1; 2; :::;m eqn 3

YijNi;u � Binom Ni;uð Þ; i ¼ 1; 2; :::;m eqn 4

Nijki � Pois kið Þ; i ¼ 1; 2; :::;m eqn 5

log kð Þjb;r2
eRe � Norm Xkb;r

2
eRe

� �
eqn 6

U�1 hð Þja; r2
gRg � Norm Xha;r

2
gRg

� �
eqn 7

where eqns 3 and 4 form the data model and eqns 5–7 make up

the process model. To make our priors on the regression parame-

ters vague, we specified multivariate normal distributions with

mean vectors equal to zero and variance components equal to

1000 for b and a. For the variance component r2e, we specified a

conjugate Jeffreys prior as it is difficult to estimate the scale

parameter using geostatistics without observing k. We then obtain

the posterior distribution given the number of burrows with fae-

cal pellets (ni) and burrows (Yi) as proportional to the product of

the likelihood of the data given the latent process models and

parameter models shown below.

½fNig; fhig; fkig;b; a;r2
e jfYig; fnig� /

Ym
i¼1

nijYi; hi½ � �
Ym
i¼1

YijNi;u½ �

�
Ym
i¼1

Nijki½ � � kjb½ � � hja½ � � b½ � � a½ � � r2
e

� �
eqn 8

The posterior in eqn 8 is not analytically tractable. Thus, given

empirical estimates of spatial dependence parameters (te, tg) and

burrow detection probability (u), the model was then implemented

using a hybrid Metropolis-Hastings and Gibbs Markov Chain

Table 1. Spatial covariates used in burrow intensity and burrow utilization models. Raster data were summarized for each 6-ha grid cell and the

mean value was used for modelling

Variable Description Source

SLOPE Per cent slope NED

ASPVAL Aspect transformed to create an index ranging

from 0 to 1 where 0 is minimum soil moisture

and 1 is maximum soil moisture

NED

ASPWEST Aspect transformed to create an index ranging

from 0 to 1 where 0 is maximum scouring and

1 is maximum deposition

NED

NIR Near infrared band reflectance NAIP

RED Red band reflectance NAIP

WATER Euclidian distance to nearest water source (stream or spring) DLG

X Easting in Universal Transverse Mercator, zone 12, NAD83 Prediction grid

Y Northing in Universal Transverse Mercator, zone 12, NAD83 Prediction grid

Data sources include: National elevation data set (NED; 10 m raster), National Agriculture Imagery Program (NAIP; 2 m raster) and

Digital Line Graph (vector DLG; ground-truthed with NAIP).
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Monte Carlo (MCMC) algorithm using program R (R Develop-

ment Core Team, 2009). The MCMC algorithm was run for 10 000

iterations after a burn-in period of 2000 iterations. Convergence

occurred rapidly and was assessed visually to ensure a stationary

posterior distribution was well characterized. MCMC samples from

the posterior distribution were used to calculate summary statistics

for all latent processes and model parameters. Using composition

sampling, posterior predictive distributions were obtained for the

latent parameters h (burrow utilization), and k (burrow intensity)

for the entire spatial domain. The details of the MCMC algorithm

are beyond the scope of this paper, and interested readers are

referred one of many texts on the subject (e.g. Banerjee, Carlin &

Gelfand 2003; Carlin & Lewis 2009).

MODEL VALIDATION

We evaluated the spatial precision of the posterior expectations of

our latent processes (burrow intensity and burrow utilization) by find-

ing the standard deviations of the predicted posterior distributions.

We mapped the standard deviations to assess the heterogeneity of

predictive precision throughout the site. Maps of posterior predictive

standard deviations do not evaluate overall model performance. We

therefore performed a leave-one-out cross-validation procedure to

formally evaluate overall model fit. We omitted the data for one of

the 38 sites, and then re-ran the model obtaining posterior predictions

of the expected data (ni and Yi) for the omitted site. It was only possi-

ble to evaluate the counts (ni andYi) using cross validation because all

other processes were unobserved.

Results

The predictive map of burrow intensity (k) shows high burrow

intensity in the valley bottoms of the study area (Fig. 1a).

Recall that burrow intensity represents all burrows, regardless

of origin, expected to occur within each 6-ha grid cell. High

burrow intensity was predicted for slopes near drainages of

perennial streams within the study area. Covariate relation-

ships were considered statistically significant if 95% credible

intervals did not overlap zero (Table 2). Burrow intensity was

positively associated with northing (Y), slope (SLOPE), and

soil moisture (ASPVAL), and negatively associated with east-

ing (X), near infrared reflectance (NIR), and distance to water

(WATER) (Table 2).

Wemodelled utilization (h) as the proportion of the burrows

that were expected to contain evidence of pygmy rabbit. High

utilization was observed along the slopes and ridge tops within

the central portion of the spatial domain (Fig. 1b). Given bur-

rows, utilization was positively related to soil and snow deposi-

tion (ASPWEST) and red band reflectance (RED), and

negatively related to easting (X), near infrared reflectance

(NIR), and distance to water (WATER) (Table 2). Slope

(SLOPE) and soil moisture (ASPVAL) were not shown to be

statistically significant because regression coefficient 95% cred-

ible intervals overlapped zero.

While burrow utilization (h) and intensity (k) were processes

leading to our observations, those processes can also be used

to learn about the total number of burrows expected to have

pygmyrabbit faecalpellets. Ifwe letZ represent the truenumber

ofburrowswithfaecalpellets, thenconditionedonthetruenum-

ber of burrows (Ni) and probability of utilization (hi),Zi comes

from a binomial distribution:Zi � Binom (Ni,hi). We can thus

obtain predictions for pygmy rabbit burrow abundance over

the entire spatial domain. If we assume that the pygmy rabbit

burrow abundance (Z) is proportional to the number of pygmy

rabbits, thenZbecomes ametric of relativepygmy rabbit abun-

dance.Mapsof relative abundance (Fig. 1c) shows the expecta-

tion of pygmy rabbit burrow abundance attributable to spatial

covariates and spatial autocorrelation formally included in our

model. Pygmy rabbit burrow abundance is predicted to be

higher inbothvalleys and slopes in the centreof thedomain.An

unsampled region in the western edge of the domain is also

expected tohavehighpygmyrabbitabundance.

We gain insight about pygmy rabbit occupancy within the

spatial domain if we assume that a site with at least one burrow

with pygmy rabbit faecal pellets is occupied by pygmy rabbits.

Thus, we compute the posterior probability that a site has at

least one burrow with evidence of pygmy rabbits given

expected count data: p(Z > 0|n,Y). Maps of pygmy rabbit

burrow occupancy (Fig. 2a) show that burrows with evidence

of pygmy rabbits are expected to be found throughout the spa-

tial domain. However, there are areas where the probability of

pygmy rabbit burrow occupancy is expected to be reduced,

indicating within site heterogeneity in pygmy rabbit distribu-

tion of a spatial domain that is known to be occupied. In par-

ticular, the agricultural fields on the east side of the domain are

expected to have low probabilities of pygmy rabbit occupancy.

We also demonstrated how different assumptions about the

number of burrows required to indicate animal presence affect

the maps of pygmy rabbit distribution. If the number of bur-

rows with faecal pellets required to indicate pygmy rabbit pres-

ence was changed from one to five, p(Z ‡ 5|n,Y), then the total

area expected to be used by pygmy rabbits was reduced

(Fig. 2b). If this occupancy criterion was further increased to

10, p(Z ‡ 10|n,Y), the total area expected to be occupied was

again reduced, and the number of occupied polygons con-

nected byP > 0Æ5 was changed from one to two (Fig. 2c).

Maps of standard deviations were produced from the mar-

ginal predictive distributions for the intensity and utilization

processes (Fig. 3). As expected, maps of burrow intensity show

that prediction precision was best in regions of the map where

data collection points were close together, and less precise in

areas of themapwith sparse data and in areas of extrapolation.

Recall that burrow intensity (k) was modelled with a log-linear

model, where the mean and variance are expected to have a

one-to-one relationship as an artefact of the Poisson distribu-

tion. This can be seen in the similarity of appearance of the pre-

diction maps of standard deviation (Fig. 3) and mean (Fig. 1).

The appearance of the mean (Fig. 1) and standard deviation

(Fig. 3) prediction maps for the utilization parameter (h) are

also quite similar. This is because the maximum proportion

of all burrows that are expected to have pygmy rabbit faecal

pellets was just over 50%. The variance of the binomial distri-

bution is maximum at h = 0Æ50 and falls as the probability of

the event of interest occurring (or not) is more certain. Leave-

one-out cross validation revealed that predictions for burrows

and burrows with faecal pellets missed the observed values at
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some of the sites. However, the predictions followed the gen-

eral pattern of the omitted observations (solid line in Fig. 4),

suggesting that themodel captured the overall behaviour well.

Discussion

We used our hierarchical model to successfully incorporate

two sources of indirect data in a coupled likelihood and create

posterior predictive distributions for the processes of interest

over the spatial domain. This framework allowed us to present

maps of ecologically important variables such as relative abun-

dance and occupancy. Our model is similar to previous hierar-

chical Bayesian species distribution models that incorporate

spatial structure (e.g. Hooten et al. 2003; Latimer et al. 2006;

Carroll & Johnson 2008; Howell, Peterson & Conroy 2008),

except that, these used presence–absence data and were limited

(a)

(b)

(c)

Fig. 1.Map (a) depicts the predicted mean of the natural logarithm

of burrow intensity (k).Map (b) depicts the predictedmean of burrow

utilization (h). Map (c) depicts the predicted mean number of pygmy

rabbit burrows (presented on the log scale- negative numbers indicate

mean values<1) an index of pygmy rabbit burrow abundance. Coor-

dinates listed on the margin of the map indicate the boundaries of the

study domain and are projected: UTM (Zone 12, NAD 83). The col-

ours on the map present a gradient from cool to warm representing

the modelled expected value of the parameter in each grid cell from

low values to high. Circles within each map represent the value of

each parameter calculated directly using field data. The size of the cir-

cle corresponds to the estimated value of the parameter.

(a)

(b)

(c)

Fig. 2.Maps of pygmy rabbit occupancy using three criteria for

assuming a site is occupied.Map (a) depicts the probability of a single

burrow with pygmy rabbit faecal pellets given predicted counts of

burrows and utilization p(Z > 0|n,Y). Map (b) depicts the probabil-

ity of 5 burrows p(Z ‡ 5|n,Y), and map (c) depicts the probability of

10 burrows p(Z ‡ 10|n,Y). Coordinates listed on the margin of the

map indicate the boundaries of the study domain and are projected:

UTM (Zone 12, NAD 83). The colours on the map present a gradient

from cool to warm representing the modelled probability of the

parameter in each grid cell from low values to high. Circles within

each map represent the value of each parameter calculated directly

using field data. The size of the circle corresponds to the estimated

value of the parameter.
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to making inferences on distribution. The use of count data

allows for the estimation of relative abundance represented

over space while accounting for both observation bias and spa-

tial structure (e.g. Thogmartin, Sauer &Knutson 2004; Gorre-

sen et al. 2009). Our approach is similar to the above studies,

except that we use counts of indirect detection indices and a

geostatistical approach to estimate the spatial covariance struc-

ture. The use of geostatistics rather thanMarkov random field

models allowed us to treat the landscape as a continuous gradi-

ent of habitat, rather than a series of classified habitat poly-

gons, which may be conceptually more desirable (Manning,

Lindenmayer & Nix 2004). The resulting posterior predictive

distribution maps account for both process and observation

uncertainty, and provide a framework for improving ecologi-

cal inference while informing conservation and management

decisions.

Our approach also draws on the strengths of multi-state

occupancy models (e.g. Nichols et al. 2007; MacKenzie et al.

2009), but with two important distinctions. First, our model

uses signs that persist in the environment, and we can not

assume that burrows with faecal pellets are currently occupied.

However, a burrow with faecal pellets does indicate use by our

species of interest at some point in the recent past, and can

safely be considered important for habitat modelling. Sec-

ondly, our model explicitly accounts for spatial autocorrela-

tion, where multi-state occupancy models as presented in

MacKenzie et al. (2009) do not. This allowed us to use geosta-

tistics to produce statistically rigorous prediction maps of our

unobserved processes of interest. While MacKenzie et al.

(2009) argue that careful study design and the use of model

averaging precludes the need to account for spatial structure in

occupancy models, our approach follows that of Hoeting

(2009) who argues that even in well-designed studies of a spa-

tial process, misspecification is likely if autocorrelation is

ignored during model selection. Our model therefore provides

a useful extension ofmulti-state occupancymodels by formally

accounting for spatial structure.

The relative abundance map presented in Fig. 1c takes

advantage of the number of burrows estimated using the

intensity parameter, and the number expected to have sign of

Table 2. Regression coefficients (b, a) for the burrow intensity [log(k)] and pygmy rabbit utilization [U)1(h)]

Mean

Standard

deviation

Lower 95%

credible interval

Upper 95%

Credible Interval

Burrow intensity log(k)
X )1Æ52 · 10)04 2Æ92 · 10)06 )1Æ57 · 10)04 )1Æ46 · 10)04

Y 6Æ64 · 10)05 4Æ52 · 10)06 5Æ77 · 10)05 7Æ54 · 10)05

SLOPE 6Æ12 · 10)02 2Æ20 · 10)03 5Æ69 · 10)02 6Æ56 · 10)02

ASPVAL 6Æ02 · 10)01 3Æ52 · 10)02 4Æ33 · 10)01 6Æ70 · 10)01

NIR )4Æ22 · 10)02 1Æ23 · 10)03 )4Æ46 · 10)02 )3Æ97 · 10)02

WATER )6Æ89 · 10)04 1Æ81 · 10)05 )7Æ25 · 10)04 )6Æ56 · 10)04

Utilization U)1(h)
X )1Æ66 · 10)04 5Æ17 · 10)05 )2Æ67 · 10)04 )6Æ66 · 10)05

SLOPE 3Æ02 · 10)02 2Æ54 · 10)02 )1Æ93 · 10)02 8Æ05 · 10)02

ASPVAL )7Æ14 · 10)01 4Æ92 · 10)01 )1Æ68 · 10)00 2Æ38 · 10)01

ASPWEST 1Æ74 · 10)00 7Æ75 · 10)01 2Æ16 · 10)01 3Æ38 · 10)00

NIR )7Æ35 · 10)01 2Æ85 · 10)02 )1Æ30 · 10)01 )1Æ95 · 10)02

RED 6Æ39 · 10)02 1Æ70 · 10)02 3Æ13 · 10)02 9Æ78 · 10)02

WATER )6Æ77 · 10)04 1Æ80 · 10)04 )1Æ03 · 10)03 )3Æ27 · 10)04

Regression coefficients where the 95% credible interval does not overlap 0 are highlighted with bold text.

(a)

(b)

Fig. 3. Standard deviation of predictive distributions for burrow

intensity (a; presented on the log scale) and burrow utilization (b).

The colours on the map present a gradient from cool to warm repre-

senting the modelled standard deviation of the parameter in each grid

cell from low values to high. Circles within each map represent the

value of each parameter calculated directly using field data. The size

of the circle corresponds to the estimated standard deviation of the

parameter.
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pygmy rabbit activity as estimated by the utilization parame-

ter. Although a similar, but ad hoc, metric would have been

easily calculated by multiplying the burrow density obtained

from program distance by the ratio of the number of burrows

observed to have faecal pellets, our metric provides a statisti-

cally rigorous estimate of relative abundance over the entire

spatial domain. The autecology of the species of interest could

then be used to link relative abundance to actual abundance.

For example, if the number of burrows used by a single pygmy

rabbit were known, then we could use that information to pro-

ducemaps of actual abundance.

Our methods produced probabilistic maps pygmy rabbit

burrow distribution (Fig. 2a). This map is based on the

assumption that a single burrow showing faecal pellets is occu-

pied. This assumption may not be valid if pygmy rabbits use

more than one burrow (Sanchez & Rachlow 2008). We there-

fore demonstrate the flexibility of our approach by presenting

two additional maps (Fig. 2b,c) of pygmy rabbit occupancy

using different criteria for determining site occupancy. We do

not know which of the maps are ‘correct’ because the mini-

mum number of burrows showing sign in a currently occupied

pygmy rabbit home range is not known. However, we demon-

strate how the autecology of the focal species could be used to

inform the choice of an occupancy criterion used for determin-

ing presence in the distributionmaps.

We were primarily interested in optimal spatial prediction,

but examination of covariates gives some information about

the habitat variables important to burrowing animals and

pygmy rabbits within our study domain. Inferences about hab-

itat variables made from our model are specific to our study

domain, although comparison with previous studies may high-

light useful general habitat requirements. In addition, infer-

ences about pygmy rabbit ⁄habitat relationships are limited to

the spatial covariates that were available for each grid location

within the spatial domain. Therefore, direct resource selection

of variables that may relate to fitness (food and cover) cannot

be made at this level. We therefore use surrogates such as

aspect, distance to water and spectral reflectance, which may

not be directly linked to the biology of the organism in ques-

tion. A benefit of our approach is that we are able to evaluate

the factors influencing burrow intensity separately from those

affecting use by pygmy rabbits. These factors are likely to be

confounded in studies which model burrows and scat simulta-

neously.

In the case of our study, interpretation of the regression

parameters reveals that both burrow intensity and utilization

were negatively associated with near infrared reflectance and

distance to water. This indicates that burrowing animals in

general and pygmy rabbits specifically select habitat near

perennial water sources, but do not occur in riparian habitat or

in agricultural fields (types that absorb near infrared radia-

tion). Burrow intensity was also positively associated with

slope and aspects related to soil moisture. Given the presence

of burrows, pygmy rabbits were positively associated with

increased red reflectance, which is consistent with their reliance

on sagebrush (sagebrush is the least red-band absorbent of all

major plants present at the site). Further they were associated

with potential snow and soil deposition (easterly aspects), pos-

sibly reflecting microsite preferences of pygmy rabbits that are

separate from burrowing animals in general. Previous models

using untransformed aspect values show inconsistent results,

prompting Rachlow & Svancara (2006) to recommend that

aspect not be used in large-scale predictive models of pygmy

rabbits. This lack of consistency could indeed be related to dif-

ferences between study areas, or could illustrate confusion

resulting from the confounding of burrow intensity and utiliza-

tion of traditional species distributionmodels.

Evaluation of model performance is a vital part of any

modelling effort. The many methods available for the

evaluation of spatial distribution model performance include

(a)

(b)

Fig. 4. Leave-one-out cross validation results

for the observed counts of burrows (a) and

burrows with sign (b). The boxplots indicate

the median, first and third quartiles, and a

rough estimate of the 95% credible intervals

of the posterior predictive distribution. The

solid line connects the actual observations.
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a number of cross-validation techniques. However, model fit

within the prediction surface is assumed to be homogenous

for all traditional model-fit metrics. A benefit of the Bayesian

approach is that inference is made based on the posterior

distribution, and the standard deviation of the posterior dis-

tribution can be used to assess spatial precision of modelled

expectations. Evaluating the map of standard deviations can

be used to construct optimal sampling designs for spatio-

temporal monitoring (Hooten et al. 2009). For example, our

processes of interest were modelled from the Poisson distri-

bution where variance has a one-to-one relationship with the

mean. An optimal design could be one where sites with

expected higher abundance were sampled more intensively

than those with lower expected abundance.

SYNTHESIS AND APPLICATION

The modelling framework we presented here is applicable to

any species for which multiple levels of indirect detection

are available. For example, models of cavity-nesting birds

based on snag-density (e.g. Ohmann, McComb & Zumrawi

1994) or actual cavities (e.g. Lawler & Edwards Jr. 2002) can

benefit from this approach. Our method is also scaleable to

different spatial grains and extents through collection of

additional data.

For species where indirect observations have natural hierar-

chical structure and where direct species detection is low, our

method is attractive for surveying large spatial extents. This is

because variance of occupancy model parameters increases as

detection decreases (MacKenzie & Royle 2005). To combat

this problem MacKenzie & Royle (2005) suggest adding

additional visits to a site before increasing the number of sites

sampled, thereby increasing the precision of occupancy esti-

mates. If the goal of the study is to make spatial prediction of

species occurrences, then there is a trade-off between increasing

detection, which increases precision, and increasing the num-

ber of sites, which improves prediction. Our method allows us

to estimate both distribution and relative abundance efficiently

while still accounting for imperfect detection, thereby bridging

and extending two active areas of ecological research: species

distributionmodels and occupancymodelling.
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