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Abstract.   Ecological invasions and colonizations occur dynamically through space and 
time. Estimating the distribution and abundance of colonizing species is critical for efficient 
management or conservation. We describe a statistical framework for simultaneously estimat-
ing spatiotemporal occupancy and abundance dynamics of a colonizing species. Our method 
accounts for several issues that are common when modeling spatiotemporal ecological data 
including multiple levels of detection probability, multiple data sources, and computational 
limitations that occur when making fine-scale inference over a large spatiotemporal domain. 
We apply the model to estimate the colonization dynamics of sea otters (Enhydra lutris) in 
Glacier Bay, in southeastern Alaska.
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Introduction

Characterizing species colonization/invasion (here-
after colonization) through space and time is a funda-
mental theme in ecology (Bullock et al. 2002). Applications 
include reintroduction of endangered species, invasive 
species management, and characterizing emerging/re-
emerging wildlife or plant disease (Hooten et  al. 2007, 
Hooten and Wikle 2008, Osnas et al. 2009, Marucco and 
McIntire 2010). Colonizations are dynamic processes, 
changing in space and time, and modeling these dynamics 
is imperative for ecological learning (Clark et al. 2001, 
Wikle 2003, Wikle and Hooten 2010). There has been a 
proliferation of statistical methods for modeling eco-
logical dynamics (e.g., Wikle 2003, Wikle and Hooten 
2006, 2010, Hooten et al. 2007, Cressie and Wikle 2011, 
Conn et al. 2015). The hierarchical statistical framework 
allows for the explicit incorporation of theoretical models 

that best represent our understanding of ecological 
systems (Hilborn and Mangel 1997, Cressie et al. 2009, 
Hobbs and Hooten 2015). Statistical models containing 
dynamic mechanisms for ecological colonization improve 
our ability to obtain accurate predictions in space and 
time while properly accommodating uncertainty per-
taining to multiple sources of data, underlying mecha-
nistic processes, and parameters (Wikle 2003, Hooten 
et  al. 2007, Hobbs and Hooten 2015). Incorporating 
these dynamic models for ecological colonization 
improves our ability to obtain predictions in space and 
time, and include reliable measures of prediction error.

Two critical state-variables associated with species col-
onizations include the distribution of the species, and the 
abundance of the species within its distribution (i.e., 
occupancy and abundance, respectively; Brown 1984, 
1995, Gaston 1996). There is a fundamental link between 
occupancy and abundance in both mathematics and 
ecological theory supported by empirical evidence 
(e.g., Gaston 1996, Welsh et al. 1996, Holt et al. 2002, 
Royle and Nichols 2003, Wenger and Freeman 2008, 
Smith et al. 2012). Explicitly estimating occupancy and 
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abundance in a cohesive modeling framework has several 
advantages including: improved computational perfor-
mance (Smith et al. 2012), straightforward model inter-
pretation (Welsh et al. 1996, Smith et al. 2012), the ability 
to estimate additional latent parameters (Royle and 
Nichols 2003), and modeling rare or elusive species 
(Welsh et al. 1996). Although ecological models linking 
occupancy and abundance have been developed for static 
systems (e.g., Welsh et al. 1996, Smith et al. 2012), they 
have not been generalized for dynamic spatiotemporal 
processes: processes for which these models are most rel-
evant. That is, explicitly incorporating occupancy and 
abundance in a spatiotemporal modeling framework will 
permit investigators to make combined inference or pre-
dictions of the dynamic colonization process, helping to 
identify future research and management priorities for 
species with expanding or contracting distributions.

We developed and implemented a spatiotemporal sta-
tistical framework that explicitly incorporates the math-
ematical link between occupancy and abundance and 
permits inference for each state variable through space 
and time. Our framework addresses several common 
challenges associated with analyzing spatiotemporal eco-
logical data. First, we account for detection probability 
at two levels; the probability of detecting a species, given 
a sample site is occupied by the species, and the proba-
bility of detecting an individual after the site is deter-
mined to be occupied. Second, we demonstrate the 
inclusion of mechanistic process models (specifically, 
partial differential equations: PDE; Holmes et al. 1994) 
that incorporate ecological theory of population coloni-
zation, and perhaps more importantly, account for 
parameter uncertainty associated with the models. Third, 
because we developed the model within a Bayesian hier-
archical framework, we demonstrate additional model 
flexibility, including the ability to combine multiple data 
sources to aid inference of model parameters, account for 
multiple levels of uncertainty, and account for nonlinear 
spatiotemporal dispersal and growth processes. Fourth, 
we discuss and implement a method for addressing com-
putational limitations associated with modeling small-
scale processes over large spatiotemporal domains.

To demonstrate the approach, we fit a spatiotemporal 
occupancy-abundance model for colonizations to three 
sources of aerial survey data collected on sea otter 
(Enhydra lutris) distribution and abundance in Glacier 
Bay, Alaska from 1993–2012. Sea otters in Glacier Bay 
were first detected at the mouth of Glacier Bay in 1993, 
and have since colonized the entire bay. We explicitly 
incorporate each data source to aid estimation of growth, 
diffusion, and detection probability.

Model Development

Following the terminology of Berliner (1996), we 
present a Bayesian hierarchical model consisting of three 
levels (Appendix S1). At the top level, we developed a 
Data model linking the observed data and associated 

variation to latent ecological processes. The data model 
we describe is specific to the combined inference on occu-
pancy and abundance, although generalizations to other 
types of data (e.g., multi-state occupancy data) are 
straightforward within this framework. Next, we discuss 
Process models describing the underlying ecological pro-
cesses (i.e., spatiotemporal occupancy and abundance 
dynamics). Finally, we developed Parameter models rep-
resenting our prior knowledge about the parameter 
inputs in the ecological process model and data model. 
We use the square-bracket notation [a|b] to represent the 
probability density function of variable a given variable 
b (Gelfand and Smith 1990), and also use P(a = 1|b), to 
represent the probability of the realization a = 1, given b. 
We represent vectors with bold lowercase notation, and 
matrices with bold uppercase notation. Finally, we use 
parentheses to index processes that occur in continuous 
time and continuous space, and subscripts to index pro-
cesses that occur in discrete time and discrete space.

Data model

Estimating species abundance often requires observers 
to first locate an occupied site (i.e., a sample unit with ≥1 
individuals of a species of interest), and then count the 
number of individuals at the occupied site. Examples 
include locating a herd of ungulates, or a lek of grouse, 
and then counting the individuals within the heard or lek. 
Occupancy and abundance sampling is often conducted 
such that observers collect data over a disjoint set of 
known-area sites, as with a grid, where some sites are 
sampled and others are not. We let yi,t represent the ith 
observation (i = 1, …, k) collected at a site indexed by the 
spatial location si (e.g., the center of the site) within a 
study area  (s

i
∈ ⊂2), during time t  =  1,  …,  T, in 

which yi,t = 1 if ≥1 individual was detected at the site and 
yi,t = 0 if no individual was detected. We assume the site 
indexed by si is a discrete grid cell matching the obser-
vation process in which ≥1 individual could be detected. 
Subsequent to detecting ≥1 individual at a site, observers 
have the opportunity to count the number of individuals 
at the site. Let ci,t represent count data with support in 
the non-negative integers. The data ci,t often underes-
timate true abundance ni,t due to imperfect detection 
probability. Therefore, it is necessary to account for 
detection probability (p) to estimate true abundance. We 
represent the relationship among count data, true abun-
dance, and observed occupancy data as a hurdle model

where [ci,t|ni,t, p] is a probability mass function relating the 
counts ci,t to the latent, true abundance ni,t and detection 
probability p (e.g., the zero-truncated (ZT) binomial dis-
tribution). Note that, in Eq. 1, P(ci,t = 0|yi,t = 1) = 0, and 
P(ci,t > 0|yi,t = 0) = 0. That is, if the species was detected, 
at least one animal was counted; if the species was not 
detected, it could not be counted.

(1)ci,t ∼

{
[ci,t|ni,t,p], yi,t =1

0, yi,t =0
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Species at occupied sites are not always detected and, 
to estimate true occupancy status in these cases, it is nec-
essary to estimate the species-level detection probability 
ρ. We represent the relationship between observed occu-
pancy data yi,t and true occupancy as a zero-inflated 
model

where [yi,t|ρ] is a probability mass function conditioning 
occupancy data yi,t on the latent, true abundance ni,t and 
species-level detection probability ρ (e.g., the Bernoulli 
distribution). Both p and ρ may depend on spatial or tem-
poral covariates related to the observation process. 
Additionally, ρ is likely to be influenced by the abun-
dance of the species at a site, ni,t (i.e., species-level 
detection probability is likely positively related to abun-
dance). For example, if each individual within an 
occupied area has an equal detection probability (r), and 
there is independence of detections among individuals, 
then

(Royle and Nichols 2003). There is a subtle distinction 
between r and p, although both relate to the probability of 
detecting an individual. The parameter r is the probability 
of detecting an individual in an occupied site for which the 
observer does not know the site is occupied (i.e., the uncon-
ditional individual detection probability). The parameter 
p is the probability of detecting an individual within an 
occupied site for which the observer knows the site is 
occupied (i.e., the individual detection probability, condi-
tional on observing occupancy). If the process of observing 
an individual is the same, regardless of knowledge of the 
occupancy status, then r = p. If the process is not the same 
(e.g., investigators search more diligently for individuals in 
sites known to be occupied or vice versa), then r and p 
could be estimated separately. If all individuals in an 
occupied site do not have the same detection probability r, 
alternative functions linking abundance to the probability 
of detecting the species can be easily incorporated. For 
example, logit(�)= I{n>0} ×(b0+b1x1+⋯+blxl), for l 
covariates that affect detection probability, and where 
I{n > 0} is an indicator variable that equals one when n > 0, 
and zero otherwise.

Process model

Abundance.—An overview of spatiotemporal models 
to estimate animal abundance was provided by Conn 
et  al. (2015). We describe a specific process model for 
abundance that is sufficiently flexible to address many 
ecological questions. We use a Poisson distribution to 
model the latent, true abundance ni,t, with a dynamical-
ly evolving mean and variance parameter λ(si, t). That 
is, ni,t ∼ Poisson(λ(si, t)), where λ(si, t) is the abundance 
intensity, a spatiotemporal dynamic process. In general, 

λ(s
i
, t)= ∫

B
i

λ(u, t)du, where Bi is the unit in which counts 
occur. In our sea otter example, we assume the scale at 
which data were collected coincides with the numerical 
scale in which we solved λ(u, t), precluding the necessity 
to integrate over Bi. If data at a site are collected from 
a larger spatial area than that used to numerically solve 
λ(u, t), then the integration would be necessary. Assum-
ing Markovian dynamics, we can express the abundance 
intensity for time t∈  as a function of the previous abun-
dance intensity and model parameters that describe the 
dynamics of the process λ(s, t) = h(λ(s, t − Δt); θ) (Wikle 
and Hooten 2006, 2010). The function h is general and 
can be chosen to match the specifics of the study. We 
used the PDE known as ecological diffusion to describe 
diffusion and growth dynamics (Garlick et  al. 2011, 
Hooten et al. 2013), because of its explicit connection to 
modeling animal movement using abundance data (c.f., 
Hooten et al. 2010, Hooten and Wikle 2010, for mod-
eling animal movement using individuals directly). The 
ecological diffusion PDE, in two dimensions with Mal-
thusian growth, is

where �λ(s, t)∕�t represents the instantaneous change in 
abundance intensity over the continuous spatial domain 
s≡ (s

1
,s

2
)
� ∈ during time t, (�2∕�s

2

1
+�

2∕�s
2

2
) is the dif-

ferential operator, δ(s, t) represents motility, and γ(s, t) 
represents the instantaneous growth rate. Both δ(s, t) and 
γ(s, t) can depend on covariates that vary over space and 
time, although we focus on space. We consider a log-
linear relationship between the motility δ(s, t) and covar-
iates, and a linear relationship between γ(s, t) and 
covariates. Specifically, log(δ) = Xβ, and γ = Wα, where 
X is a matrix of covariates thought to influence motility, 
W is a matrix of covariates thought to influence growth 
rate, and β and α are parameters to be estimated. 
Although we focus on Malthusian growth γ(s)λ(s, t), 
other continuous growth functions are possible (e.g., 
Holmes et al. 1994, Turchin 2003).

Calculating the abundance intensity λ(s, t) requires 
solving Eq.  4 to describe how λ(s, t) changes through 
space and time. We use finite-differencing to solve Eq. 4, 
and subsequently calculate λ(s, t) (Hooten et al. 2013). 
Finite differencing consists of partitioning the con-
tinuous spatial domain into qs grid cells and partitioning 
the continuous temporal domain into qt bins of width Δt. 
The discrete partitioning results in a linear equation  
for calculating λ(s, t) based on λ(s, t  −  Δt). That is, 
λt = Hλt − Δt, where H is a qs × qs transition (or propa-
gator) matrix that describes how λ(s, t) changes in each 
discrete time step, as a function of other cells in the 
spatial domain, and the growth and diffusion param-
eters γ(s) and δ(s). The H matrix for the discretized 
ecological diffusion model, using first-order finite differ-
encing, is five-diagonal, representing that λ(si, t) depends 

(2)yi,t ∼

{
[yi,t|ρ], ni,t >0

0, ni,t =0

(3)ρi,t =1− (1−r)ni,t

(4)
�λ(s, t)

�t
=
(
�

2

�s
2

1

+
�

2

�s
2

2

)
δ(s, t)λ(s, t)+γ(s, t)λ(s, t)
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on five cells in time t  −  Δt, cell i and its four closest 
neighbors. Calculation of H based on δ(s) and γ(s) is 
straightforward and we provide R code for this calcu-
lation in Appendix S2.

For initial conditions of the PDE, we selected a 
function that allowed us to incorporate information on 
both the intensity and dispersion of λ(s, 0), based on an 
epicenter where the invasion was initiated. A scaled 
Gaussian kernel is a standard function that meets these 
conditions and is described as

where θ is a scale parameter controlling the initial 
density, κ is a dispersion parameter controlling the radial 
distance of the initial density, and d is the epicenter. We 
chose a reflective spatial boundary condition (sensu 
Cantrell and Cosner 2004) for λ(s, t) at spatial locations 
adjacent to terrestrial environments, because sea otters 
are typically restricted to marine environments. A 
reflective boundary is relevant for aquatic species living 
in a body of water or other systems when there exists a 
barrier that the individual cannot cross (e.g., sea otters 
in Glacier Bay, which is surrounded by land except at the 
mouth of the bay). We did not use a reflective boundary 
condition at the mouth of Glacier Bay, allowing dif-
fusion to occur in and out of the bay. Including bound-
aries, the linear equation for abundance intensity can be 
written as �t =H�t−Δt+H

(b)�
(b)

t−Δt
.

Occupancy.—The link to occupancy from abundance 
can be derived from the rules of probability. Assum-
ing ni,t  ∼  Poisson(λ(si, t)), then the occupancy proba-
bility is φi,t  =  P(ni,t  >  0|λ(si, t)) =1−e−λ(si,t). Assuming 
yi,t|ni,t ∼Bernoulli(1− (1−r)ni,t ) (as in Eqs.  2 and 3); 
then, marginalizing the Bernoulli–Poisson mixture yields 
the following probabilities of non-detection and detec-
tion of the species, respectively: P(yi,t =0)= e−rλ(si,t) and 
P(yi,t =1)=1−e−rλ(si,t).

Parameter models

To complete the Bayesian specification of the spatio-
temporal occupancy-abundance model, we describe 
probability models for the parameters discussed in the 
data and process components, above. Parameters 
requiring prior distributions include α, β, p, ρ, θ, and κ. 
Assuming Malthusian growth in Eq. 4, γ(s) represents the 
intrinsic rate of population growth, and should be param-
eterized accordingly. The parameters p and ρ represent 
individual and species-level detection probabilities and 
should be restricted between 0 and 1. Note that, if ρ is 
deterministically linked to n and r, as in Eq.  3, no 
parameter model is needed for ρ. However, if r ≠  p, a 
parameter model is needed for r. Finally, θ and κ must be 
positive. We provide specific values for these parameters 
in our application to sea otter data in Appendix S1.

The full Bayesian posterior distribution is

where I
1−yi,t

{ci,t=0}
 is an indicator variable for sites where no 

species were detected, and therefore ci,t = 0 with proba-
bility 1.

Computational efficiency

When modeling spatiotemporal dynamics at a fine scale 
(i.e., qs and qt are large), computation time can be prohib-
itive because the matrix multiplication to evaluate 
λt = Htλt − Δt results in computation cost that scales by a 
factor of q2

s
qt. As a result, numerical methods that effi-

ciently solve PDEs for implementation within statistical 
models are required for large spatial and temporal domains. 
Homogenization is a method that facilitates solving PDEs 
at a course scale, reducing qs, then optimally down-scales 
the results to a fine scale (Garlick et al. 2011, Hooten et al. 
2013). We use homogenization to fit the model in the sea 
otter example below. Additionally, we provided R code to 
demonstrate homogenization in Appendix S2.

Sea Otter Occupancy and Abundance

We fit the spatiotemporal occupancy-abundance 
model to three sources of aerial survey data collected on 
sea otters in Glacier Bay, Alaska (Appendix S3). The first 
data source was obtained using a design-based survey 
where observers flew in an airplane along transects that 
were 400  m wide, and systematically placed across 
Glacier Bay during 1999–2004, 2006, and 2012 (Appendix 
S4; Bodkin and Udevitz 1999). We discretized the con-
tinuous spatial domain into 400  ×  400  m grid cells to 
match the data collection process. During surveys, 
observers determined the presence or absence of ≥1 otters 
within a 400 × 400 m site, and subsequently counted indi-
vidual otters within occupied sites. Thus, the data 
included presence or absence (yi,t) and counts (ci,t) of 
otters at a site. The second data source included 469 grid 
cells/sites comprising a randomly selected subset of the 
design-based survey. At these 469 sites, after ≥1 otters 
were detected and counted using the same procedures 
from the design-based survey, five concentric circles were 
flown around the site so observers could obtain precise 
counts of abundance. The concentric circles were flown 
in 3.7 min, a time chosen based on the aerobic dive limit 
of sea otters (so diving otters could be included in the 
counts when they resurfaced). Thus, these data include 
information on ni,t at the site, for comparison to ci,t, to 
estimate p. The third data source consisted of another 
aerial survey intended to estimate the spatial distribution 
of sea otters. The third data set was acquired in 1993, 

λ(s,0)=
θe

−|s−d|2

κ2

∫
S

e
−|s−d|2

κ2 ds

(5)

[N,�,p,r,�,�,θ,κ|C,Y]

∝

T∏

t=1

k∏

i=1

{
[ci,t|ni,t,p]

yi,t I
1−yi,t

{ci,t=0}
[yi,t|r,ni,t][ni,t|θ,κ,�,�]

}

×[p][r][θ][κ][�][�]
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1996, 1997, 1998, 2005, 2009, and 2010. These data con-
tained presence (yi,t = 1) and count data (ci,t > 0) only, 
and no absence data. We used these distributional data to 
supplement the design-based data in years when the 
design-based survey was not conducted. Because our 
model formulation does not require presence and absence 
data to fit the model, both the design-based data and the 
distributional data could be used. The additional absence 
information from the design-based data allows improved 
precision when estimating model parameters, while 
missing absence data from the distributional surveys had 
no effect on parameter estimates.

To fit the model to these data, we assumed a ZT-binomial 
distribution for ci,t in Eq. 1, and a Bernoulli distribution for 
yi,t in Eq. 2. We used Eq. 3 to model group-level detection 
probability, assuming r = p. Given the model specification, 
setting r = p improved computation speed due to the 
resulting conjugacy when sampling n (Appendix S2). We 
assumed ni,t ∼ Poisson(λ(si, t)). For our ecological diffusion 
model, we assumed motility was exponentially related to 
depth (either <40 m or not), distance to shore, slope of the 

ocean floor, and shoreline complexity. That is, log(δ(si)) = 
β0 + β1 depthi + β2 disti + β3 slopei + β4 complexityi. We 
included an intercept, and no covariates for growth, so that 
γ  = α. We selected an epicenter d outside the mouth of 
Glacier Bay, where sea otters were observed prior to their 
colonization of Glacier Bay. We used vague prior distribu-
tions for all parameters (provided in Appendix S1).

The fine-scale spatial resolution of grid cells was orig-
inally 400 × 400 m, which matched the width of aerial 
transects. We up-scaled the spatial resolution by a factor 
of 100 (4,000 × 4,000 m) using homogenization. To fit 
the model, we discretized the temporal domain into 
Δt ≈ 4 d. We obtained summaries of the posterior distri-
bution using an MCMC algorithm in R version 3.0.2 
(R Core Team 2013) and C++. We calculated marginal 
posterior distributions for the parameters: β, α, p, θ, and 
κ, and the derived parameters: Λ (abundance intensity), 
N (abundance), Φ (occupancy probability), and P 
(species-level detection probability), each a qs  ×  T 
matrix. We obtained three parallel chains of 100,000 
iterations using our algorithm, discarding the first 

Table 1.  Posterior mean and 95% credible intervals for estimated parameters in the sea otter occupancy-abundance model.

Parameter Lower bound Mean Upper bound

∑q
s

i=1
n

i,1993
 (abundance in 1993) 588 637 687

∑q
s

i=1
n

i,1994
654 693 733

∑q
s

i=1
n

i,1995
669 705 742

∑q
s

i=1
n

i,1996
718 754 789

∑q
s

i=1
n

i,1997
795 831 868

∑q
s

i=1
n

i,1998
896 934 972

∑q
s

i=1
n

i,1999
1,019 1,058 1,098

∑q
s

i=1
n

i,2000
1,164 1,205 1,247

∑q
s

i=1
n

i,2001
1,331 1,376 1,420

∑q
s

i=1
n

i,2002
1,523 1,570 1,618

∑q
s

i=1
n

i,2003
1,741 1,792 1,843

∑q
s

i=1
n

i,2004
1,988 2,044 2,101

∑q
s

i=1
n

i,2005
2,267 2,330 2,394

∑q
s

i=1
n

i,2006
2,581 2,653 2,727

∑q
s

i=1
n

i,2007
2,933 3,020 3,108

∑q
s

i=1
n

i,2008
3,330 3,436 3,543

∑q
s

i=1
n

i,2009
3,777 3,907 4,039

∑q
s

i=1
n

i,2010
4,282 4,442 4,605

∑q
s

i=1
n

i,2011
4,850 5,048 5,250

∑q
s

i=1
n

i,2012
5,491 5,735 5,985

β0 (intercept) 17.72 17.78 17.84
β1 (depth) −1.48 −1.42 −1.36
β2 (distance to shore) 0.77 0.81 0.85
β3 (bottom slope) −0.35 −0.33 −0.31
β4 (shoreline complexity) 1.00 1.03 1.07
γ (intrinsic growth rate) 0.20 0.21 0.22
θ (initial condition for density) 1910 2058 2213
κ (initial condition for dispersal) 5.95 6.59 7.28
p (individual detection probability) 0.74 0.76 0.78

Note: Monte Carlo standard error was < 3 for θ and 
∑qs

i=1
ni,t and < 0.01 for all other parameters, where n{i, t} is the latent sea otter 

abundance at site i = 1, …, q{s} during time t = 1993, …, 2012.
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50,000 burn-in iterations. We examined convergence 
using trace plots and Gelman-Rubin diagnostics. We 
estimated Monte Carlo error for all estimates (Brooks 
et  al. 2011, Dorazio 2016; Table  1). The full model 
statement and MCMC algorithm are provided in 
Appendix S1 and Appendix S2, respectively.

We report means of posterior distributions, which are 
optimal for estimation under squared-error loss (e.g., 
Bernardo and Juárez 2003, Williams and Hooten 2016). 
Posterior abundance estimates for sea otters in Glacier 
Bay are shown in Fig. 1 and Table 1. Posterior mean occu-
pancy probabilities are shown in Fig. 2. Additional pos-
terior parameter means and credible intervals are shown 
in Table 1. Our ecological diffusion model accounts for 

variation in motility due to habitat covariates, and pre-
dicts that animals will eventually accumulate in desirable 
habitats and avoid, or move quickly through undesirable 
habitats (Garlick et al. 2011). Our diffusion results suggest 
sea otters were influenced by habitat type, and sea otters 
accumulated in shallow areas, close to shore, with steep 
bottom slope and relatively little shoreline complexity. 
They diffused quickly through or avoided areas not having 
some or all of these traits. The posterior mean intrinsic 
rate of growth was 0.21, which was similar to the esti-
mated maximum reproductive rate for sea otters (Estes 
1990). The posterior mean probability of detecting an 
individual sea otter was 0.76. Posterior mean species-level 
detection probability depended on abundance, n, and is 

Fig.  1.  Estimated posterior mean (also variance, due to the mean--variance relationship of the Poisson distribution) of 
abundance intensity, λ(s, t), of sea otters in Glacier Bay, Alaska from 1993–2012.
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calculated as ρ  =  1  −  0.24n (e.g., for n  =  2,  3,  4, 
ρ = 0.94, 0.99, 1.0, respectively).

Discussion

Many surveys in ecology follow the procedure of first 
locating an area occupied by a species, then expending 
additional effort to count the number of individuals in 
the occupied area. For example, counting amphibian egg 
masses at ponds where the species were heard calling, 
counting individual moose after a group has been 
detected, or counting the number of individuals present 
after a lek is observed (Steinhorst and Samuel 1989, 
McDonald et  al. 2014). Design-based cluster sampling 
was developed for problems of a similar nature 

(Thompson 1990). Several statistical models have been 
developed that incorporate the functional relationship 
between occupancy and abundance (e.g., Welsh et  al. 
1996, Royle and Nichols 2003, Wenger and Freeman 
2008, Smith et al. 2012). We proposed a spatiotemporal 
framework that generalizes previous research on incor-
porating the intraspecific relationship between occu-
pancy and abundance, facilitates the estimation of 
detection probability at multiple levels, and is straight-
forward to estimate and interpret.

Although we focus on abundance, the formulation in 
Eq. 1 is sufficiently general to include other state variables 
instead of ni,t. For example, Nichols et al. (2007) developed 
a modeling framework for estimating occupancy with 
multiple states and state uncertainty (i.e.,  a multi-state 

Fig. 2.  Estimated posterior mean occupancy probability, φi,t, of sea otters in Glacier Bay, Alaska from 1993–2012.
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occupancy model). The multi-state occupancy model is a 
specific form of Eq. 1. That is, assume investigators are 
interested in the probability of occupancy, and the prob-
ability of reproduction at an occupied site (as in Nichols 
et al. 2007). By parameterizing Eq. 1, such that [ci,t|ni,t, pi,t] 
is a Bernoulli distribution, ni,t represents breeding success, 
ci,t represents whether breeding was observed, and pi,t 
represents the probability of observing breeding success 
given it occurred, we arrive at a multi-state occupancy 
model analogous to that described by Nichols et  al. 
(2007). In addition to multi-state occupancy models, 
other state variables could be considered by appropri-
ately modeling [ci,t|ni,t,  pi,t] (e.g., using the multinomial 
distribution common in capture–recapture studies).

We demonstrated the implementation of the model 
using ecological diffusion. Ecological diffusion is flexible 
and applies to many ecological systems. Although we used 
ecological diffusion, any process model reflecting eco-
logical theory can be easily incorporated into an occu-
pancy–abundance framework (e.g., Broms et  al. 2016). 
Finally, to solve the ecological diffusion PDE efficiently, 
we relied on the multi-scale analysis technique, homoge-
nization. Homogenization may be useful for many spati-
otemporal analyses in which fine-scale inference is desired 
over a large spatiotemporal domain.
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