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A B S T R A C T   

Asymmetric regression is an alternative to conventional linear regression that allows us to model the relationship 
between predictor variables and the response variable while accommodating skewness. Advantages of asym
metric regression include incorporating realistic ecological patterns observed in data, robustness to model 
misspecification and less sensitivity to outliers. Bayesian asymmetric regression relies on asymmetric distribu
tions such as the asymmetric Laplace (ALD) or asymmetric normal (AND) in place of the normal distribution used 
in classic linear regression models. Asymmetric regression concepts can be used for process and parameter 
components of hierarchical Bayesian models and have a wide range of applications in data analyses. In partic
ular, asymmetric regression allows us to fit more realistic statistical models to skewed data and pairs well with 
Bayesian inference. We first describe asymmetric regression using the ALD and AND. Second, we show how the 
ALD and AND can be used for Bayesian quantile and expectile regression for continuous response data. Third, we 
consider an extension to generalize Bayesian asymmetric regression to survey data consisting of counts of objects. 
Fourth, we describe a regression model using the ALD, and show that it can be applied to add needed flexibility, 
resulting in better predictive models compared to Poisson or negative binomial regression. We demonstrate 
concepts by analyzing a data set consisting of counts of Henslow’s sparrows following prescribed fire and provide 
annotated computer code to facilitate implementation. Our results suggest Bayesian asymmetric regression is an 
essential component of a scientist’s statistical toolbox.   

1. Introduction 

Observations in nature rarely meet the assumptions associated with 
basic parametric models taught in applied statistics courses (Fowler, 
1990). Researchers seek to describe patterns and learn about mecha
nisms that give rise to observed data, but they often have to contend 
with 1) measurement error, 2) lack of conditional independence, 3) 
overdispersion, and 4) asymmetry — characteristics that are not 
accounted for using the standard toolbox. Among the remedial ap
proaches for such cases, hierarchical models can be used to address all of 
the aforementioned issues (Clark, 2003; Cressie et al., 2009; Hobbs and 
Hooten, 2015; Hooten and Hefley, 2019). Such models are the subject of 
many studies in nature, and while the first three issues are commonly 
discussed (e.g., Winship et al., 2012; Hefley et al., 2017; Ver Hoef and 
Boveng, 2007), explicit approaches to deal with the fourth issue of 

asymmetry (i.e., skewness) are less well-known and thus our focus 
herein. 

In what follows, we adopt a parametric model-based perspective that 
is prominent in likelihood and Bayesian analyses. That is, we take the 
well-accepted approach of building generative models for observed data 
that are based on conditional probability distributions for data, pro
cesses, and parameters (Berliner, 1996). The conventional approach to 
construct statistical models first involves the choice of a probability 
distribution with support that matches the data. For example, if the data 
yi, for i = 1,…,n, are counts (i.e., non-negative integers), then a Poisson 
distribution might be chosen as a model that could have given rise to 
them conditional on the Poisson intensity parameter λi, which may vary 
with i. The choice of a Poisson data model comes with an associated 
conditional mean, variance, kurtosis (i.e., heavy- or light-tailedness), 
and skewness (along with higher order moments that describe features 
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of the probability distribution). Therefore, the chosen data model in
herits a set of properties automatically, making it very convenient to 
specify parametric statistical models quickly. 

It is widely known that we should check the assumptions of statistical 
models to determine if they could have given rise to our data (Conn 
et al., 2018). For example, dispersion is among the most common 
characteristics checked in parametric statistical models. One measure of 
dispersion is the variance (i.e., the second central moment). If model 
checking reveals that our chosen distribution is not able to provide 
enough variance to match that present in the data, we may select a so- 
called overdispersed distribution to represent the data instead (e.g., a 
negative binomial distribution instead of a Poisson distribution, Ver 
Hoef and Boveng, 2007; Lindén and Mäntyniemi, 2011). Alternatively, 
we may choose to insert an additional stochastic level of hierarchy to the 
model to provide extra dispersion via nested randomness. 

While it is common to adjust model specifications to address mea
surement error, dependence, and dispersion, the skewness implied by 
chosen probability distributions is often accepted without investigation 
(with few exceptions, e.g., Komori et al., 2016). The skewness of a 
probability distribution is defined as the standardized 3rd moment. For 
example, a Poisson distribution with mean (and variance) λ has skew
ness λ− 1

2 (Johnson et al., 2005). Thus, for large intensities, the Poisson 
distribution increases in mean and variance, but decreases in skewness 
such that the distribution becomes symmetric as λ→∞. By comparison, 
had we chosen the negative binomial distribution such that yi ∼

NegBinom(λi,N), the skewness would be 

λ−
1
2

N+2λ
N+λ
(

N
N+λ

)1
2
, (1)  

which converges to λ− 1
2 as N→∞ and the negative binomial converges to 

the Poisson distribution. The skewness associated with the negative 
binomial distribution (1) is always larger than that of the Poisson dis
tribution when N < ∞. 

Critical evaluation of skewness provides an opportunity to contribute 
to our understanding of the natural world (Kozłowski and Gawelczyk, 
2002; Wool et al., 1980). We suggest skewness should be considered in 
the construction of parametric statistical models for ecological data just 
as the mean, variance, and kurtosis often are considered. We discuss 
asymmetric probability distributions that address skewness and can be 
used to model continuous-valued response variables (as well as pro
cesses and parameters in hierarchical models). We then focus on the 
asymmetric Laplace distribution (ALD) and show how it can be used in a 
regression context. Fixing the asymmetry parameter in the ALD to a pre- 
selected skewness has ties to quantile regression and we discuss ad
vantages and disadvantages of doing so. We provide an example model 
for count data that uses the ALD as a process model and apply it to 
perform asymmetric regression to improve our understanding of popu
lation response to prescribed fire for a threatened bird species (Hen
slow’s sparrow). 

2. Asymmetric continuous distributions 

A variety of distributions are commonly used to model discrete- 
valued data (e.g., binomial, Poisson) and they each have associated 
skewness. For continuous-valued variables that are bounded below by 
zero, most probability distributions are skewed. However, for those that 
are unbounded, the normal (or Gaussian) distribution is the most 
commonly specified in statistical models by far. The normal distribution 
has useful properties (such as marginal, conditional, and joint forms) 
and arises naturally in large sums and averages. However, the normal 
distribution is conditionally symmetric regardless of its location or 
dispersion. 

An alternative to the normal distribution is the asymmetric normal 
distribution (AND; Waldmann et al., 2017). For observation y, suppose 

that y ∼ AND(μ, σ2, τ), where the AND probability density function is 
specified as 

[y|μ, σ2, τ]AND ≡
2̅̅̅
̅̅̅̅

σ2π
√

( ̅̅̅̅̅̅̅̅̅̅̅
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1
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√ )− 1

exp

(

−
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σ2 |τ − I{y<μ}|

)

,

(2)  

and the parameters μ and σ2 represent central tendency and dispersion 
(but not necessarily mean and variance). When the asymmetry param
eter τ = 0.5, then μ is the mean of the distribution and it is symmetric. 

By comparison, the asymmetric Laplace distribution (ALD) has 
probability density function 

[y|μ, σ2, τ]ALD ≡
τ(1 − τ)

σ exp
(
−

y − μ
σ (τ − I{y<μ})

)
, (3)  

where the parameter μ is the median of the distribution when τ = 0.5 
(Yu and Zhang, 2005). The ALD is notably more sharply peaked than the 
normal and is commonly used as a prior in Bayesian models where lasso 
regularization is performed (Park and Casella, 2008; Hooten and Hobbs, 
2015). 

The parameter τ controls skewness in both the AND and ALD 
whereby, as τ varies from 0.5, the distribution becomes more skewed in 
one direction or the other. Fig. 1 compares the normal, AND, and ALD 
probability density functions with parameters set at μ = 1 and σ = 0.1, 
and τ = 0.1. Notice that the skewness parameter τ < 0.5 skews the 
asymmetric distributions to the right and it has a much more pro
nounced effect on the ALD than it does on the AND. 

3. Regression using asymmetric models 

The linear regression model 

yi ∼ N(x′

iβ, σ2), (4)  

for i = 1,…, n observations, is most commonly used to describe how the 
mean of a continuous response variable E(yi|β, σ2) changes with respect 
to predictor variables of interest xi, 

E(yi|β, σ2) = x′

iβ. (5)  

When the response variable has a skewed distribution, the Box-Cox 
transformation or power transformation may be used to remove skew
ness. However, sometimes transformation alone is not enough, or 
asymmetry itself is of interest. Therefore, it is necessary to seek distri
butions that model skewness explicitly. 

An alternative to the implicit assumption of symmetry in (4) is to 
specify a distribution for yi that can accommodate asymmetry, such as 
the ALD or AND. Generalizing traditional symmetric regression by 
including an unknown skewness parameter, τ, allows researchers to 
account for asymmetry in the response. 

The ALD can be formally incorporated into a linear regression model 
by assuming 

yi ∼ ALD(x′

iβ, σ, τ), (6)  

in place of the assumption of normality in (4), where x′

iβ and σ represent 
the location and scale parameters, respectively, as in (4), but now, the 
additional parameter τ ∈ (0, 1) represents the skewness of the response 
distribution. 

Use of the ALD in regression modeling is advantageous in that it 
yields more robust inference when the true distribution of yi is not 
normal, and there are only minor losses in efficiency compared to the 
normal distribution when the data truly are normal (Huber, 1981). 
Another key advantage of (3) is that it has connections to classical 
quantile regression (we return to this point in the next section). 

Similarly, if a more rounded distribution is preferred to model the 
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response variables in regression, then the AND provides an alternative to 
ALD regression. In AND regression, we use the AND distribution from (2) 
with μi = x′

iβ such that 

yi ∼ AND(x′

iβ, σ, τ), (7)  

where again, the parameters β,σ, and τ are estimated from the data. 

3.1. Example: plant trait relationships 

Leger et al. (2019) described a study where they found that pheno
typic traits of a perennial grass (Elymus elymoides) were predictive of its 
performance in an arid ecosystem in the Western United States (U.S.). 
We examined their data to characterize the relationship between seed 
weight (mg) and the logarithm of plant biomass (in log mg, averaged 
across cultivars). To analyze these data, we fit three Bayesian regression 
models while considering the plant performance measured in terms of 
log plant biomass as the response variable (yi for i = 1,…, n and n = 35 
sites) and seed weight as the predictor variable (xi). The first model was 
a conventional Gaussian regression model (4), the second model was an 
ALD regression (6), and the third model was an AND regression (7). In 
all three of the models we used the same prior distributions for β and σ 
(β ∼ N(0,1000⋅I) and σ ∼ Uniform(0, 100)). For the ALD and AND re
gressions, we used a uniform prior for the skewness parameter 
(τ ∼ Uniform(0,1)). 

We fit the three regression models using Markov Chain Monte Carlo 
(MCMC) algorithms and 200,000 iterations. We computed posterior 
predictive p-values for each model using both skewness and kurtosis 
statistics (Conn et al., 2018) as well as the deviance information crite
rion (DIC Spiegelhalter et al., 2002; Hooten and Hobbs, 2015) to 
compare the predictive performance of the models (Table 1). We also 
computed marginal posterior means and 95% equal-tailed credible in
tervals for all model parameters (Table 1). The results obtained by fitting 
the regression models to the plant trait data suggest the normal 
assumption is not appropriate for these data; a common finding when 
modeling data observed in nature (Box, 1976). While the posterior 
predictive p-value for kurtosis does not indicate the tails of the distri
bution are too heavy or light, the p-value for skewness suggests that the 
data are more skewed than that allowed by the normal (Table 1). These 
results indicate that a skewed distribution is more appropriate for 
describing the relationship between seed weight and biomass in this 
plant species. 

In contrast with the normal model, neither asymmetric models 
indicated issues with skewness or kurtosis assumptions for these data 
(Table 1). However, the DIC score for model selection indicated better 

predictive performance with the ALD regression model. This is 
confirmed by the posterior predictive distributions (PPDs) shown in 
Fig. 2. Notice that the PPD resulting from fitting the normal regression 
model to the plant trait data only slightly underestimates the heaviness 
of the upper tail of the distribution, but is too conservative on the lower 
tail because it is symmetric. By comparison, the PPD resulting from the 
AND model (Fig. 2c) captured the central tendency but resulted in an 
upper tail that was slightly too light which is related to the somewhat 
small posterior predictive p-value for skewness (Table 1). Finally, the 
ALD posterior predictive distribution (Fig. 2b) captures the central 
tendency, variation, and skewness of the data well, which confirms the 
DIC results and supports the utility of asymmetric statistical models in 
practice. 

Overall, our results indicate that the ALD regression predicts the data 
better than the other models and does not indicate lack of fit. Thus, we 
should use the ALD model for inference and prediction for these data. In 
this case, our ALD regression model suggests a positive relationship 
between seed weight and log biomass while accounting for asymmetry 
by reducing τ so that the model is positively skewed to accommodate the 
data. 

4. The ALD and Bayesian quantile regression 

Quantile regression seeks to infer the relationship between pre
dictors and a selected quantile (or quantiles) of the response data (e.g., 
Koenker and Bassett, 1978), and relaxes the assumption made in most 
parametric regression models that this relationship has the same linear 

Fig. 1. Comparison of normal probability density function (solid line) with the AND (dashed line) and ALD (dotted line) using μ = 1, σ = 0.1, and τ = 0.1.  

Table 1 
Posterior mean and 95% credible interval of model parameters, predictive p- 
values, and DIC.   

Normal ALD AND 

E(β0|y) (CI) 0.113 (− 0.493, 
0.719) 

− 0.435 (− 0.799, 
− 0.026) 

− 0.295 (− 0.775, 
0.292) 

E(β1|y) (CI) 0.301 (0.107, 
0.494) 

0.346 (0.227, 0.453) 0.327 (0.173, 
0.470) 

E(σ|y) (CI) 0.526 (0.414, 
0.678) 

0.111 (0.414, 0.678) 0.315 (0.121, 
0.543) 

E(τ|y) (CI) — 0.205 (0.078, 0.371) 0.133 (0.012, 
0.421) 

skewness p- 
value 

0.023 0.692 0.175 

kurtosis p- 
value 

0.219 0.770 0.312 

DIC 55.736 43.412 47.766  
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pattern for each quantile. Quantile regression analyses have been used 
effectively by scientists as an alternative to, or in supplement of, classic 
linear regression models for 20 years (Cade and Noon, 2003). The use of 
quantile regression concepts to infer characteristics of quantiles in data 
have provided novel, and otherwise unobtainable, insight on natural 
processes such as climate change (Koenker and Schorfheide, 1994), 
species distributions (Cade et al., 1999), and predator–prey relation
ships (Scharf et al., 1998). 

There are at least three general approaches to quantile regression 
models. They include distribution-free or semiparametric approaches (e. 
g., Koenker and Bassett, 1978), maximum likelihood approaches (e.g., 
Gilchrist, 2000), and approaches based on the ALD (e.g., Yu and 
Moyeed, 2001). Our methods fall under the ALD approach, but we 
discuss general properties of quantile regression, below. 

The traditional approach to quantile regression requires the user to 
pre-specify τ and then estimate β(τ) by solving the minimization prob
lem 

β(τ) = min
β∈R

∑n

i=1
(yi − x′

iβ)(τ − I
{yi<x′i β}). (8)  

The term “quantile regression” is used because the optimization is 
consistent with assuming only that the τ-quantile of the distribution of 
yi|β(τ) is linear in xi (i.e., qτ(yi|β) = x′

iβ). Quantile regression therefore 
relies on weaker assumptions than classical regression. For instance, the 
variance of yi is not required to be homoskedastic. 

The loss function in (8) penalizes outliers less than squared error loss 
(Williams and Hooten, 2016), thus quantile regression is more robust to 
outliers than the classic linear regression model described in (4) 
(Koenker and Bassett, 1978; Huber, 1981). In comparison to (4), 
regression quantile estimates do not depend on an assumed form of error 
distribution (Koenker and Bassett, 1978). There are several non- 
Bayesian applications of quantile regression for continuous data. 
There is also well developed software (e.g., the quantreg package in R) 
to facilitate implementation. 

Quantile regression for continuously valued response data and fixed 
quantile(s) of interest, τ, was extended to the Bayesian framework by Yu 
and Moyeed (2001). The authors developed an approximate method for 
Bayesian inference that relies on fitting a collection of separate para
metric models based on the ALD (3) with pre-selected skewness values. 
Maximizing the likelihood of the ALD is directly related to the minimi
zation function in (8) (Koenker and Machado, 1999). Thus, a likelihood 

function based on the ALD is a natural component of a Bayesian quantile 
regression model (Yu and Moyeed, 2001). Inference about model pa
rameters can be obtained using conventional Bayesian methods for each 
separate model fit (e.g., MCMC; Appendix A). 

The Bayesian implementation of quantile regression has advantages 
over traditional approaches including accounting for parameter uncer
tainty, incorporating a priori information, and the ability to fit more 
realistic hierarchical models (Hooten and Hefley, 2019). Additionally, 
the Bayesian framework is particularly useful for modeling discrete- 
response data. However, for those interested in asymptotic data set
tings and frequency interpretations of Bayesian inference, Bayesian 
quantile regression may not be consistent (i.e., converge to true value 
under large n; Yang et al., 2016). Consistent asymptotic properties have 
been established in the non-Bayesian quantile regression framework, 
however, limitations include difficulties optimizing the regression pa
rameters of discrete data (Florios and Skouras, 2008) and building 
confidence intervals and covariance matrices for parameter estimates 
(Abrevaya and Huang, 2005; Machado and Silva, 2005). 

In general, quantile regression is a useful technique for exploratory 
data analysis. In addition, the use of an ALD likelihood allows for 
quantile regression-like inference when a single percentile τ is pre- 
selected in that it provides insights about the relationships between 
response and predictors in the tails of the data. Similarly, the AND 
likelihood can be used for expectile regression and provides a different 
type of insight about the tails of the response distribution. However, 
quantile and expectile regression models are not generative in the sense 
that they cannot give rise to the observed data. Asymmetric regression 
techniques, on the other hand, are generative when the skewness 
parameter τ is estimated, as in our previous example. 

5. Bayesian asymmetric and quantile regression for counts 

Count data are typically modeled by generalizing classic linear 
regression such that 

yi ∼ [yi|λi, κ],
λi = g(x′

iβ)
(9)  

(Nelder and Wedderburn, 1972), where [a|b] represents the probability 
mass function (PMF; e.g., Poisson, negative binomial) of a conditional 
on b, λi is the mean of the PMF, κ is a dispersion parameter, when 
appropriate, and g is an appropriate link function (e.g., the exponential 
function). 

Fig. 2. Comparison of posterior predictive distribution resulting from a.) normal, b.) ALD, and c.) AND regression models applied to perennial plant trait data (black 
points). In the background, 99% (light shading), 95% (medium shading), and 50% (dark shading) equal-tailed point-wise credible intervals. The point-wise maximum 
a posteriori prediction is shown as solid black line. 
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Discrete data, including binary data and count data, do not have 
continuous quantiles, precluding the use of traditional quantile regres
sion. Machado and Silva (2005) extended quantile regression for count 
data in a non-Bayesian framework using a specific form of jittering 
(Stevens, 1950). In this approach, the response data are transformed 
stochastically by adding uniformly distributed noise to the count vari
able zi = yi + ui, for ui ∼ Uniform(0, 1). The quantile function for the 
transformed response variable zi is 

qτ(zi|β(τ), σ2) = exp(x′

iβ(τ))+ τ. (10)  

Addition of τ in (10) is a result of z being bounded below by τ due to the 
addition of the uniform random variable. Machado and Silva (2005) 
showed that (10) results in the continuous variable zi with conditional 
quantiles that have a one-to-one relationship with the conditional 
quantiles of the counts, permitting zi to provide a basis for inference. 
Standard inference methods used for yi are asymptotically valid for zi 
(Machado and Silva, 2005). The relationship between the quantiles of z 
and y is (Machado and Silva, 2005) 

qτ(zi|β(τ), σ2) = qτ(yi|β(τ), σ2)+

τ −
∑qτ(yi |β(τ),σ2)− 1

y=0
[Y = y|β(τ), σ2]

[Y = qτ(yi|β(τ), σ2)|β(τ), σ2]
. (11) 

A Bayesian hierarchical asymmetric regression model for ecological 
count data is 

zi =

{ log(yi + ui − τ), yi + ui > τ
log(η), yi + ui⩽τ

,

zi ∼ ALD(x′

iβ, σ, τ),
ui ∼ Uniform(0, 1),
β ∼ Normal(μβ,Σβ),

σ ∼ Uniform(0, uσ).

(12)  

In the absence of prior information about the skewness in the process zi, 
a natural prior distribution for τ is 

τ ∼ Uniform(0, 1). (13)  

One approach to Bayesian quantile regression for count data is to adopt 
the above model for a collection of fixed values of τ, inferring parameter 
values through multiple simultaneous model fits, as is done with 
continuous data. 

The mixture model at the top of (12) is required for count data that 
contain zeros because P(ui − τ⩽0|y = 0) > 0, and log(0) is undefined. In 
previous applications of quantile regression for count data, either yi⩾1,∀
i ∈ 1,…,n, precluding the necessity to chose η (e.g., Lee and Neocleous, 
2010), or η has been selected by the investigator to be a “suitably small 
positive number” (Machado and Silva, 2005, p.1231). To date, no 
definition of “suitably small” has been provided for quantile regression 
of counts. To preserve the ordering of zi in relation to the count data yi, η 
must fall between 0 and 1 + u* − τ, where u∗ = min{ui : yi + ui > 1,
and yi + u⩽2}. The choice of η affects inference (larger values place 
more emphasis on information contained in zeros than smaller values), 
and the magnitude of the effect depends on the amount of zeros in the 
data (Appendix B). Instead of choosing one value for η, as recommended 
by Machado and Silva (2005) another potential approach is to impute 
values by sampling η(k) ∼ Uniform(0,1+u(k)*

i − τ) for each k = 1,…,K 
MCMC iteration. Thus, uncertainty in the choice of η is considered in 
parameter estimates during analysis. We demonstrate this process and 
provide R code in Appendix B. 

The hierarchical framework in (12) could also be used to account for 
false negative observations. For example, if replicate counts of species 
ci,t are taken at site i during time t = 1, …, T, and assuming yi is the 
latent, true abundance at site i, we can estimate the relationship between 
the observed counts, true abundance, and detection probability p, by 
assuming ci,t ∼ Binomial(yi,p). 

6. Bayesian ALD for improved prediction and inference 

The hierarchical model in (12) used for quantile regression assumes 
an investigator is interested in one or more specific quantiles of interest, 
and therefore selects values of τ a priori before fitting the models. 
However, as we showed in our previous asymmetric regression example, 
using the ALD (or AND) as a likelihood allows us to estimate τ as an 
unknown parameter in an asymmetric regression model. When the 
skewness parameter, τ, in the ALD is treated as unknown and estimated 
from the data, regression for count data using the ALD represents a 
flexible alternative to Poisson regression that can account for, and 
provide inference on, additional skewness in the data. The approach is 
similar to specifying a negative binomial distribution with unknown 
dispersion parameter for the response but accounts for additional 
skewness rather than overdispersion in the data. Further, if a symmetric 
model, such as the symmetric normal distribution in Eq. (4), is fit to 
asymmetric data, parameter estimates may fail to recover the true values 
of the parameter. We evaluated this behavior in Appendix C. Specif
ically, we found that if asymmetric data are generated using the AND, 
and fit using Eq. (4), 95% credible intervals of the intercept parameter 
did not cover the value of the parameter that was used to generate data 
when the asymmetry parameter (τ) was < 0.4 or > 0.6. However, ac
counting for asymmetry permitted 95% credible invervals of parameter 
estimates to reliably cover true values of the parameter for all values of τ 
(Appendix C). As we demonstrate in the following application to counts 
of Henslow’s sparrows following a prescribed burn, the ALD regression 
approach has the potential to offer greater predictive power compared 
to both Poisson and negative binomial regression while still retaining an 
interpretable functional form. 

7. Application: population response to prescribed fire 

We consider data consisting of counts of Henslow’s sparrows 
following prescribed fire (Fig. 3) collected at Big Oaks National Wildlife 
Refuge in southeastern Indiana, USA. The Henslow’s sparrow has 
experienced substantial range-wide population declines the last half- 
century (Herkert et al., 2002). Big Oaks National Wildlife Refuge has 
one of the largest remaining breeding populations of Henslow’s spar
rows in the world. Henslow’s sparrow population declines appear to be 
associated with loss or degradation of their preferred habitat. Preferred 
habitat consists of grasslands with tall and dense grass, a thick litter 
layer, and sparse or no woody vegetation (Herkert et al., 2002). Woody 
encroachment is a major driver of Henslow’s sparrow habitat loss 
(Herkert et al., 2002). Prescribed fire is the primary management tool 
used to prevent or delay woody encroachment at Big Oaks National 
Wildlife Refuge. After a prescribed fire has been implemented, biologists 
collect count data to evaluate the population response to the fire, and to 
guide future management actions (Williams and Hooten, 2016). Count 
data have been collected for at least eight years post fire at some sites. 
Henslow’s sparrows do not typically use a grassland the same year it is 
burned (year zero) due to sparse vegetation, but counts are usually 
higher one year after a burn (year 1) compared to pre-burn counts. 

7.1. Estimating skewness using ALD regression 

We first explored the Henslow’s sparrow data in Fig. 3 to identify 
some summary statistics. We calculated the mean and median counts of 
Henslow’s sparrows conditional on the covariate years since burn (Ap
pendix A). We found that mean Henslow’s sparrow counts, conditional 
on years since burn, were always higher than the median Henslow’s 
sparrow counts (Appendix A). In symmetric distributions, the median 
equals the mean. These results suggested that our data were asymmetric 
and may be better represented with an asymmetric model. We fit three 
statistical models to the data presented in Fig. 3. The first two models 
represent conventional approaches, and the third is a novel ALD-based 
approach. Specifically, we assumed yi were realizations from a Poisson 
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distribution in the first model (Fig. 3a), and negative binomial distri
bution in the second model (Fig. 3b). The third model we fit to the data 
was the hierarchical ALD model in (12), where we treated τ as an un
known parameter to be estimated, with prior distribution τ ∼ Uniform(0,
1). 

The Poisson distribution assumes the variance equals the mean. The 
negative binomial distribution and ALD relax this assumption and allow 
more flexibility using an additional over-dispersion/skewness param
eter, κ/τ. We used an exponential inverse link function for f. We used 
three basis vectors for x1, x2, and x3, generated from basis spline func
tions with 3 degrees of freedom over the range 0–8 (see Appendix A). 
Basis vectors permit flexible modeling of non-linear processes (Hefley 

et al., 2017). We used exchangeable normal priors with mean equal to 
zero and variance equal to 10 for coefficients in β, and for the negative 
binomial distribution, a log-normal prior distribution for κ with mean 
and variance equal to log(2) and log(3), respectively. For the ALD 
model, we set the hyperparameter for the prior distribution of the scale 
parameter to uσ = 10. 

We fit each model to the Henslow’s sparrow data using a MCMC 
algorithm written in R. The full algorithm for each model is provided in 
Appendix A. We evaluated convergence by visually inspecting trace 
plots. We assessed model fit using Bayesian p-values, and compared 
model predictive ability using the widely applicable Bayesian informa
tion criterion (WAIC; Watanabe, 2013; Hooten and Hobbs, 2015; Conn 

Fig. 3. Henslow’s sparrow counts collected from 305 plots at Big Oaks National Wildlife Refuge, Indiana, USA, between 1996 and 2007. Fig. 3a shows the estimated 
Poisson regression process model, Fig. 3b shows the estimated negative binomial process model, Fig. 3c shows the estimated ALD process model with estimated 
quantile, τ, and Fig. 3d shows the estimated quantile regression process model with τ selected to equal (from bottom to top) 0.1, 0.5, 0.9, and 0.975 (red line =
estimated posterior mean of the process model, gray polygon = 95% credible intervals). 
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et al., 2018). 
The estimated process models are provided in Fig. 3. All models we 

fit suggested that, on average, Henslow’s sparrow counts decreased 
three years after prescribed fire, suggesting periodic prescribed fire is 
important to improve Henslow’s sparrow habitat through time (Fig. 3). 
The Poisson model exhibited lack of fit (posterior predictive p-value ≈
1.00), and had poor predictive ability relative to the other models 
(WAIC = 3,572). This was due to the over-dispersed nature of the data 
with respect to the Poisson regression model. The negative binomial 
distribution improved the model fit compared to the Poisson regression 
model (posterior predictive p-value = 0.45) by explicitly accounting for 
over-dispersion with the additional parameter, κ. The posterior mean of 
κ = 0.35 (95% CI (0.27, 0.42); Appendix A). Estimated predictive ability 
also increased with the negative binomial distribution compared to the 
Poisson distribution (WAIC = 1,470). The ALD regression model showed 
no lack of model fit (posterior predictive p-value = 0.33) and was the 
best predictive model (WAIC = 1,378). The estimated posterior mean of 
the skewness parameter was E(τ|y) = 0.55 (95% CI = (0.42, 0.70)). 
Values greater than 0.5 suggest a distribution with more mass associated 

with lower counts while values less than 0.5 suggest a distribution with 
more mass associated with higher counts. An estimated skewness 
parameter greater than 0.5 was expected for Henslow’s sparrows given 
the empirical distribution of the observed data (Fig. 3a). The added 
flexibility of estimating τ in the asymmetric regression model allowed us 
to predict better the skewed (toward 0) nature of the data observed in 
(Fig. 3a) than would be predicted by either the Poisson or negative 
binomial process model. The skewness in the ALD also permits enough 
mass in the upper tail of the distribution to permit large counts of ani
mals, a common observation in wildlife ecology that is seldom 
addressed. 

7.2. Inference on tails of the data: Bayesian quantile regression 

Scientists are often interested in the effect of prescribed fire (or other 
disturbances) on wildlife resource use. However, wildlife response to 
disturbance can be limited by latent, unobservable environmental fac
tors, potentially unrelated to fire frequency. A population response to 
fire can be dampened, or eliminated if other limiting factors dominate. 

Fig. 4. Estimated marginal posterior distributions for β1,τ for quantiles τ = 0.1,0.5,0.9, 0.975 in the Henslow’s sparrow response-to-fire model from data collected at 
Big Oaks National Wildlife Refuge, southeastern Indiana. Estimated differences in these parameters drive differences in the process model in Fig. 3d. 
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Addressing latent limiting environmental factors on population response 
to covariates in a cohesive modeling framework was an original moti
vation for applying quantile regression to ecological data (e.g., Cade and 
Noon, 2003). We incorporate these concepts in our application, and 
show how they can be extended to count data. 

A common approach to making inference on regression quantiles is 
to choose several quantiles of interest, and examine how coefficient 
parameter estimates relate to different quantiles of the response distri
bution (e.g., Cade et al., 1999; Cade and Noon, 2003). For example, a 
predictor variable such as time since burn might have no effect on the 
response variable in habitats that have other, unmeasurable, limiting 
factors, but have a large effect on the response variable at sites where 
Henslow’s sparrows were previously limited by dense vegetation and 
woody encroachment. These parameter estimates can be viewed/sum
marized using forest plots (Fig. 4). 

Estimated process models fit with four selected quantiles, τ = 0.1,
0.5,0.9,0.975, for the Henslow’s sparrow data are shown in Fig. 3d. The 
process model for the top quantile selected, τ = 0.975 reflects how the 
“best sites” (i.e., the sites with the highest counts of birds, conditional on 
the covariate years since burn) respond to prescribed fire. The best sites 
see an overall increase in the number of birds 2–3 years following pre
scribed fire, compared to decreases after one year following prescribed 
fire. There is more uncertainty in the upper tail of the response distri
bution due to less data in those quantiles (Fig. 3d). Similarly, the process 
model for the bottom quantile selected, τ = 0.1, describes how the 
“worst sites” respond to prescribed fire. The worst sites see little change, 
or even a decrease in use, 2–4 years following a prescribed fire, 
compared to one year following a prescribed fire (Fig. 3d). We can also 
select the median response to prescribed fire by setting τ = 0.5. 
Abundance at median sites decrease slightly two years following pre
scribed fire compared to one year after fire (Fig. 3d). Importantly, the 
effects at each quantile level need not be equal (Fig. 4), as they would be 
by definition in any conventional generalized linear model, including 
the cases of Poisson, negative binomial, and ALD response distributions. 

8. Discussion 

Asymmetric data present analysis challenges when using common 
statistical models. We demonstrated how incorporating the ALD and 
AND into familiar model structures permits scientists to appropriately 
model asymmetric data and improve predictive power while aiding 
natural interpretation. Developing models for asymmetric data in a hi
erarchical Bayesian framework facilitates the specification of a variety 
of asymmetric regression models and can be used to account for random 
effects, such as those that include spatial and temporal structure. The 
methods we introduced represent useful and readily implementable 
extensions to scientists’ standard model-building toolbox. 

We also demonstrated that the AND and the ALD can be used to 
perform expectile and quantile regression, even when the data are 
discrete counts. Quantifying different potential responses to a distur
bance event, and the uncertainty associated with those responses, is 
critical to understand basic ecological mechanisms and how they vary in 
space and time. We demonstrated how Bayesian quantile regression can 
be used for count data through an application to Henslow’s sparrows by 
examining the different response to prescribed fire at a variety of 
quantiles including the best sites (i.e., τ = 0.975), the worst sites (τ =

0.1), and the median (τ = 0.5). Sites within our study area responded 
differently to prescribed fire. Some sites responded favorably, and others 
did not appear to benefit (Fig. 3d); presumably due to unmeasured local 
conditions. Quantifying the differential response to disturbance pro
vides a formal framework for exploratory data analysis and fosters 
future investigation into the spatial, temporal, biotic, and abiotic 
mechanisms responsible for different responses to disturbance. By 
identifying and comparing sites in various quantiles, and their response 
to natural disturbance, we can begin to examine factors limiting the 
natural response, and improve management actions. 

Compared to non-Bayesian approaches to quantile regression, the 
Bayesian framework provides for uncertainty quantification both in 
parameter estimates (Fig. 4) and the process of interest (e.g., counts of 
Henslow’s sparrows Fig. 3d). Formally quantifying uncertainty in the 
process of interest provides a basis for targeted monitoring to optimally 
reduce future uncertainty (sensuWilliams et al., 2018), with the ultimate 
goal of increased scientific understanding. In the case of Henslow’s 
sparrows, a monitoring program could be developed to identify the 
mechanism responsible for why sites in the bottom quantiles do not 
respond as favorably to sites in the top quantiles. 

In addition to estimating response to fire, conditional on user- 
selected quantiles, we discussed an asymmetric regression model for 
count data using the ALD. We demonstrated that the ALD, modified for 
count data, provides a better predictive model (assessed using WAIC) 
than other commonly used statistical models (i.e., Poisson, negative 
binomial). 

Unlike its non-Bayesian counterpart, inference for Bayesian quantile 
regression proceeds via a collection of sub-models, each specified using 
an ALD at the level of the response with a fixed and selected skewness 
parameter (3). However even when errors in real, continuous-valued 
data are not distributed according to an ALD, empirical and theoret
ical results have shown posterior consistency using a misspecified ALD 
likelihood under general conditions (Yu and Moyeed, 2001; Sriram 
et al., 2013; Benoit and Van den Poel, 2017). 

Methods and software exist for applying Bayesian quantile regression 
to binary data. Although these methods may be appealing for scientists 
who collect binary data, the methods have not been fully explored. We 
refer readers to Scharf et al. (2022) for a more in-depth discussion of 
regression methods for binary data, including quantile regression, 
illustrated using ecological applications. 

Statistical theory permits fitting quantile regression models to count 
data yi transformed by adding a Uniform(0,1) random variable, ui such 
that zi = log(yi + ui − τ). When yi = 0 and ui < τ, zi is undefined. This 
result is not pertinent if there are no zeros in the data, as in Lee and 
Neocleous (2010). When zeros exist, however, the investigator must 
artificially select 0 < η, and the selected value of η potentially affects 
inference (Appendix B). The Bayesian approach at least allows us to 
integrate over the potential range of values of η by composition sam
pling. We recommend that, if investigators apply Bayesian quantile 
regression to count data containing zeros, they examine the sensitivity of 
choosing η and how it affects inference, as in Appendix B. 

9. Conclusion 

Box (1979) stated ”now it would be very remarkable if any system 
existing in the real world could be exactly represented by any simple 
model. However, cunningly chosen parsimonious models often do pro
vide remarkably useful approximations”. Nearly all data in nature are 
asymmetric. We present parametric models to estimate and address 
asymmetry in natural observation. We have shown by doing so results in 
better predictive models of natural processes. We conclude that 
Bayesian asymmetric regression is an essential component of a scien
tist’s statistical toolbox to be used regularly alongside Gaussian, Laplace, 
and Poisson regression models. 
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