CHAPTER 8

Hierarchical Bayesian spatio-temporal
models for population spread
Christopher K. Wikle and Mevin B. Hooten

There is a long history in the ecological sciences concerning the development of mathematical
models for describing the distribution of organisms over time and space. Although such models
have sometimes been evaluated by comparison to observations, they have seldom been “fit” to
data in a formal statistical sense. Thus, uncertainties regarding data, model, and parameters are not
readily accounted for in such analyses. Alternatively, realistic statistical models for spatio-temporal
processes in ecology often require that one estimate a very large number of parameters. This is
typically not possible given the relatively limited amount of data collected over space and time.
Critically, such a statistical model could be simplified (in terms of reducing the number of
parameters) by accommodating the well known empirical and theoretical results concerning the
process (e.g. partial differential equations (PDEs) or integro-difference equations (IDEs) for
population spread). That is, the statistical model can make use of the well established mathematical
models for the process. The Bayesian hierarchical paradigm for spatio-temporal models allows

one to account for the aforementioned sources of uncertainty and yet still include such prior
knowledge for the process, parameters and measurements. In this chapter, we provide an
introduction to process-based hierarchical Bayesian spatio-temporal models for population spread,
focusing primarily on PDE dynamics. We illustrate the concepts and demonstrate the methodology
on the problem of predicting the Eurasian Collared-Dove invasion of North America.

8.1 Introduction

The spread of populations has long been of interest
to ecologists and mathematicians. Whether it be the
invasion of gypsy moths in North America, soybean
rust in Southern Africa and South America, avian
influenza in Asia, or seemingly countless other inva-
sive species and emerging diseases, it is clear that
the invasion of ecosystems by exotic organisms is
a serious concern. Given the increasing economic,
environmental, and human health impact of such
invasions, it is imperative that in addition to under-
standing the basic ecology of such processes, we
must be able to monitor them in near real time, and
to combine that data and our basic ecological under-
standing to forecast, in space and time, the likely

spread of the population of interest. Perhaps more
importantly, we must be able to characterize realis-
tically and account for various types of uncertainty
in such forecasts.

For sure, the dynamics of population spread are
complicated. The underlying processes are poten-
tially nonlinear, nonhomogeneous in space and/or
time, related to exogenous factors in the environ-
ment (e.g. weather), and dependent on other com-
petitive species. Ecologists have long been interested
in these issues (e.g. Elton 1958). Traditionally, the
modeling of such processes has been motivated by
applied mathematicians and the use of PDEs, IDEs,
and discrete time-space models (e.g. Hastings 1996).
The differences in these models are primarily related
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146 HIERARCHICAL MODELLING FOR THE ENVIRONMENTAL SCIENCES

to whether one wishes to consider time and/or
space discrete or continuous. Although there are
fundamental differences in these approaches, from
a theoretical limiting perspective, there are notions
of equivalence between them. From a practical per-
spective, in the presence of data, some sort of
discretization in time and/or space is typically nec-
essary, whether it be in the form of finite differences,
finite elements, or spectral expansions.

The modeling approaches described above have
most often been used to form “theoretical predic-
tions,” usually in the form of calculating the theo-
retical velocity of the dispersive wave front for the
population of interest. Ecologists have calculated the
average velocity of spread given observations and
compared such estimates to the theoretical spread
(e.g. Andow et al. 1990; Caswell 2001). Although a
useful endeavor in order to provide understanding
of the basic utility of theoretical (often determin-
istic) models, several limitations are apparent in
this approach with regard to “operational” predic-
tion over diverse habitats. One concern is that in
order to get analytical solutions to the PDE or IDE
models, substantial simplifications in the dynamics
must be made. For instance, in the PDE case, an
assumption of homogeneous diffusion and/or net
reproductive rate is typical. For IDE models, the
redistribution kernels that are necessary for analyt-
ical solution may not be representative of the data,
and the assumption of homogeneity of the kernels
over space and time may be unrealistic. Perhaps
more critically, in general there have been only a
few attempts to actually fit these theoretical mod-
els to data in a statistically rigorous fashion. Part of
the reason for this is the traditional lack of relatively
complete, high resolution spatio—temporal ecolog-
ical data. Even when available, the data for such
processes are typically assumed to be known with-
out error. In practice, there is a great deal of sampling
and measurement error in observations of ecologi-
cal processes that when unaccounted for results in
misleading analyses.

There is increasing recognition that new methods
for spatio—temporal processes that efficiently accom-
modate data, theory, and the uncertainties in both
must be developed (Clark et al. 2001). The hierarchi-
cal Bayesian approach isideal for this as it allows one
to specify uncertainty in components of the problem

conditionally, ultimately linked together via formal
probability rules (see Wikle 2003a for an overview).
This framework explicitly accepts prior understand-
ing, whether that be from previous studies, or
ecological theory (e.g. Wikle 2003b). Furthermore,
it easily accommodates multiple data sources with
errors and potentially different resolutions in space
and time (e.g. Wikle et al. 2001). Finally, complicated
dependence structures in the parameters that con-
trol the population dynamics can be accommodated
quite readily in the hierarchical Bayes approach
(e.g. Wikle et al. 1998; Wikle 2003b).

Although hierarchical Bayesian models for
spatio—temporal dynamical problems such as popu-
lation spread are relatively easy to specify, there are
a number of complicating issues. First and foremost
is the issue of computation. Hierarchical Bayesian
models are most often implemented with Markov
Chain Monte Carlo (MCMC) methods. Such meth-
ods are very computationally intensive, especially in
the presence of complicated spatio—temporal depen-
dence and large prediction/sampling networks. The
issue of high dimensionality, in the sense of a
very large number of parameters in the model,
is especially important in spatio-temporal mod-
els. It is critical that one be able to efficiently
parameterize the dynamical process in such mod-
els. As with any model building paradigm, there
are also potential issues of model selection and
validation.

In this chapter we seek to illustrate, through a
simplified example, how one can use the hierar-
chical Bayesian methodology to develop a model
for the spread of the Eurasian Collared-Dove. This
model will consider data, model and parameter
uncertainty. The dynamical portion of the model
will be based on a relatively simple underlying
diffusion PDE with spatially varying diffusion coef-
ficients. Section 8.2 will describe the statistical
approach to modeling spatio—temporal dynamic
models. Section 8.3 then describes schematically the
hierarchical Bayesian approach to spatio—temporal
modeling. Next, Section 8.4 contains the Eurasian
Collared-Dove invasion case study and the associ-
ated hierarchical Bayesian model. Section 8.5 con-
tains a discussion and suggestion for an alternative
reaction—diffusion model, and finally, Section 8.6
gives a brief summary and conclusion.
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8.2 Statistical spatio-temporal dynamic
models

Assume we have some spatio-temporal process
Y (s;t), where s is a spatial location in some spatial
domain D (typically in two-dimensional Euclidean
space, but not restricted to that case) and t denotes
time, t = {fy,...,fr}. Most processes in the phys-
ical, environmental and ecological sciences behave
in such a way that the process at the current time is
related to the process at a previous time (or times).
We refer to such a process as a dynamical process.
Given that such processes cannot be completely
described by deterministic rules, it would be ideal to
characterize the joint distribution of this process for
all times and spatial locations. Typically, this is not
possible without some significant restrictions on the
distribution. A common restriction is to assume the
process behaves in a Markovian fashion; that is,
the process at the current time, conditioned on all
of the past, can be expressed completely by condi-
tioning only on the most recent past. For example,
consider the case where we have a finite number
of spatial locations {sq,...,s;} and discrete times
t =1{0,1,2,...,T}. Let Y; = (Y(1;8),...,Y(su; 1),
where we use the prime to denote a vector or
matrix transpose. Then, the joint distribution of the
spatio-temporal process can be factored as follows:

Yo,..., Y71 =[YT|YT-1,..., Y0l
x [Y1r_1YT-2,...,¥0]...
x [Y2]Y1, Yol[Y11Y0l[Yol, (8.1

where we use the brackets [ ] to denote distribution
and [a|b] to denote the conditional distribution of
a given b. With the first-order Markov assumption,
(8.1) can be written,

Yo, ..., Y71 = YT Y7 11[YT_11YT 2] ..
x [Y2]Y11[Y1[Yol[Yol- (8.2)

This Markovian assumption is a dramatic simplifi-
cation of (8.1), yet one that is very often realistic for
dynamical processes. From a modeling perspective,
we then must specify the component distributions
[Yt1Y¢—1], t = 1,...,T. In general, we write this in
terms of some function Y; = f(Y;_1;60), where the
parameters @ describe the dynamics of the process.
This function can be nonlinear, and the associated

distribution can be Gaussian or nonGaussian. For
illustration, consider the first-order linear evolution
equation with Gaussian errors,

Y; =HY;_1+n, n ~NO,Z,), (8.3)

where the “propagator” or “transition” matrix H is
an n x n matrix of typically unknown parameters.
Consider the ith element of Y; and the associated
evolution equation implied by (8.3),

n
Y(sih) = ) hG, Y (st — 1) +nGsit),  (8.4)
k=1

where h(i, k) refers to the element in the i-th row and
k-th column of H. Thus, (8.4) shows that the process
value at location s; at time ¢ is a linear combination
of all the process values at the previous time, with
the relative contribution given by the “redistribu-
tion” weights h(i, k), and the addition of possibly
correlated noise 7(s;; t).

In the statistics literature, the model (8.3) is known
as a first order vector autoregressive (VAR(1)) model
(e.g. see Shumway and Stoffer 2000). Such models
are easily extended to higher order time lags and
more complicated error processes.

8.2.1 Simple example

As a simple example, for n = 3 spatial locations, we
need to specify the relationship between Y;(s;) and
Yi_1(s1), Yi—1(2), Y;_1(s3), for eachi = 1,...,3.
Consider the linear relationship:
[h11Y¢—1(s1) +h12Y—1(52) ]
+h13Y—1(s3) + m(51)
Yi(s
ts1) ho1Yi—_1(s1) + hpYi_1(s2)

YD = Y1 (s3) + m(s2) &

Y(s3)
h31Y—1(s1) + h32Y¢—_1(52)
+h33Yi_1(53) + mi(s3)
or
Yi(s1) hi1 hip iz || Yic1(s51)
Yi(sp) | = |ho1r hop hoz || Yi—1(s2)
Yi(s3) h31 hzp haz || Yi-1(s3)
nt(s1)
+ [ me(s2) |, (8.6)
nt(s3)
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where the weights h;; = h(i, k) describe how the pro-
cess at location k at the previous time influences the
location i at the current time. We have also added a
contemporaneous noise process 7 (s;) to “force” the
system.

8.2.2 Parameterization

The difficulty with such formulations in practice
is that for most environmental and ecological pro-
cesses the number of spatial locations of interest, 1,
is quite large, and there is simply not enough infor-
mation to obtain reliable estimates of all parameters
h(i,k),i,k =1,...,n. Thus, we typically must param-
eterize the propagator matrix H in terms of some
parameters 6, whose dimensionality is significantly
less than the 12 required to estimate H directly.

Perhaps the simplest statistical parameterization
for H is to assume H = I, a multivariate random
walk. Although advantageous from the perspective
of having the fewest (0) parameters in H, this model
is nonstationary in time. More importantly, such a
structure is not able to capture complex interaction
across space and time, and is not realistic for most
physical, environmental, and ecological processes.
A natural modification is to allow H = diag(h),
a diagonal matrix with elements on the diagonal
potentially varying with spatial location. Such a
model is nonseparable in space-time, yet it still
does not account for realistic interactions between
multiple spatial locations across time.

Below, we consider two alternative, yet related,
approaches for parameterizing H.

8.2.3 IDE-based dynamics

To capture dynamical interactions in space-time that
are realistic for ecological processes, the propagator
matrix H must contain nonzero off-diagonal ele-
ments. This can be seen clearly from the IDE perspec-
tive. Consider the linear stochastic IDE equation,

Y(s;t) = fk(s, nNY(r;t — Ddr + n(s;t), (8.7)

where the error process 1(s; t) is correlated in space,
but not time, and the redistribution kernel k(s,r)
describes how the process at the previous time is
redistributed to the current time. Although similar

to equation (8.4), the IDE equation considers contin-
uous space rather than discrete space. General IDE
equations are quite powerful for describing ecologi-
cal processes (e.g. Kot et al. 1996); the dynamics are
controlled by the properties of the redistribution ker-
nel. For example, the dilation of the kernel controls
the rate of diffusion, and advection can be controlled
by the skewness of the kernel (Wikle 2002). In addi-
tion, the characteristics of the dynamics that can
be explained are affected by the kernel tail thick-
ness and modality. Although such models are rich
in describing complicated ecological processes, they
have not often been “fit” to data in a rigorous sta-
tistical framework. Wikle (2002) and Xu et al. (2005)
show that such models can be fit to data and that
allowing the kernels to vary with spatial location can
dramatically increase the complexity of the dynam-
ics modeled. From our perspective, a discretization
of (8.7) suggests potential parameterizations of H
as a function of the kernel parameters, 6. Such
parameterizations include nonzero off-diagonal ele-
ments, and can be nonsymmetric (i.e. h(i, k) #
h(k,i)) allowing for complicated interactions in
time and space while using relatively few kernel
parameters.

Disadvantages of using IDE models in this setting
are related to the implementation within a statistical
framework, parameter estimation (although hierar-
chical Bayes approaches help), choice of an appropri-
ate kernel, accommodating spatially varying param-
eters, and reduced computational efficiency due to
potentially nonsparse H matrices.

8.2.4 PDE-based dynamics

The IDE-based dynamics of the previous section sug-
gest that the simplest, realistic statistical parameteri-
zation of H would have diagonal and nonsymmetric
nondiagonal elements. One could simply parame-
terize such a model statistically (e.g. see Wikle et al.
1998). However, in the case of physical and eco-
logical processes, we often know quite a bit about
the theory of the underlying dynamical process
through differential equations (e.g. see Holmes et al.
1994). In the case of linear PDEs, standard finite
differencing implies equations such as (8.3). More
importantly, such discretizations imply parameter-
izations of H in terms of important parameters of
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the PDE, as well as the finite-difference discretization
parameters (e.g. Wikle 2003b).
Consider the general diffusion PDE,

ou = Hwu,w,0), (8.8)
at
where H is some function of the variable of inter-
est, i, other potential variables, w, and parameters 6.
Simple finite difference representations (e.g. see
Haberman 1987) suggest an approximate difference
equation model,

ur = h(ut_p,, w,0) + 1y, (8.9)

where we have added the noise term 7; to account for
the error of discretization. Note, it is also reasonable
to consider this error term to be representative of
model errors in the sense that the PDE itself is an
approximation of the real process of interest.

Now, for illustration, consider the simple diffu-
sion equation,

ot~ ax "0k ) T oy O %y )

(8.10)

where u;(x,y) is a spatio-temporal process at spa-
tial location s = (x, y) in two-dimensional Euclidean
space at time t and 8 (x, y) is a spatially varying diffu-
sion coefficient. Forward differences in time and cen-
tered differences in space (e.g. see Haberman 1987)
give the difference associated with equation (8.10),

Ut (x/ ]/)
A A
t t

A
+upp, (- Ax,y)[—;{a(x, y)
AX

= ut—At (xl ]/) |:l - 28(3(, y)(

—((x+Ax,y) —8(x — Ax,y))/4}]

A
+ ut*At (x + AX/y)[%{a(xl y)
Ax

+ O+ Ay, y) —8(x — Ax,y))/4}]

A
+up—a (Y + Ay) [%{S(x,y)
Ay

+ @y + Ay) —8(x,y — Ay))/4}]

Ay

8 s
A {6Cx, )

+ ut*Af (x/y - Ay)|: 2
y
=0,y +Ay) —8(x,y — Ay))/4}]

+nt(x,y), (8.11)

where it is assumed that the discrete u-process is
on a rectangular grid with spacing Ay and Ay in
the longitudinal and latitudinal directions, respec-
tively, and with time spacing A;. Again, the error
term n¢(x, y) has been added to (8.11) to account for
the uncertainties due to the discretization as well as
other model misspecifications.

From (8.11) it can be seen that the discretization
can be written as (8.4) or (8.3) where the propa-
gator (redistribution) matrix H depends upon the
diffusion coefficients § = [5(s1),...,8(sn)]’ and the
discretization parameters A¢, Ay, and Ay,

u = H(S, Ay, Ay, Ay)up_p,

+Hg(3, A, Ay, Apup_ o +my, (8.12)

where again, u; corresponds to an arbitrary vec-
torization of the gridded u-process at time f,
H($, At, Ax, Ay) is a sparse 1 X 11 matrix with essen-
tially five nonzero diagonals corresponding to the
bracket coefficients in (8.11), hence its dependence
on §. Note also that we have included a separate
boundary specification in that uP_ A, I8 an ng x 1
vector of boundary values for the u-process at time
t — A¢, and Hg($, A4, Ay, Ay) is an n x np sparse
matrix with elements corresponding to the appro-
priate coefficients from (8.11). Thus, the product
Hg (3, At, Ay, Ay)u?_ Ar is simply the specification of
model edge effects.

8.2.5 Simple example

Expanding on the previous simple example, con-
sider the three equally spaced (i.e. Ay is constant)
spatial locations (in 1D space) x1, ..., x3 and bound-
ary points xg and x4. Assuming for ease of notation
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that Ay = 1 we then can write the dynamical portion
of (8.12) as:

(671 (xp)up_1(x1) 4 O2(x)up—1(xp) ]
+03(x1)up—1(xp)

Ztiili _ | O1(e)up_1(x2) + 0 (x2)up—1(x3)
BRI qose)ui_q ()
up(x3)

01 (x3)up—1(x3) + 02 (x3)up_1(xs)
+03(x3)up_1(x2)

(8.13)
where fori=1,2,3,
01(x)) =1 —68(x;) Z% ,
Ay
O (x;) = p{S(xz’) + (8(xiq1) — 8(xi—1))/4},
X
Ay
03(x;) = p{a(xi) — (8(xj41) — 8(xj_1))/4}.
X
This can then be written,
ug(x1) 61(x1) 62(x2) 0
up(xp) | = | 03(x2) 61(x2) 62(x2)
u(x3) 0 03(x3) 61(x3)
up1(x1) 83(x1) 0
X | up—1(x2) | + 0 0
up—1(x3) 0 6 (x3)
o | Ht=1(x0) 8.14)
up1(xq)
which is, in matrix form,
w = H(S, Ay, Awy_1 + Hp(8, Ay, Apup .
(8.15)

8.2.6 Population growth

The basic diffusion model (8.10) is quite powerful
in that the diffusion coefficients are allowed to vary
with space, which is appropriate for landscape-scale
modeling since diffusion rates are dependent upon
many spatially varying factors. However, this model
does not include a growth term and thus the process
us(x,y) decays over time. A more realistic PDE for

many ecological processes that exhibit population
growth is given by a reaction-diffusion equation,

u 0 ou d ou
3% o (5(96,}/)@) + @ <é(x,y)@> +f(w),
(8.16)

where in addition to the diffusive terms in (8.10)
we have added the “reaction” term f(u) that
describes the population growth dynamics. The
classic reaction—diffusion equation was originally
discussed by Fisher (1937) and Skellam (1951), and
gives diffusion plus logistic population growth,

%_3(5@( )al)Jri((g(x ﬂ‘)
ot ax Y% ) Ty O Y%y

u
+V0u (1 - 7)/
V1

where yj is the intrinsic population growth rate and

(8.17)

y1 is the carrying capacity. In vector form, (8.17) can
be written,

u; = H(S, Ap, Ax, Ay)ug_a,
+Hp (8, Ay, Ay, Ap)up_y,

+ yous—a, — voy1 diag(ur_a)ur_a, + 1y,
(8.18)

where the diag( ) operator simply makes the vec-
tor argument a diagonal matrix with the argument
along the main diagonal. Note that this model is
nonlinear in the parameters yy and y; and in the
process, u;_a,.

8.3 Hierarchical Bayesian models

As one might imagine, a key challenge to implemen-
tation of a model such as (8.12) or (8.18) is the estima-
tion of the spatially varying diffusion coefficients, 8.
From a classical statistical perspective, this would be
very difficult for several reasons (e.g. simultaneous
likelihood based estimation of § and hence H, also
nonlinearity in (8.18)). However, from a hierarchical
Bayesian perspective, such estimation is relatively
easy. In this section, we give a very brief overview
of the hierarchical approach, as general details can be
found in modern Bayesian textbooks such as Gelman
et al. (2004), and in overview papers such as Wikle
(2003a) as well as other chapters in this volume.
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8.3.1 Basic hierarchical modeling

Hierarchical modeling is based on a simple fact from
probability that the joint distribution of a collection
of random variables can be decomposed into a series
of conditional models. For example, if a, b, ¢ are
random variables, then basic probability allows us
to write the factorization [a,b, c] = [a|b, c][b|c][c]. In
the case of spatio-temporal models, the joint dis-
tribution describes the behavior of the process at
all spatial locations and all times. This is difficult
to specify for complicated processes. Typically, it is
much easier to specify the distribution of the condi-
tional models. In that case, the product of the series
of relatively simple conditional models gives a joint
distribution that can be quite complex.

When modeling complicated processes in the
presence of data, it is helpful to write the hierarchical
model in three basic stages (Berliner 1996):

Stage 1. Data Model: [data | process, data param-
eters]

Stage 2. Process Model: [process | process param-
eters]

Stage 3. Parameter Model: [data and process
parameters].

The basic idea is to approach the complex problem
by breaking it into subproblems. Although hierarchi-
cal modeling has been around a long time in Statis-
tics (e.g. see the Bibliographic note in Chapter 5 of
Gelman et al. 2004) , this basic formulation for mod-
eling complicated temporal and spatio—temporal
processes in the environmental sciences is relatively
new (e.g. Berliner 1996; Wikle et al. 1998). The first
stage is concerned with the observational process
or “data model,” which specifies the distribution of
the data given the fundamental process of interest
and parameters that describe the data model. The
second stage then describes the process, conditional
on other process parameters. For example, in the
diffusion model setting, the process stage would be
factored in a Markovian sense as in (8.2), conditional
on the spatially varying diffusion coefficients § and
the parameters that describe the noise process, 7;.
Finally, the last stage models the uncertainty in the
parameters, from both the data and process stages.

For example, we might model the diffusion coeffi-
cients in terms of spatially varying covariates and /or
a spatially correlated random field. Note that each of
these stages can have many substages (e.g. see Wikle
et al. 1998; Wikle et al. 2001).

Our goal is to estimate the distribution of the
process and parameters updated by the data.
This posterior distribution is obtained via Bayes’
theorem:

[process, parameters|data]
o [data|process,parameters]

x [process|parameters][parameters].  (8.19)

Bayes’ theorem serves as the basis for Bayesian
hierarchical modeling and when written in its gen-
eral probability form (i.e. [posterior] « [likelihood]
x[prior]) we see that statistical conclusions are
drawn from the “posterior” which is proportional
to the data model (i.e. likelihood) times our a priori
knowledge (i.e. the prior). Although simple in prin-
ciple, theimplementation of Bayes’ theorem for com-
plicated models can be challenging. One challenge
concerns the specification of the parameterized com-
ponent distributions on the right hand side of (8.19).
Although there has long been a debate in the Statis-
tics community concerning the appropriateness of
“subjective” specification of such distributions, such
choices are a natural part of science based modeling.
In fact, the incorporation of scientific information
into these prior distributions provides a coherent
mechanism by which one can incorporate the uncer-
tainty related to these specifications explicitly in the
model. Perhaps more importantly from a practical
perspective is the calculation of the posterior. The
complex and high-dimensional nature of ecological
models (and indeed, most spatio-temporal models)
prohibits the direct evaluation of the posterior. How-
ever, one can utilize Markov Chain Monte Carlo
(MCMQC) approaches to draw samples from the pos-
terior distribution. Indeed, the use of MCMC for
Bayesian hierarchical models has led to a revolu-
tion in that realistic (i.e. complicated) models can be
considered in the analysis of spatio—temporal pro-
cesses. Yet, we still typically have to formulate the
conditional models in such problems with regard to
the computational burden. Thus, the model build-
ing phase requires not only scientific understanding
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of the problem, but must also address how that
understanding can be modified to fit into the MCMC
computational framework.

8.4 Eurasian Collared-Dove case study

The Eurasian Collared-Dove (Streptopelia decaocto)
was first observed in the United States in the mid
1980s. This species originated in Asia and, start-
ing in the 1930s, expanded its range into Europe
(Hudson 1965). These birds were introduced into the
Bahamas in 1974 from a population that escaped cap-
tivity (Smith 1987) and spread to the United States
soon thereafter. Since its introduction in Florida, its
range has been expanding dramatically across North
America.

The outstanding success of the Eurasian Collared-
Dove as an invader is well documented. It is less
clear, however, precisely why it has been able to
demonstrate such a significant range expansion.
In their recent summary of the North American
invasion, Romagosa and Labisky (2000) discuss the
evidence that the birds show a remarkable ability
for long-range dispersal, even in the presence of
geographical barriers such as mountains and large
bodies of water, and that the dispersing birds typi-
cally become successful breeders within two years.
They speculate that possible factors for the range
expansion are genetic, the ability to successfully
adapt to human habitat, and a very high reproduc-
tive potential. It is widely believed that they will
rapidly spread across North America much in the
same way they spread across Europe (Romagosa and
Labisky 2000).

In their study of the early expansion of the
Eurasian Collared-Dove in Florida based on the
Christmas Bird Count (CBC) data, Romagosa and
Labisky (2000) found that the birds expanded north-
westerly throughout the Florida peninsula and into
the panhandle throughout the mid-1980s and early
1990s. They found that the expansion was most
prevalent along the coasts, followed by “backfilling”
into inland areas, consistent with a hypothesis of
“jump” dispersal and population coalescence. They
also found that since the dispersal from southern
Florida occurred when the population abundance
was low, dispersal was not likely density dependent.

Our goal with this case study is to consider the
expansion of the Eurasian Collared-Dove in North
America on the continental scale. The purpose of
this analysis is to illustrate the Bayesian hierarchical
methodology for incorporating partial differential
equation priors in statistical spatio-temporal mod-
els. The data, hierarchical model, and results are
described in the following subsections.

8.4.1 Data

Eurasian Collared-Dove data were obtained from
the North American Breeding Bird Survey (BBS),
and were collected by volunteer observers each
breeding season along specified routes (Robbins
et al. 1986). BBS sampling units are roadside routes
of length approximately 39.2 km, along which an
observer makes 50 stops and counts birds by sight
and sound for a period of three minutes. There
are over 4000 routes in the survey, but not all are
sampled each year. Furthermore, there is a great
deal of uncertainty in these observations, given the
differences in experience and expertise of the vol-
unteer observers (e.g. Sauer et al. 1994). In the
case of the Eurasian Collared-Dove, this uncertainty
is compounded by the fact that these birds look
very similar to the Ringed Turtle-Dove. Although
there are fundamental differences in the respective
appearances and songs, it is thought that observers
routinely mistake these species. This was prob-
ably even more the case early in the invasion,
when observers had less experience distinguishing
between the species.

We consider 18 years of BBS data, from 1986
through 2003. Figure 8.1 shows a plot of the counts
at the sampled routes for each year. The circle size is
proportional to the observed BBS count. Figure 8.2
shows the aggregated counts for each year. We con-
sider these counts to be relative abundances since the
probability of detection is not known. Nevertheless,
these two plots show that there is clearly an inva-
sion and the population is increasing exponentially
with time.

8.4.2 Hierarchical model

This section describes a Bayesian hierarchical model
for the invasion of the Eurasian Collared-Dove.
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1991

Figure 8.1. Location of BBS survey route (+) and observed Eurasian Collared-Dove count for years 1986—-2003. The radius of the circles are
proportional to the observed count.
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BBS Counts of Eurasian CollaredDove
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Figure 8.2. Sum of BBS Eurasian Collared-Dove counts over space for years 1986-2003.

The data model, process model, and parameter
models are described in the following subsec-
tions. The results from the analysis are then pre-
sented, followed by a description of an alternative
model.

8.4.2.1 Data model

For simplicity of illustration, we aggregate the obser-
vations on the grid shown in Figure 8.3. Specifically,
we consider a lattice covering a portion of the con-
tinental United States (on an equal area projection).
We let N(s;;t) correspond to the number of routes
sampled in year f in grid box s;. Then, Z(s;;t) cor-
responds to the total count in the ith grid box in
year t over the N(s;;t) sampled routes. We denote
the vector of counts over all grid boxes for year ¢
by, Z; = (Z(s1;1),...,Z(su;1)). For purposes of
maintaining the simplicity of this example, “miss-
ing” BBS routes were assumed to have zero counts,
although more complex methods exist for dealing
with such missing data. We then assume that con-
ditional on an unknown spatio—temporal intensity
process, the relative abundances are independent.
Thus, we write

Zi|A¢ ~ Poi(diag(NpAy), t=1,...,T, (8.20)

where k¢ = (L5131, ..., h(sn; ), N = (N(s1;D), ..,
N(su; 1), and diag places the vector Ny on the
diagonal of an n x n matrix of zeros.

8.4.2.2  Process models

We now assume that the log of the Poisson inten-
sity process is controlled by a latent (i.e. underlying)
spatio—temporal process, u; = (u(sq;1t), ..., u(sy; 1)
plus independent noise,

log(Ar) = us + €7, € ~ N(0,021) (8.21)
or, equivalently,
log(Aplus, 62 ~ N(u,02l), t=1,...,T. (822)

In this case, the error process €; accounts for small-
scale spatio—temporal variation (subgrid scale) and
is independent across space and time. One could
argue that it would be reasonable to allow this
error process to be spatially correlated, yet for sim-
plicity of illustration, we do not consider such
correlation here.

Critical to the process modeling is the latent
spatio—temporal process u;. Okubo (1986) showed
that diffusion PDEs work well in modeling avian
invasions. Thus, analogous to Wikle (2003b), we
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Figure 8.3. Log of Eurasian Collared-Dove BBS counts aggregated to a grid for years 1986—2003.
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model this process via the discretized basic diffusion
equation (8.12),

wlu_1,8 ~ NH@E)us_1,02Rp), (8.23)

where we have made several assumptions relative to
(8.12). In particular, weassume Ay = 1, Ay = Ay =1
and the boundary process is zero everywhere (i.e. the
grid locations outside of those shown in Figure 8.3
are defined to be zero for all time). As shown in Wikle
et al. (2002), it is not difficult to allow the bound-
ary process to be random within the hierarchical
framework. However, the assumption of u taking
the value zero on the boundaries is not unreason-
able here, given that the the boundaries correspond
to ocean areas or areas of the domain in which the
birds have not been observed yet. Although it could
be argued that we should allow R, to contain spa-
tial dependence, for simplicity of illustration, we let
R; = Iin this example. Furthermore, the Markovian
structure in the u-process requires a specification of
the initial condition ugy. We assign this a prior distri-
bution, ug ~ N1y, Xg). Weletig = 0and Xy = 101,
reflecting our vague belief in the initial process.

We note that the process models given by (8.22)
and (8.23) are probably not the most realistic and are
different from those given in Wikle (2003b) for mod-
eling the spread of the House Finch over time. We
choose this model because it is the simplest for illus-
trating the methodology of utilizing PDE priors in
spatio—temporal hierarchical models. Wikle (2003b)
considered an overall temporal trend term, modeled
as a random walk in time. In addition, the diffusion
equation considered in Wikle (2003b) included an
exponential growth term. In the present example,
we did not feel it appropriate to model the overall
trend term as it is somewhat unrealistic. That is, the
assumption of a common mean log intensity valid
for all spatial locations at a given time is not real-
istic since there is definite spatial structure in the
latent intensity, and most of the domain of interest
has near zero intensity for most times, t. In the pres-
ence of data and with the added flexibility of the
error term 7; in the basic diffusion equation, it is
possible that the basic model considered here can
accommodate the spread evident in the data. (Note,
we discuss below in Section 8.5 a reaction—diffusion
process model for u; that is more flexible in this
regard.)

8.4.2.3 Parameter models

The primary parameters of interest here are the dif-
fusion coefficients 8. A reasonable model for § is
given by,

8l 02, Rs ~ N(®at, 07Rs), (8.24)
where @ is an 7 x p known design matrix, « is a
p x 1 vector of “regression” coefficients, and the
error has mean zero and is potentially spatially cor-
related with covariance matrix oazR(;. Ideally, one
would include habitat covariates in ® as suggested
in Wikle (2003b). For example, for the Eurasian
Collared-Dove we might include a human popula-
tion covariate since this species is known to favor
human-modified habitat. In that case, the error pro-
cess could account for unknown habitat (or other)
covariates that influence the spatial variation of the
diffusion coefficients.

Alternatively, taking a simpler approach, we con-
sider @ to be the first p eigenvectors from a spatial
correlation matrix (i.e. the so called empirical orthog-
onal functions, EOFs, which are simply space-time
principal components). That is, we specify an n x n
correlation matrix R(f) for the n grid locations,
where the correlation function is positively definite
and depends on spatial dependence parameter 6.
We then get the symmetric decomposition R(9) =
W AW where W is an n x 7 matrix of the eigenvectors
of R(#) and A is a diagonal matrix of correspond-
ing eigenvalues. The eigenvectors are orthogonal,
so that W' = ¥'W¥ = I. Typically, if the spatial
dependence suggested by 0 is fairly large, then most
of the eigenvalues are very small and, as is usually
the case with principal component analysis, one can
retain most of the variability of the process described
in R(0) by considering the largest p « n eigenval-
ues/eigenvectors. Thus, we set ® to be the n x p
matrix of eigenvectors corresponding to the p largest
eigenvectors of ¥. Given that we are accounting for
the potential spatial structure in § through ®«, we
then set Rs equal to the identity matrix, I. Essentially,
we are modeling potential spatial structure in the
§ field through the conditional mean (and hence «)
rather than the covariance. This “trick” is to facilitate
computation since the independent error structure
and orthogonality (®'® = I) simplifies the MCMC
computations. A disadvantage of this approach is
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that if spatial parameters were more explicitly mod-
eled, posterior inference about the spatial structure
could be made. Such computational tricks are prob-
ably not required here since the prediction grid is
relatively small (n = 111), but for realistic grid sizes
(densities) such computational considerations are
critical.

In terms of the analysis presented herein, we based
R(0) on the exponential correlation function, rg (d) =
exp(—0d), where d is a Euclidean distance between
grid locations (e.g. d ranges from 0 to about 0.6 on
our grid). We specify 6 = 4 (fixed) and keep p = 8
of the eigenvectors to start with (which account for
about 80% of the variation). However, in this exam-
ple, after preliminary analysis was performed, it was
decided that only the first eigenvector was signifi-
cantly influencing the analysis (i.e. p was reduced
to 1). It would be relatively simple to allow 6 to be
a random parameter in this model corresponding to
arbitrary spatial dependence, but for simplicity of
illustration, it is fixed here.

A model for the regression coefficients e, is then

@ ~ N(ap, 02Ry), (8.25)

where « is the prior mean (specified to be a vector of
zeros here) and Ry, corresponds to a known diagonal
matrix with the p diagonal elements corresponding
to the first p eigenvalues of A, defined above.

We also must specify prior distributions for all
of the variance parameters. For convenience, we
give them all conjugate inverse gamma (IG) priors.
That is,

052 ~ IG(qEIT‘G)/ 0-7% ~ IG(Qnrrn)/

0f ~1G@s,75), o2 ~1G(qaTa), (8.26)

where the g and r parameters are given (e.g., J¢ =
s = o = 2.8, 1¢ =15 =140 = 028, qyp = 2.9,
ry = 0.175), corresponding to relatively vague prior
knowledge.

8.4.2.4 Implementation

The full-conditional distributions corresponding to
the hierarchical model presented above are given in
Appendix A. Furthermore, a sketch of the MCMC
algorithm is presented, and R code is given. For
the results presented here, the MCMC was run for

50,000 iterations, with the first 20,000 considered
burn-in. Convergence was assessed subjectively by
visual inspection of the sampling chains. Ultimately,
MCMC output was resampled to mitigate autocor-
relation in the chains.

8.4.3 Results

Figure 8.4 shows histograms of some of the variance
parameters in the model.

The uncertainty in the posterior estimates of the
spatially averaged Poisson intensity diag(N)A; is
illustrated in Figure 8.5, which shows the 95%
credible interval from the posterior. Figure 8.6 illus-
trates the uncertainty in the actual Poisson rate itself
(i.e. 1) on the log scale.

Figure 8.7 shows the posterior mean of the spa-
tial diffusion coefficient (§) and Figure 8.8 shows
the posterior standard deviation. Note that the
posterior mean shows a few diffusion coefficients
less than zero. Of course, this is not meaningful
in terms of the original PDE, but is the model’s
attempt at adapting to the data in about the only
way that it can. This is illustrated even more
clearly when one considers predictions. Consider
the log(N(s;; t)A(s;; 1)) process. Figure 8.9 shows the
posterior mean of the log(N (s;; t)A(s;; t)) process for
each year. One can readily see the diffusion in
this plot. The prediction of the Poisson intensity
process (i.e. log(N (s;; £)A(sj; 1))) for 2004 is shown in
Figure 8.10 (assuming the number of routes sampled
in each grid cell remains the same as in 2003). Note
that the maximum intensity on the log scale (6.4) is
larger in 2004 than in 2003 (5.8 on the log scale). At
first glance one might wonder how the model can
predict such growth given that there is no growth
term in the prior model specification. We note that
a condition for the model to be stationary is that the
eigenvalues of H must beless than 1 in modulus. The
H for this model that is built with the posterior mean
of § is nonstationary, as there are 5 eigenvalues that
are greater than 1 in modulus. Thus, the model can
exhibit explosive growth and predictions for 2004
are likely to grow quite large. Indeed, one assumes
that many of the realizations of § imply even larger
eigenvalues for individual samples of H and thus,
the predictive distribution is unrealistically wide.
Thus, our naive model with no growth term has
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Figure 8.4. Histogram of samples from the posterior distribution of (a) %2’ (b) 073, () 052, and (d) o

adapted to the data in the only way that it could, by
choosing &’s that imply explosive (i.e. exponential)
growth.

8.5 Discussion

The similarity of Figures 8.2 and 8.5 is quite striking,
but is to be expected in a strongly data-driven pro-
cess. By considering this Poisson intensity to be ran-
dom, we can associate some amount of uncertainty
with this process (as evident in the credible inter-
val). Furthermore, the Poisson rate itself (Figure 8.6)
may be even more meaningful because this is the
posterior mean Poisson intensity per sampled route
over time. Thus the increase in intensity over time
is indeed a result of the invasive species and not
just an artifact of an increased sampling intensity
over time.

The maps showing the posterior mean and stan-
dard deviation of § (Figures 8.7 and 8.8) suggest

_ﬂ'ﬂﬂ mﬂﬂfﬂTlon..Mm

T T T T 1
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95% credible interval for posterior poisson intensity

T T
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Figure 8.5. Credible interval for the posterior distribution of the
Poisson intensity (diag(N¢)A+) averaged over space for years
1986-2003.

that although Eurasian Collared-Dove appears
to be dispersing more readily in Louisiana and
Mississippi, the variability associated with the
mean estimates imply that the diffusion parameter
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may not be significantly different over the spatial
domain.

From a natural resources management perspec-
tive, the prediction for 2004 (Figure 8.10) is not
encouraging. One main advantage of employing this
model is that various types of uncertainty have been

95% credible interval for posterior
poisson rate (log transformed)

T T T
1990 1995 2000
year

Figure 8.6. Credible interval for the posterior distribution of the log
Poisson rate (i.e. log(A¢)) averaged over space for years 1986—-2003.

accounted for and yet this model still suggests that
the exponentially increasing population size and
range expansion of the Eurasian Collared-Dove is
indeed significant.

As mentioned above, the diffusion PDE selected
for this case study is very simple, although still quite
powerful with the spatially varying diffusion coeffi-
cients. A more plausible model would include some
population growth term. For example, the reaction
diffusion model given in (8.17) and (8.18) would
be reasonable to consider. However, we note that
(8.18) is nonlinear in u;_1 and thus the full condi-
tionals forus, t = 1,..., T cannotbe derived in closed
form. One could resort to Metropolis-Hastings sam-
pling here, with for example, the linearized model
as the proposal distribution. Metropolis-Hastings
implementations in such high-dimensional spatio—
temporal contexts are typically very inefficient.
Alternatively, we can slightly modify the classic
logistic form, in the following way:

u = H(S, Ay, Ay, Ay)ug_p,

— prdiag(us_1)us_o + 14, (8.27)
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Figure 8.7. Posterior mean of §, the diffusion coefficients.
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Figure 8.8. Posterior standard deviation of 8, the diffusion coefficients.

where we have set By = yp and 1 = ypy; from
(8.18). More importantly, we have replaced u;_1 in
the last nonnoise term on the right hand side with
uy_p. This simple modification is in the spirit of
the original reaction—diffusion model, but the u;_;
term makes it possible to derive analytically the
full-conditional for the u;’s, potentially improving
computational efficiency. This model is investigated
in Hooten and Wikle (2005), and it appears to fit the
data better than the model presented here. One could
check this formally by considering Bayesian model
selection.

8.6 Summary and conclusion

This chapter is meant to be a case study of how
one can include PDE-based priors for ecological pro-
cesses in a hierarchical Bayesian spatio—temporal
dynamic model. We discussed statistical spatio—
temporal dynamical models and mentioned that
the critical modeling and implementation issues
are related to efficient parameterization of the
dynamical propagator (or redistribution) matrix.
Such parameterizations can be motivated by the
redistribution kernels in the theory of IDEs. In

addition, discretized PDE models can be used to
parameterize these dynamics. This was the focus of
the present case study.

The case study considered the recent invasion
of North America by the Eurasian Collared-Dove.
In the process stage of the hierarchical model, we
used a discretized version of a simple diffusion
PDE with spatially varying diffusion coefficients to
parameterize the dynamical propagator matrix. The
results show that this model does a reasonable job
of representing the data, yet suggests that a more
representative model might include a mechanism for
population growth.

Much work could be done with the case study pre-
sented here in terms of model selection and evalua-
tion. However, the current version serves as a fairly
complete illustration of how one can implement
these models with “real-world” data sets.

Appendix A: MCMC for Eurasian
Collared-Dove case study

Recall from the discussion above that our Bayesian
hierarchical model for the Eurasian Collared-Dove
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Figure 8.10. Posterior mean of prediction of log(N(s;; t)A(s;; t)) for 2004.

data is given as follows:

Zt|lt ~ Poi(diag(Nt)xt), t= ], ey T, (Al)

vi = log(A\plup, 02 ~ N(us,020), t=1,...,T,

(A.2)
utlug—1,8,05 ~ NH@®u1,00D, t=1...,T,
(A.3)
ugy ~ N(tg, Zo), (A4)
S 2 2
lee, 05 ~ N(®a,05]), (A.5)
a ~ N(ag, 02Ry) (A.6)
and
62 ~1G(e,re), o2 ~1G(qy, 1y)
€ Ge,Te), n qn,Tn),
of ~1G(s,75), 2 ~1G(qa, Ta)- (A7)

The Bayesian formulation of the hierarchical
model is summarized by the following posterior

distribution:
[A1,..., AT, ug,...,

ur, 5/“1052/ a,%, ‘782' a(%lZl, A

T
o { H[Zt|)~t][)~t|utrﬂez]}

t=1

T
x { [ Jrwsls, utfl,o,%uuo]}

t=1

x [8le, of lello2Nlo 210 1[0 2], (A8)

There is no analytical representation of this pos-
terior. However, we can use MCMC methods to
obtain samples from this posterior distribution. For
an overview of MCMC methodologies see Gilks
et al. (1996) and Robert and Casella (1999). For
complicated spatio—temporal applications of these
methods, see Wikle et al. (1998), Berliner et al. (2000),
Wikle et al. (2001). For a spatio—temporal diffusion—
equation example applied to BBS data see Wikle
(2003Db).

Below, we present the full-conditional distribu-
tions required for the Gibbs sampler MCMC algo-
rithm. In addition, an outline of the sampling
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program is presented, followed by the associated
R-code.

Full-Conditional Distributions

Based on the hierarchical model described above
for the Eurasian Collared-Dove relative abundance
through time, the Gibbs sampler cycles through
the following full conditional distributions. Specifi-
cally, one samples the j-th iteration from the follow-
ing distributions. Note that we use the notation [a] - ]
for the full-conditional distribution of the random
variable a, where the “dot” to the right of the con-
dition symbol represents all other parameters and
the data.

e [log(At(sj))|-1. For notational convenience, let
vy = log(At(sj)). Fort =1,...,Tandi =1,...,n
we sample from this full-conditional by utilizing
the Metropolis-Hastings (e.g. see Robert and Casella
1999) procedure:

1. Generate v ~ N (v(]
ratio:

D,{) and compute the

1 2 1
Zi Ikl 62070

[Zt(Sz)|U(] 1) (] 1)| (s 1) 2,(]'—1) ’

]

)

2. Set v(] = i with probability min(r, 1); other-

wise, set v(] ) vgfl).

The parameter ¢ is a tuning parameter in the
Metropolis-Hastings algorithm. In theory, it does not
affect the estimates, only the way in which they are
obtained. If ¢ is large then the parameter space is
explored more rapidly, but more of the draws are
rejected. Smaller values of ¢ lead to slower explo-
ration of the parameter space, but with a higher
acceptance rate. Thus, one has to try different values
of { to compromise between the acceptance rate and
the exploration of the parameter space. We found
¢ = 0.1 to be a reasonable value here.

e [ug]-]. Sample from ug )~ N(Ab, A) where

(HH/ 2,(j— 1)

51)_1'
'i=1),.G—1 , 2,G-1 1=
b=HU 1)u§] )/Un G=D 4 % Lag,

where we have suppressed the dependence of H on
§ for notational convenience.
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T — 1. Sample from ugj )

~

o [w|-], fort =1,...,
N(Ab, A), where

A= (1/0,%(7'—1) L HDHID 20D

+ 1o 2, 1))
1), (), 20-D g/ G-1),0=D , 2G-D
b=HU"Vu /o, + HI D)V /oy
) ) 20G-1)
+vt] /(76 / ’

where we let v¢ be the ny x 1 vectorization of vj;.
e [ur]-]. Sample from u(T]) ~ N(Ab, A) where

(1/ 20-D 4 1/ 62,(]'—1))_11

b= HODu®)  jo207D 4 162D,

e [8]-]. To facilitate the presentation of this full
conditional, note that we can rewrite (8.23) as:
=Gi18+u—1+ 1,

where G;_1 is a sparse function of u;_j. Then, one
can sample 8§0) ~ N(Ab, A) where

-1

(ZG@G@ 2(; 1 /2(] 1)) ,

j ] 2,(G—1
b= ZG(J) ( ;7) _uf]—)l)/gn G-1
+ @D /o207,
e [a]-]. Sample o) ~ N(Ab, A), where
(I/02 =D R; /o0 2,(j— 1))
b= sl D /g 2(])+R—1a/ 2,G-1)
e [02]-]. Sample O’E’(] ) ~ IG(q,7), where g = g¢ +
nT /2, where 1 is the number of spatial locations and

. . -1
r_(fé +052< 0 (])) (])_u?)))

° [02| -]. Sample an’(])

nT/Z and
1 Ly
- <7 +05) " (u)
" t=1

. . . -1
N @D Y (D ), ()
~HOu ) (uf - H‘”ut_l)>

~ 1G(g,r), where g = g, +
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° [ag'| -]. Sample 082’(j)

n/2, and

~ IG(q,r), where g = g5 +

. . . N |
r=(1/r5+ 0567 - 2y (60 — @) .
2 2,() —
e [04]-].Sampleoc,”™” ~1G(q,r), whereq = qs+p/2
(where p is the length of &) and

) . 1
r=(1/ra +05@" - ap) @ - a0)> .

To perform prediction in space and time, we
sample from the following distribution after con-
vergence has been established. We simply sample

) . O D sy 20
url from the prior [ugr 1 lup, 3V, 0y"""], then sam-

ple VSQH from its prior [VSZEH |u¥2H,a€2 & )], and get

)‘5]":-1 = exp(v;&l). We can then get a sample from
the predictive distribution of ZSQH by drawing a
0 | X(j) ]

sample from the data distribution (Z 1Al

Sketch of MCMC Program

The following algorithm could be used to implement
the MCMC procedure.

%** Choose MCMC parameters

number of iterations

number to burn-in

how often to save matrices and vectors

%$** Choose hyperparameters and other
constants
PHI-matrix
finite difference parameters
prior for alpha
inverse gamma parameters (q,r)

$** Choose starting values
v, u, delta, variances

make H matrix

$** Define variables to save samples
for scalars, save all samples
for vectors and matrices,
save every so often
for vectors and matrices,
keep running sum past burn-in
in order to calculate means

optional: use batching and one

pass calculation of

variance to get estimates of
variability for

matrices and vectors

$** Main MCMC Loop

for k = 1 to (number of iterations)

$*x** sample v (t)
for t =1 to T
sample v(t) from its full
conditional
set lambda(t) = exp(v(t))
end

g***x gample u(t)
for t = 1 to (T-1)
sample u(t) from its full
conditional

make G(t)
end
sample u(T) from its full

conditional
make G(T)

$*** gsample delta

sample delta from its full
conditional

make H

$** sample alpha
sample alpha from its full
conditional

$** sample sigma2 epsilon
sample sigma2_ epsilon from its full
conditional

$** sample sigma2_ eta
sample sigma2 eta from its full
conditional

$** sample sigma2 delta
sample sigma2 delta from its full
conditional

$** sample sigma2 alpha
sample sigma2_ alpha from its full
conditional
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$*** Save samples
save all scalar variables
if k > nburn
update sums for vector and
matrix variables
optional: save batching sums
possibly save matrices and
vectors if required

save samples for predictions
(time T+1)
end

end %main MCMC loop

find means and variances

Sample R Code

Note that this sample code is provided as an illus-
tration. It has not been extensively tested and the
authors make no claim regarding the accuracy of
the code. Note also that this code is “project spe-
cific,” meaning that it contains numerous specifica-
tions and subroutines that are unique to the data
and model considered in this example. The code is
given only to illustrate how to employ the above
methods, it is not intended (and will not func-
tion) for use with other datasets without substantial
modification.

dgrevised <- function (ngibbs,nburn,
matsave,lamsave,Z,grdlocs){

+H

# (Revised 20050119 Mevin Hooten,
originally coded 20040528)

# Implements gibbs sampler for
space-time Bayesian diffusion model

# for Eurasian Collared-Dove data.

# Z is an n x T matrix of the data

#

#H#H#
### Data specific variables and
functions

#H#
n=111

xpl=c(7:12,14:20,21:27,29:36,38:46,
48:55,0,0,56:63,64:71,72:79,

GELFAND:

80:87,88:95,98:103,0,0,104:111,
0,0,rep(0,6))
xml=c(rep(0,6),1:6,0,7:13,14:20,0,
21:28,0,29:37,0,38:45,48:55,56:63,
64:71,72:79,80:87,0,0,88:93,
96:103)
ypl=c(0,1:5,0,7:12,0,14:19,0,21:27,0,
29:36,0,38:46,0,48:54,0,56:62,
0,64:70,0,72:78,0,80:86,0,88:96,
0,98:102,0,104,0,106:110)
yml=c(2:6,0,8:13,0,15:20,0,22:28,0,
30:37,0,39:47,0,49:55,0,57:63,0,
65:71,0,73:79,0,81:87,0,89:97,0,
99:103,0,105,0,107:111,0)

XP1 <- function (W) {
XPlout <- matrix(0,n,1)
XPlout [(1:n) [xpl!=0],]

<- Wlxpl[xpl!=0],]
XPlout [(1:n) [xpl==0]
XPlout

1

XM1 <- function (W)
XMlout <- matrix(0,n,1)
XMlout [(1:n) [xml!=0],]

<- W[xml[xml!=0],]
XMlout [ (1:n) [xml==0]
XMlout

1

YP1 <- function (W)
YPlout <- matrix(0,n,1)
YPlout [(1:n) [ypl!=0]1,]

<- Wlypllypl!=0],]
YPlout [(1:n) [ypl==0],] <- O
YPlout

1

YM1 <- function (W) {

YMlout <- matrix(0,n,1)
YMlout [ (1:n) [yml!=0],]

<- W[yml[yml!=0],]
YMlout [(1:n) [yml==0],] <- O
YMlout

;1 <=0

’

1 <=0

Th=matrix(0,n,n)
Tc=matrix(0,n,n)
Td=matrix (0 n)
Te=matrix (0 n)

n,
n,

/1,
n
)

for(i in 1:n

{
if (xm1[i]!=0) {Tb[i,xm1[i]]=1}
if (xp1[i]!=0) {Tcli,xpl[il]=1}
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if (ym1[i]!=0) {Td[i,yml[i]]=1}
if (ypl[i]!=0){Teli,ypl[ill=1}

}

makeH <- function (gx,gy,Dvec) {
a=1-2*gx*Dvec-2*gy*Dvec
b=(-gx/4)* (XP1 (Dvec) -XM1 (Dvec) )
+gx*Dvec
c=(gx/4)* (XP1 (Dvec) -XM1 (Dvec) )
+gx*Dvec
d=(-gy/4) * (YP1 (Dvec) -YM1 (Dvec) )
+gy*Dvec
e=(gy/4) * (YP1 (Dvec) -YM1 (Dvec) )
+gy*Dvec
Fa=(diag(as.vector(a),length(a)))
Fb=(diag(as.vector(b),
length (b)) ) %$*%Tb
Fc=(diag(as.vector(c),
length(c))) %$*$Tc
Fd=(diag(as.vector(d),
length(d))) %$*%Td
Fe=(diag(as.vector(e),
length(e))) %$*%Te
H=Fa+Fb+Fc+Fd+Fe
H

}

makeG <- function(gx,gy,uvec) {
atilda=(-2*gx-2*gy) *uvec+gx
* (XP1 (uvec) +XM1 (uvec) )
+gy* (YM1 (uvec) +YP1 (uvec) )
btilda=(-gx/4) * (XP1 (uvec) -XM1 (uvec
ctilda=(gx/4) * (XP1 (uvec) -XM1 (uvec)
dtilda=(-gy/4) * (YP1l (uvec) -YM1 (uvec
etilda=(gy/4) * (YP1 (uvec) -YM1 (uvec)
Fatilda=(diag(as.vector(atilda),
length(atilda)))
Fbtilda=(diag(as.vector (btilda),
length(btilda))) $*%Tb
Fctilda=(diag(as.vector(ctilda),
(
(
(
(

)

)

length(ctilda))) $*%Tc
Fdtilda=(diag(as.vector(dtilda),
length(dtilda))) $*%Td
Fetilda=(diag(as.vector(etilda),
length(etilda))) $*%Te
G=Fatilda+Fbtilda+Fctilda+Fdtilda
+Fetilda
G

}

getdist <- function(datalocs) {
n <- dim(datalocs) [1]

Cdatloc=datalocs[,1] + complex(1l,,1)
* (datalocs [, 2])

Cgrdloc=datalocs[,1l] - complex(1l,,1)
* (datalocs [, 2])

Dst=Mod (Cdatloc%*$matrix(1,1,n)
-Conj (t (Cgrdloc%
*$matrix(1,1,n))))

Dst

H#H##
### Hyper-parameters and other
constants

#H##

Dst=getdist (grdlocs)

expcorr=exp (-4*Dst)

p=1

Phi=eigen (expcorr) $vectors

PHI=Phi

LAMBDA=eigen (expcorr) $values

Phi=Phi[, 1:p]

Phi2diag=matrix(diag(t (Phi)%$*%Phi),
p,1)

deltat=1

deltax=1

deltay=1

Ralpha=diag (LAMBDA[1:p],p)

Ralphainv=solve (Ralpha)

Ralphainvdiag=matrix(diag(Ralphainv),
dim(Ralpha) [2],1)

gep=2.8 # mu=2

rep=.2777778 # var=5

geta=2.9 # mu=3

reta=0.1754386 # var=10

gD=2.8

rD=.2777778

galpha=2.8

ralpha=.2777778

HH##
### Initialize Variables

#H##

saveidx=1

saveidx2=1

m=floor ( (ngibbs-nburn) /matsave)
l=floor ( (ngibbs-nburn) /lamsave)
1=1+1

m=m+1
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T=18

vsave=array(0,c(n,T,m))
vsum=matrix (0,n,T)

v=matrix (0,n,T)
usave=array(0,c(n, (T+1),m))
usum=matrix(0,n, (T+1))
u=matrix(0,n, (T+1))
lambdasave=array (0,c(n,T,m))
lambdasum=matrix (0,n,T)
lambda=matrix (0,n,T)
lamsumsave=matrix (0,1, (T+1))
Dsave=matrix (0,n,m)
Dsum=matrix(0,n,1)
D=matrix(0,n,1)
alphasave=matrix (0,p,m)
alphasum=matrix(0,p,1)
alpha=matrix(0,p, 1)
alphaO=matrix(0,p, 1)
gx=deltat/ (deltax”2)
gy=deltat/ (deltay”2)
sigmal2ep=matrix (0,1, ngibbs)
sigmal2eta=matrix(0,1,ngibbs)
sigma2D=matrix (0, 1,ngibbs)
sigma2alpha=matrix (0, 1,ngibbs)
G <- array(0,c(n,n, (T+1)))
upredM <- matrix(0,n,1)
vpredM <- matrix(0,n,1)
lampredM <- matrix(0,n,1)
ZpredM <- matrix(0,n,1)

i
### Starting Values
HiH

v=log(Z+.1)
Dvec=.4*matrix(1,n,1)
sigma2ep[,1]=2
sigma2etal,1]=.1
sigma2D[,1]=.1
sigma2alphal,1]=.1

H=makeH (gx,gy,as.matrix (Dvec))
onesn=matrix(1l,n,1)
utilO=matrix(0,n,1)
sigmalOinv=diag(n)*.1

#H##
### Main Gibbs Loop
H#it#

for(k in 2:ngibbs) {
cat (k, n ||)
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HH#
### Sample v
HH#

for(t in 1:T){
1lold <- dpois(Z[,t],N[,t]
*exp(v[,t]),log=TRUE)
+log (dnorm(v[,t]l,ul, (1+t)1,
sqgrt (sigma2ep[, (k-1)1)))
vce <- rnorm(n,v[,t],.5)
llnew <- dpois(Z[,t],N[,t]
*exp (vec) , Log=TRUE)
+log (dnorm(vec,ul, (1+t) 1,
sgrt (sigma2ep(, (k-1)1)))
r <- runif(n) < exp(llnew-1llold)
v[r,t] <- velr]
lambdal,t] <- exp(vI[,t])

Hi#
### Sample u
HH#

GI[,,1]

<- makeG(gx,gy,as.matrix(ul,1]))
HprimeH <- t (H)%*%H
Hones <- H%*%onesn

tvar <- solve (HprimeH/
sigma2etal, (k-1)] + sigmaOinv)
tmn <- tvar$*st(t(ul,1+1])%*%H/
sigma2etal, (k-1)]
+ t(utilo) $*%sigmalinv)
ul,1+0] <- tmn + t(chol (tvar))
$*$matrix (rnorm(n) ,n,1)

for(t in 1:(T-1)){
ucov <- (solve((diag(n)/
sigma2etal, (k-1)1)
+ (HprimeH) /sigma2etal, (k-1)]1+
(diag(n) /sigmazepl[, (k-1)1)))
umn <- ucov%*%t (t (H¥*sul, (1+t-1)1)/
sigma2etal, (k-1)] +
t(ul, (1+t+1)])%*%H/sigma2etal, (k-1)]
+ t(vl[,t])/sigma2epl, (k-1)1)
, (1+t)] <- umn + t (chol (ucov))
$*$matrix (rnorm(n) ,n, 1)
G[,, (1+t)] <- makeG
(gx,gy,as.matrix(ul, (1+t)]))

ul
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uTcov <- solve((diag(n)/sigma2eta
[, (k-1)1)+(diag(n)/
sigma2epl(, (k-1)1))

uTmn <- uTcov$*%t (t (H%¥*%ul, (1+T-1)1)/

sigma2etal, (k-1)]1 +
t(v[,t])/sigma2epl, (k-1)1)
ul, (1+4T)] <- uTmn + t(chol (uTcov))
$*$matrix (rnorm(n) ,n, 1)
G[,, (1+T)] <- makeG
(gx,gy,as.matrix (ul, (1+T)]))

HH#
### Sample D
HH#

Gsum <- 0
usumtmp <- 0
for(t in 1:T){
Gsum <- Gsum + t(G[,, (1+t-1)1)
$*%G[,, (1+t-1)]
usumtmp <- usumtmp + t(ul, (1+t)]
-ul, (1+4t-1)1)%*%G[,, (1+t-1)]
1
Dcov <- solve((diag(n)/
sigma2D[, (k-1)])
+ (Gsum/sigmaz2etal, (k-1)1))
Dmn <- Dcov %*% ((Phi%*%alpha)/
sigma2D[, (k-1)]+
t (usumtmp) /sigma2etal, (k-1)1])
D <- Dmn + t(chol (Dcov))
$*$matrix (rnorm(n) ,n, 1)
D <- matrix(D,n,1)
H <- makeH(gx,gy,matrix(D,n,1))

#Hi#
### Sample alpha
#H##

littlem <- Phi2diag/sigma2D[, (k-1)]
+ Ralphainvdiag/
sigma2alphal, (k-1)]
piece2 <- t(t(D)%*%Phi/
sigma2alphal, (k-1)]1+
t (alpha0) $*%$Ralphainv/
sigma2alphal, (k-1)])
alpha <- piece2/littlem
+ (littlem”(-.5))
*matrix (rnorm(p) ,p,1)

HIERARCHICAL MODELLING FOR THE ENVIRONMENTAL SCIENCES

HH#
### Sample sigmalep
HH#

vusumtmp <- 0
for(t in 1:T) {vusumtmp <- vusumtmp
+ t(v[,tl-ul, (1+£)1)

s*$(v[,tl-ul, (1+t)1)}
sigma2ep[,k] <- rgamma(1l,gep
+ n*T/2,, ((1/rep)

+.5*vusumtmp) " (-1)) " (-1)

#HiH
### Sample sigmaleta
i

umusumtmp <- 0
for(t in 1:T) {umusumtmp
<- umusumtmp + t(ul, (1+t)]-
(H¥*% (ul, (1+£-1)1))) %*% (ul, (1+t)]
- (H¥*% (ul, (1+t-1)1)))}
sigma2etal,k] <- rgamma (1l,geta
+ n*T/2,, ((1/reta) +
.S*umusumtmp) " (-1)) " (-1)

H#
### Sample sigma2D
Hi#

sigma2D[,k] <- rgamma(1l,gD
+ n/2,, ((1/xD)
+.5*% (t (D-Phi%*%alpha) %*%
(D-Phi%*%alpha))) " (-1)) " (-1)

Hi#
### Sample sigma2alpha
#H##

sigma2alpha[, k] <- rgamma(l,galpha
+ p/2,, ((1/ralpha) +
.5* (t (alpha-alpha0) $*%Ralphainv
$*% (alpha-alpha0))) " (-1)) " (-1)

HH#
### updating and saving variables
H#
if (k > nburn) {
vsum <- vsum + V
usum <- usum + u
lambdasum <- lambdasum + lambda
Dsum <- Dsum + D
alphasum <- alphasum + alpha
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HH##H
### Predictions
HH#H

upred <- H%*%ul[,1+T]
+ sqgrt (sigma2etal, k])
*matrix (rnorm(n) ,n,1)
upredM <- upredM + upred
vpred <- upred
+ sqgrt (sigma2epl(,k])
*matrix (rnorm(n),n,1)
vpredM <- vpredM + vpred
lampredM <- lampredM
+ exp (vpred)
ZpredM <- ZpredM
+ matrix(rpois(n,exp (vpred)),n,1l)
if (k¥%lamsave==0) {
lamsumsave [saveidx?2, ]
<- apply(cbind(lambda,
exp (vpred)) , 2, sum)
saveidx2 <- saveidx2 + 1

}

if (k¥%matsave==0) {
vsave [, ,saveidx] <- as.matrix(v)
usave [, ,saveidx] <- as.matrix(u)
lambdasave [, , saveidx]

<- as.matrix(lambda)
Dsave[,saveidx] <- D
alphasave [, saveidx] <- alpha
saveidx <- saveidx + 1

}
}

} # end main gibbs loop
Cat ( n nn)

H###
### Calculating means from sums

H#H##

vmn <- vsum/ (ngibbs-nburn)

lambdamn <- lambdasum/ (ngibbs-nburn)
umn <- usum/ (ngibbs-nburn)

Dmn <- Dsum/ (ngibbs-nburn)

alphamn <- alphasum/ (ngibbs-nburn)

upredM <- upredM/ (ngibbs-nburn)
vpredM <- vpredM/ (ngibbs-nburn)
lampredM <- lampredM/ (ngibbs-nburn)
ZpredM <- ZpredM/ (ngibbs-nburn)

list (vsave=vsave,usave=usave,
lambdasave=1lambdasave,
upredM=upredM,
vpredM=vpredM, lampredM=1lampredM,
ZpredM=ZpredM, Dsave=Dsave,
alphasave=alphasave, vmn=vmn,
lambdamn=1lambdamn, umn=umn,
Dmn=Dmn, alphamn=alphamn,
sigma2ep=sigmazep,
lamsumsave=lamsumsave,
sigmaleta=sigmaleta,
sigma2D=sigma2D,
sigma2alpha=sigma2alpha,
PHI=PHI, LAMBDA=LAMBDA)
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