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Abstract. Ecological data often exhibit spatial pattern, which can be modeled as autocor-
relation. Conditional autoregressive (CAR) and simultaneous autoregressive (SAR) models
are network-based models (also known as graphical models) specifically designed to model
spatially autocorrelated data based on neighborhood relationships. We identify and discuss six
different types of practical ecological inference using CAR and SAR models, including: (1)
model selection, (2) spatial regression, (3) estimation of autocorrelation, (4) estimation of other
connectivity parameters, (5) spatial prediction, and (6) spatial smoothing. We compare CAR
and SAR models, showing their development and connection to partial correlations. Special
cases, such as the intrinsic autoregressive model (IAR), are described. Conditional autoregres-
sive and SAR models depend on weight matrices, whose practical development uses neighbor-
hood definition and row-standardization. Weight matrices can also include ecological
covariates and connectivity structures, which we emphasize, but have been rarely used. Trends
in harbor seals (Phoca vitulina) in southeastern Alaska from 463 polygons, some with missing
data, are used to illustrate the six inference types. We develop a variety of weight matrices and
CAR and SAR spatial regression models are fit using maximum likelihood and Bayesian meth-
ods. Profile likelihood graphs illustrate inference for covariance parameters. The same data set
is used for both prediction and smoothing, and the relative merits of each are discussed. We
show the nonstationary variances and correlations of a CAR model and demonstrate the effect
of row-standardization. We include several take-home messages for CAR and SAR models,
including (1) choosing between CAR and IAR models, (2) modeling ecological effects in the
covariance matrix, (3) the appeal of spatial smoothing, and (4) how to handle isolated neigh-
bors. We highlight several reasons why ecologists will want to make use of autoregressive mod-
els, both directly and in hierarchical models, and not only in explicit spatial settings, but also
for more general connectivity models.

Key words: conditional autoregressive; geostatistics; intrinsic autoregressive; prediction; simultaneous
autoregressive; smoothing.

INTRODUCTION

Ecologists have long recognized that data exhibit spa-
tial patterns (Watt 1947). These patterns were often
expressed as spatial autocorrelation (Sokal and Oden
1978), which is the tendency for sites that are close

together to have more similar values than sites that are
farther from each other. When spatial autocorrelation
exists in data, ecologists often use spatial statistical mod-
els because the assumption of independent errors is vio-
lated, making many conventional statistical methods
inappropriate (Cliff and Ord 1981, Legendre 1993).
Areal data are a type of spatial ecological data that
involve polygons or area-referenced data with measured
values from the polygons (e.g., animal counts from game
management areas). Often, ecological data collected in
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nearby polygons are more similar than those farther
apart due to similar habitat conditions, biological pro-
cesses such as migration or dispersal, and human
impacts or management interventions. For example,
higher animal counts or occupancy often form spatial
clusters on the landscape (Thogmartin et al. 2004,
Broms et al. 2014, Poley et al. 2014), plant measure-
ments from a set of plots may be spatially patterned
(Agarwal et al. 2005, Bullock and Burkhart 2005,
Huang et al. 2013), or global species diversity can exhi-
bit geographic patterns when represented as a coarse-
scale grid (Tognelli and Kelt 2004, Pedersen et al. 2014).
For these types of spatial data, spatial information can
be encoded using neighborhoods, which leads to spatial
autoregressive models (Lichstein et al. 2002). The two
most common spatial autoregressive models are the con-
ditional autoregressive (CAR) and simultaneous autore-
gressive (SAR) models (Haining 1990, Cressie 1993).
Conditional autoregressive and SAR models form a
large class of spatial statistical models. Ecological data
often exhibit spatial pattern, and while CAR and SAR
models have been used in ecology, they should be used
more often. Our objective is to review CAR and SAR
models in a practical way, so that their potential may be
more fully realized and used by ecologists, and we begin
with an overview of their many uses.

Statistical inference from CAR and SAR models

We motivate the uses of spatial autoregressive models
by considering typical (and not so typical, but useful)
objectives where CAR and SAR models have been used
for statistical inference in ecological studies: (1) model
selection, (2) spatial regression, (3) estimation of auto-
correlation, (4) estimation of other connectivity parame-
ters, (5) spatial prediction, and (6) spatial smoothing
(Table 1). There are many other interesting objectives in

ecology, but these six are especially relevant for spatial
modeling with CAR and SAR. When residual spatial
autocorrelation is found based on, for example, Moran’s
I (Moran 1948, Sokal and Oden 1978), none of the
objectives in Table 1 could be accomplished rigorously
(in a probabalistic framework, using likelihoods for
model selection and parameter estimates with confidence
intervals) without modeling spatial autocorrelation.
When data are collected on spatial areal (also called lat-
tice; Cressie 1993) units, SAR and CAR models provide
the most straightforward and well-studied approach for
accomplishing any of these objectives. We motivate each
objective in turn and provide examples of studies in
which autoregressive models were used.
Model selection (objective 1) can reveal important

relationships between the response (i.e., dependent vari-
able) and predictor variables. There are a plethora of
model comparison methods, or multimodel inferences,
based on Akaike Information Criteria (AIC; Akaike
1973), Deviance Information Criteria (DIC; Spiegelhal-
ter et al. 2002), etc., that are generally available (e.g.,
Burnham and Anderson 2002, Hooten and Hobbs
2015). Conditional autoregressive and SAR covariance
matrices may be part of some or all models, and choos-
ing a model, or comparing various CAR and SAR mod-
els, may be an important goal of the investigation. For
example, Cassemiro et al. (2007) compared classical
regression models assuming independence with SAR
models while simultaneously selecting covariates using
AIC when studying metabolism in amphibians. Qiu and
Turner (2015) used SAR models for random errors
along with model averaging in a study of landscape
heterogeneity. Tognelli and Kelt (2004) compared CAR
and SAR based on autocorrelation in residuals, choos-
ing SAR for an analysis of factors affecting mammalian
species richness in South America. In recent theoretical
developments, Song and De Oliveira (2012) provided

TABLE 1. Common objectives when using spatial autoregressive models.

Objective Description Model component

1. Model comparison &
selection

CAR and SAR models are often part of a spatial (generalized) linear
model. One goal, prior to further inference, might be to compare models,
and then choose one. The choice of the form of a CARor SAR model
may be important in this comparison and selection.

Lð�jyÞ

2. Regression The goal is to estimate the spatial regression coefficients, which quantify
how an explanatory variable “affects’’ the response variable.

b

3. Autocorrelation The goal is to estimate the “strength’’ of autocorrelation, especially if it
represents an ecological idea such as spatial connectivity, which
quantifies how similarly sites change in the residual errors, after
accounting for regression effects.

q

4. Connectivity structure The goal is to estimate covariate effects on connectivity (neighborhood)
structure. Although rarely used, covariates can be included in the
precision matrix to see how they affect connectivity structure (causing
more or less correlation).

h

5. Prediction This is the classical goal of geostatistics, and is rarely used in CAR and
SAR models. However, if sites have missing data, prediction is possible.

yu and/or lu

6. Smoothing The goal is to create values at spatial sites that smooth over observed data
by using values from nearby locations to provide better estimates.

g(l)

Note: Notation for the model components comes from Eq. 17
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details on comparing various CAR and SAR models
using Bayes factors. Zhu et al. (2010) extended the least
absolute shrinkage and selection operator (LASSO; Tib-
shirani 1996) using the least angle regression algorithm
(LARS; Efron et al. 2004) to CAR and SAR models.
Regression analysis (objective 2) focuses on under-

standing relationships between predictor and response
variables. Gardner et al. (2010) used a spatial CAR
regression model to show that the probability of wolver-
ine occupancy depended on predictors related to eleva-
tion and human influence in the plots. Returning to an
example above, Cassemiro et al. (2007) found that sev-
eral environmental predictors, including temperature,
net primary productivity, annual actual evapotranspira-
tion, etc., helped explain species richness for amphib-
ians. Agarwal et al. (2005) used a CAR model to study
the effect of landscape variables, including road and
population density, on deforestation. Using an SAR
model for the spread of invasive alien plant species,
Dark (2004) found relationships with elevation, road
density, and native plant species richness. Beale et al.
(2010) provided a review of spatial regression methods,
including CAR and SAR. In many of these models, the
autoregressive component was a latent random effect in
a generalized linear mixed model, (also viewed as a hier-
archical model [Cressie et al. 2009] or a state-space
model [de Valpine and Hastings 2002]), where the
response variable was count (Clayton and Kaldor
(1987), binary (Gardner et al. 2010), or ordinal (Agar-
wal et al. 2005). Later, we provide more discussion of
CAR and SAR in hierarchical models.
Understanding the strength of autocorrelation in spa-

tial data (objective 3) can reveal connectivity and inter-
relatedness of ecological systems. Gardner et al. (2010)
used a Bayesian CAR model to estimate the autocorrela-
tion parameter q, with credible intervals to show uncer-
tainty. Lichstein et al. (2002) also provided estimates of
the CAR autocorrelation parameter for three different
bird species, along with likelihood ratio tests against the
null hypothesis that they were zero. Similarly, but for
SAR models, Bullock and Burkhart (2005) used likeli-
hood ratio tests to show significant estimates of several
thousand tree species/location combinations with both
positive and negative autocorrelation parameters.
Objective 4, understanding direct covariate effects on

autocorrelation, is almost never used in ecological mod-
els, or in other disciplines. Typically, for regression, we
model covariates affecting the mean of the response
variable. For example, for the ith response variable Yi,
E[Yi] = li = b0 + b1x1,i + b2x2,i + . . ., where bp is the
pth regression coefficient, and xp,i is the pth covariate for
the ith variable. Here, covariates are only part of the
fixed effects and hence affect autocorrelation indirectly
through the residual error. Typically, autocorrelation is
controlled by the single parameter q, which scales the
strength of autocorrelation. However, as for the mean li
(and through the likelihood), we can model the effect of
multiple measurements (covariates) between pairs of

response variables (locations for spatial data). For exam-
ple, if qi,j is the correlation between site i and j, we can
let qi,j = h0 + h1x1,i,j + . . ., where x1,i,j is a covariate
defined between the ith and jth locations (e.g., a variable
thought to impede or promote animal dispersal or gene
flow). This direct influence of covariates on autocorrela-
tion may be of interest in ecological studies concerned
with connectivity (for a landscape-genetic example, see
Hanks and Hooten 2013) and we provide an example of
how graphical models (mathematical constructs of
points, or “nodes,” connected by lines, or “edges”) can
be used to address this objective later.
Prediction at unsampled locations (objective 5) is a

common goal in spatial analyses. An example of predic-
tion using CAR models is given in both Magoun et al.
(2007) and Gardner et al. (2010), who modeled occu-
pancy of wolverines from aerial surveys (also see Johnson
et al. 2013a). There were three types of observations: (1)
plots that were surveyed with observed animals, (2) plots
that were surveyed with no animals, and (3) unsurveyed
plots. Predictions for unsurveyed plots provided probabil-
ities of wolverine occurrence. Huang et al. (2013) pre-
dicted N2O in pastures with missing samples using CAR
models, and Thogmartin et al. (2004) used CAR models
to predict Cerulean Warblers abundance in the midwest
United States. Despite these examples, and the fact that
geostatistics and time series are largely focused on predic-
tion (at unsampled locations) and forecasting (at unsam-
pled times in the future), respectively, there are few
examples of prediction using CAR and SAR models in
ecology, or other disciplines.
To conceptualize smoothing (objective 6), imagine that

disease rates in conservation districts are generally low,
say <10% based on thousands of samples, but spatially
patterned with areas of lower and higher rates. However,
one conservation district has but a single sample that is
positive for the disease. It would be unrealistic to estimate
the whole conservation district to have a 100% disease
rate based on that single sample. Conditional autoregres-
sive and SAR models can be used to create rates that
smooth over observed data by using values from nearby
districts to provide better estimates. For examples, see
Beguin et al. (2012) and Evans et al. (2016). Entire books
have been written on the subject (e.g., Elliot et al. 2000,
Pfeiffer et al. 2008, Lawson 2013b), and spatial smooth-
ing of diseases form the introductions to CAR and SAR
models in many textbooks on spatial statistics (Cressie
1993, Waller and Gotway 2004, Schabenberger and Got-
way 2005, Banerjee et al. 2014). Smoothing generally
occurs when there is a complete census of areal units (e.g.,
agricultural production in plots, or disease counts from
counties). In the past, ecologists often sampled from
plots, and rarely had a complete census, so they used this
objective infrequently. However, increasingly advanced
instruments (e.g., LIDAR; Campbell and Wynne 2011)
are yielding remotely sensed data with complete spatial
coverage, allowing more opportunities for smoothing. In
addition, smoothing over measurement error is attractive
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for hierarchical (Cressie et al. 2009) and state-space (de
Valpine and Hastings 2002) models.
Our review shows that CAR and SAR models are

used for many types of statistical inference from ecolog-
ical data, yet some highly cited ecological papers have
incorrectly compared CAR/SAR to geostatistical mod-
els, incorrectly formulated the CAR model, and have
given incorrect relationships between CAR and SAR
models (details are given in Appendix S1). We empha-
size that good statistical practice with CAR and SAR
models depends on more and better information. When
ecological data are collected in spatial areal units, CAR
and SAR models are often the most appropriate
approach for accounting for spatial autocorrelation,
and are thus essential tools for making valid inference
on spatial data. To understand them better, we first
compare CAR and SAR to geostatistical models.

Autoregressive models and geostatistics

A common framework for statistical inference in ecol-
ogy is regression or, more generally, a generalized linear
model (GLM), in which variation in the response variable
is modeled as a function of predictor variables (or covari-
ates). A key assumption in these models is that each
response variable is independent from all others, after
accounting for the covariate effects. When the response
variables are collected in space, it is very common for the
residuals resulting from a regression or GLM analysis to
show spatial autocorrelation. Such autocorrelation vio-
lates the independence assumption, and can make stan-
dard results, such as confidence or credible intervals,
invalid (Cliff and Ord 1981, Legendre 1993).
Instead of assuming independence, spatial statistical

models directly account for spatial autocorrelation through
modeling the covariance matrix Σ of the residuals as a
function of the locations where the response variable, con-
tained in the vector y, were collected. For example, when
the observations are point-referenced (i.e., each y was col-
lected at a location with known GPS coordinates), geosta-
tistical methods are often used (e.g., Turner et al. 1991). In
a geostatistical model, the covariance of two observations
is modeled directly as a function of the distance between
the spatial locations where the observations were collected.
For example, under the exponential covariance model
(Chiles and Delfiner 1999:84), covariance decays exponen-
tially with distance dij between observations,

Covðyi; yjÞ ¼ Rij ¼ r2e�dij=/; (1)

which makes observations that occur close to each other
in space highly correlated, while observations very far
from each other nearly independent. Extending a regres-
sion model to allow for spatial autocorrelation (e.g.,
Ver Hoef et al. 2001) keeps inference on regression param-
eters from being invalidated by residual autocorrelation.
Geostatistical models directly model the covariance

between spatial locations, and have been developed

specifically for point-referenced data. However, a wide
range of ecological studies collect aggregate observations
from areal regions such as quadrats or pre-specified spa-
tial polygons. In this setting, one could use a geostatisti-
cal model, such as the exponential covariance model (1),
but this requires specifying a point to represent each
areal unit, for example the centroid of each areal unit
(e.g., Ver Hoef and Cressie 1993). While this is possible,
another class of spatial covariance models have been
developed specifically to take advantage of the charac-
teristics of areal data, the autoregressive spatial models.
In these models, a network of connections between
neighboring areal units is specified, and spatial depen-
dence is specified through a model that conditions on
observations at neighboring locations. This conditional
spatial dependence can be shown to define the inverse of
a covariance matrix (also known as the precision matrix,
the term that we will use henceforth). Inverting this
precision matrix then results in a spatial covariance
matrix Σ defined by the network structure of the neigh-
bor relationships. We illustrate with a simple example
next.

An example of a spatial autoregressive model

To introduce autoregressive models, and illustrate
how the network structure of an autoregressive model
results in spatial autocorrelation, we consider a simple
setup in which observations are collected at nine loca-
tions arranged in a 3 9 3 grid (Fig. 1).
In a geostatistical model where the observations were

obtained at a point-referenced location, we could define
spatial autocorrelation based on the distance between
sites (Eq. 1). In an autoregressive model, spatial auto-
correlation is defined by neighborhood (network) struc-
ture. In Fig. 1, we have defined neighborhood structure
based on nearest neighbors in each cardinal direction.
Neighbors are shown by the vertical and horizontal
lines, so site 1 has two neighbors, labeled 2 and 4, etc.
We can capture these neighborhood relationships in a
matrix. For Fig. 1, let

FIG. 1. Spatial arrangement of sites in a simple 3 9 3 grid,
where the numbers label each site.
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W ¼

0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0
1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 0 1 0
0 0 1 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 1 0 1
0 0 0 0 0 1 0 1 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

(2)

be the matrix that indicates neighbor relationships,
where a one in the jth column for the ith row indicates
that site j is a neighbor of site i, otherwise the entry is
zero. The rows and columns correspond to the num-
bered sites in Fig. 1. Under a CAR model for spatial
autocorrelation, which we explore in more detail in the
next section, the spatial precision matrix Σ�1 is defined
as (I�qW), where q is an autocorrelation parameter and
I is a diagonal matrix of all ones. The resulting spatial
covariance matrix Σ, which describes spatial correlation
based on the neighborhood structure in W, is obtained
by inverting the precision matrix

R¼ðI�qWÞ�1

¼

1:10 0:26 0:06 0:26 0:12 0:04 0:06 0:04 0:02

0:26 1:16 0:26 0:12 0:29 0:12 0:04 0:07 0:04

0:06 0:26 1:10 0:04 0:12 0:26 0:02 0:04 0:06

0:26 0:12 0:04 1:16 0:29 0:07 0:26 0:12 0:04

0:12 0:29 0:12 0:29 1:24 0:29 0:12 0:29 0:12

0:04 0:12 0:26 0:07 0:29 1:16 0:04 0:12 0:26

0:06 0:04 0:02 0:26 0:12 0:04 1:10 0:26 0:06

0:04 0:07 0:04 0:12 0:29 0:12 0:26 1:16 0:26

0:02 0:04 0:06 0:04 0:12 0:26 0:06 0:26 1:10

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

(3)

where in this example, q = 0.2.
We use this simple example to illustrate that (1) geo-

statistical models are defined by actual spatial distance,
while CAR and SAR models are defined by neighbor-
hoods, and (2) geostatistical models specify the covari-
ance matrix Σ directly, whereas CAR and SAR models
specify the precision matrix. We also note that it is not
immediately obvious how the covariance matrix will
behave based on our neighborhood definitions (because
of the nonlinear nature of a matrix inverse). For exam-
ple, the variances on the diagonal of Eq. 3 are not all
equal. Notice the covariances for site 1 (the off-diagonal
elements in the first row of Σ), showing that site 1 is
most highly correlated with sites 2 and 4, but also non-
zero correlation with non-neighbors. Wall (2004) found
some surprising and unusual behavior for CAR and
SAR models. Our goal is to demystify CAR and SAR
models, and provide practical suggestions for use of
these models in ecological analyses.
Conditional autoregressive and SAR models are

prevalent in the literature, and the six objectives listed
above (Table 1) show that these models are essential

tools for the analysis of ecological data. Our goals are as
follows: (1) to explain how these models are obtained, (2)
provide insight and intuition on how they work, (3) to
compare CAR and SAR models, and (4) provide practi-
cal guidelines for their use. Using harbor seal (Phoca vit-
ulina) trends, we provide an example for further
illustration of the objectives given in Table 1. We then
discuss important topics that have received little atten-
tion so far. For example, there is little guidance in the lit-
erature on handling isolated (unconnected) sites, or how
to choose between a CAR model and a special case of
the CAR model, the intrinsic autoregressive model
(IAR). We provide such guidance, and finish with five
take-home messages that deserve more attention.

SPATIAL AUTOREGRESSIVE MODELS

Spatial relationships for CAR and SAR models are
based on a graphical model, or a network, where, using
terminology from graphical models (e.g., Lauritzen
1996, Whittaker 2009), sites are called nodes (circles in
Fig. 1) and connections are called edges (lines in Fig. 1).
Edges can be defined in many ways, but a common
approach is to create an edge between adjoining units in
geographic space or any network space. Statistical mod-
els based on graphical spatial structure are sometimes
known as Gaussian Markov random fields (e.g., Rue
and Held 2005). For notation, let Yi be a random vari-
able used to model observations at the ith node, where
i = 1, 2, . . ., N, and all Yi are contained in the vector y.
Then consider the spatial regression framework,

y ¼ Xbþ zþ e; (4)

where the goal is to model a first-order mean structure
that includes covariates (i.e., predictor variables, X, mea-
sured at the nodes) with regression coefficients b, as well
as a latent spatial random error z, where z�Nð0;RÞ,
and independent error e, where e�Nð0;r2

eIÞ. Note that
z is not directly measured, and instead must be inferred
using a statistical model. The spatial regression frame-
work becomes a spatial autoregressive model when the
covariance matrix, Σ, for z, takes one of two main forms:
(1) the SAR model

R � r2
ZððI� BÞðI� B0ÞÞ�1

; (5)

or (2) the CAR model

R � r2
ZðI� CÞ�1M: (6)

Here, spatial dependence between Zi and Zj is modeled
by B = {bij} and C = {cij} for the SAR and CAR models,
respectively, where bii = 0 and cii = 0 and M = {mij} is a
diagonal matrix (all off-diagonal elements are 0), where
mii is proportional to the conditional variance of Zi given
all of its neighbors. The spatial dependence matrices are
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often developed as B ¼ qW and C ¼ qW, where W is a
weights matrix and q controls the strength of dependence.
For the example in Eq. 3, we used a CAR model (Eq. 6)
with C ¼ qW, where W was given in Eq. 2, and r2

Z ¼ 1,
M ¼ I, and q = 0.2.
To help understand autoregressive models, consider

partial correlation (e.g., Snedecor and Cochran
1980:361), which is the idea of correlation between two
variables after “controlling,” or holding fixed, the values
for all other variables. If R�1 ¼ X ¼ fxi;jg, then the par-
tial correlation between random variables Zi and Zj is
�xij=

ffiffiffiffiffiffiffiffiffiffiffi
xiixjj

p
(Lauritzen 1996:120), which, for normally

distributed data, is equivalent to conditional dependence.
For the example in Fig. 1 and Eq. 2, R�1 ¼ ðI� 0:2WÞ
and so the partial correlation between sites 1 and 2 is 0.2.
Thus, we can see that the CAR model, in particular,
allows the modeler to directly specify partial correlations
(or covariances), rather than (auto)correlation directly.
That is, we are in control of specifying the off-diagonal
matrix values of W in R�1 ¼ r2

ZM
�1ðI� qWÞ, and

therefore we are specifying the partial correlations. The
SAR model case is similar, though instead of directly
specifying partial correlations, as is done with ðI� CÞ in
the CAR model, the SAR specification involves model-
ing a square root, ðI� BÞ, of the precision matrix. Con-
trast this with geostatistics, where we are in control of
specifying Σ, and therefore we directly specify the (auto)-
correlations. In both cases, we generally use a functional
parameterization, rather than specify every matrix entry
individually. For CAR and SAR models, the specification
is often based on neighbors (e.g., partial correlation
exists between neighbors that share a boundary, condi-
tional on all other sites), and for geostatistics, the specifi-
cation is based on distance (e.g., correlation depends on
an exponential decay with distance). For CAR models, if
cij = 0, then sites i and j are partially uncorrelated; other-
wise there is partial dependence. Note that diagonal ele-
ments bii and cii are always zero. For z (a SAR or CAR
random variable) to have a proper statistical distribution,
q must lie in a range of values that allows ðI� BÞ to have
an inverse and ðI� CÞ to have positive eigenvalues; that
is, q cannot be chosen arbitrarily, and its range depends
on the weights in W (later, we discuss elements of W
other than 0 and 1).
The statistical similarities among the SAR and CAR

models are obvious; they both rely on a latent Gaussian
specification, a weights matrix, and a correlation param-
eter. In that sense, both the SAR and CAR models can
be implemented similarly. However, there are key differ-
ences between SAR and CAR models that are funda-
mentally important because they impact inference
gained from these models. As such, we describe each
model in more detail and provide practical advice.

SAR models

One approach for building the SAR model begins with
the usual regression formulation described in Eq. 4.

Instead of modeling the correlation of z directly, an
explicit autocorrelation structure is imposed

z ¼ Bzþ m (7)

where the spatial dependence matrix, B, is relating z to
itself, and m�Nð0;r2

ZIÞ. These models are generally
attributed to Whittle (1954). Solving for z, note that
ðI� BÞ�1 must exist (Cressie 1993, Waller and Gotway
2004), and then z has zero mean and covariance matrix
R ¼ r2

ZððI� BÞðI� B0ÞÞ�1. The spatial dependence in
the SAR model comes from the matrix B that causes the
simultaneous autoregression of each random variable on
its neighbors. When constructing B ¼ qW, the weights
matrix W does not have to be symmetric because it does
not appear directly in the inverse of the covariance
matrix (i.e., precision matrix). For the example in Eq. 2,
the covariance matrix is

R¼ððI�qWÞðI�qW0ÞÞ�1

¼

1:37 0:67 0:23 0:67 0:46 0:20 0:23 0:20 0:09

0:67 1:60 0:67 0:46 0:87 0:46 0:20 0:33 0:20

0:23 0:67 1:37 0:20 0:46 0:67 0:09 0:20 0:23

0:67 0:46 0:20 1:60 0:87 0:33 0:67 0:46 0:20

0:46 0:87 0:46 0:87 1:93 0:87 0:46 0:87 0:46

0:20 0:46 0:67 0:33 0:87 1:60 0:20 0:46 0:67

0:23 0:20 0:09 0:67 0:46 0:20 1:37 0:67 0:23

0:20 0:33 0:20 0:46 0:87 0:46 0:67 1:60 0:67

0:09 0:20 0:23 0:20 0:46 0:67 0:23 0:67 1:37

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

(8)

using q = 0.2. Eq. 8 can be compared to Eq. 3. The con-
straints to allow ðI� BÞðI� B0Þ, when B ¼ qW, to be a
proper precision matrix are best explored through the
eigenvectors and eigenvalues of W. If k[1] < 0 is the
smallest eigenvalue, and k[N] > 0 is the largest eigenvalue
of W, then 1=k½1�\q\1=k½N� is sufficient for an inverse
of (I-B) to exist. This is a sufficient, but not a necessary,
condition. It is possible to specify a SAR model that
does not satisfy this condition, but this is almost never
done in practice, and we do not explore it further here.
For Eq. 2, the minimum eigenvalue is �2.828 and the
maximum is 2.828, with no eigenvalues equal to zero, so
Eq. 2 can be made into a proper covariance matrix and
q must be between � 0.354.
The model created by Eqs. 4 and 7 has been termed

the “spatial error’’ model version of SAR models. An
alternative is to simultaneously autoregress the response
variable and the errors, y ¼ qWyþ Xbþ e (Anselin
1988), yielding the “SAR lag model” (Kissling and Carl
2008),

y ¼ ðI� qWÞ�1Xbþ ðI� qWÞ�1e; (9)

which allows the matrix W to smooth covariates in X as
well as creating autocorrelation in the error for y (e.g.,
Hooten et al. 2013). A final version is to simultaneously
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autoregress both response and a separate random effect
m (e.g., SAR mixed model; Kissling and Carl 2008)

y ¼ qWyþ XbþWXmþ e: (10)

CAR models

The term “conditional’’ in the CAR model is used
because each element of the random process is specified
conditionally on the values of the neighboring nodes.
The CAR model is typically specified as

Zijz�i �N
X
8cij 6¼0

cijzj ;mii

0
@

1
A; (11)

where z�i is the vector of all Zj where j 6¼ i, C is the spa-
tial dependence matrix with cij as its i, jth element,
cii = 0, and M is zero except for diagonal elements mii.
Note that mii may depend on the values in the ith row of
C. In this parameterization, the conditional mean of
each Zi is weighted by values at neighboring nodes. The
variance component, mii, is also conditional on the
neighboring nodes and is thus nonstationary, varying
with node i. In contrast to SAR models, it is not obvious
that Eq. 11 can lead to a full joint distribution for all
random variables; however, this was demonstrated by
Besag (1974) using Brook’s lemma (Brook 1964) and the
Hammersley-Clifford theorem (Clifford 1990; J. M.
Hammersley and P. Clifford, unpublished manuscript).
For z to have a proper statistical distribution, ðI� CÞ
must have positive eigenvalues and R ¼ r2

nðI� CÞ�1M
must be symmetric, which requires that

cij
mii

¼ cji
mjj

; 8 i; j: (12)

For CAR models, when C ¼ qW, W and q can be
constrained in exactly the same way as for SAR models;
if 1/k[1] < q < 1/k[N] for k[1] the smallest, and k[N] the lar-
gest eigenvalues of W, then I� qW will have positive
eigenvalues.
A special case of the CAR model, called the intrinsic

autoregressive model (IAR; Besag and Kooperberg
1995), occurs when Eq. 11 is parameterized as

Zi �N
X
j2N i

zj=jN ij; s2=jN ij
0
@

1
A; (13)

where N i are all of the locations defined as neighbors of
the ith location, jN ij is the number of neighbors of the
ith location, and s2 is a constant variance parameter. In
Eq. 13, the conditional mean of each random variable is
the average of its neighbors, and the variance is propor-
tional to the inverse of the number of neighbors. Next,
we discuss the creation of weights based on averages of
neighboring values.

Row-standardization

We begin a discussion of the weights matrix, W, which
applies to both SAR and CAR models. Consider the
simplest case, where a one in W indicates a connection
(an edge) between sites i and j and a zero indicates no
such connection, as in Eq. 2. For site i, let us suppose
that there are jN ij neighbors, so there are jN ij ones in
the ith row of W. In terms of constructing random vari-
ables, this implies that Zi is the sum of its neighbors, and
summing increases variance. Generally, if left uncor-
rected, it will not be possible to obtain a covariance
matrix in this case. As an analog, consider the first-order
autoregressive (AR1) model from time series, where
Zi+1 = φZi + mi, and mi is an independent random vari-
able. It is well-known that φ = 1 is a random walk, and
anything with |φ| ≥ 1 will not have a variance because
the series “explodes’’ (e.g., Hamilton 1994:53). There is a
similar phenomenon for SAR and CAR models. In our
simple example, for the construction qW, the value
qjN ij effectively acts like φ, and both should be less than
1 to yield a proper statistical model. For example, con-
sider the case where all locations are on an evenly-spaced
rectangular grid of infinite size where each node is con-
nected to four neighbors, called a rook’s neighborhood;
one each up, down, left, and right (as in Fig. 1). It is
well-known that spatial autoregressive models for this
example must have |q| < 1/4 (Haining 1990:82; compare
this to the finite grid in Fig. 1, which had |q| < 0.354).
More generally, |q| < 1/n if all sites have exactly n neigh-
bors, jN ij ¼ n for all sites, to keep variance under con-
trol. This leads to the idea of row-standardization.
If we divide each row in W by wi,+ � ∑ jwij, then, again

thinking in terms of constructing random variables, each Zi
is the average of its neighbors, which decreases variance.
This is similar to what is expressed in Eq. 13. Row-standar-
dization of Eq. 2 yields

Wþ¼

0:00 0:50 0:00 0:50 0:00 0:00 0:00 0:00 0:00
0:33 0:00 0:33 0:00 0:33 0:00 0:00 0:00 0:00
0:00 0:50 0:00 0:00 0:00 0:50 0:00 0:00 0:00
0:33 0:00 0:00 0:00 0:33 0:00 0:33 0:00 0:00
0:00 0:25 0:00 0:25 0:00 0:25 0:00 0:25 0:00
0:00 0:00 0:33 0:00 0:33 0:00 0:00 0:00 0:33
0:00 0:00 0:00 0:50 0:00 0:00 0:00 0:50 0:00
0:00 0:00 0:00 0:00 0:33 0:00 0:33 0:00 0:33
0:00 0:00 0:00 0:00 0:00 0:50 0:00 0:50 0:00

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

(14)

which is an asymmetric matrix. For the CAR models, if
Wþ is an asymmetric matrix with each row in W divided
by wi,+, then mi,i = s2/wi,+ (the ith diagonal element of
M) satisfies Eq. 12. Note that an additional variance
parameter for mi,i will not be identifiable from r2

Z in
Eq. 6, so the row-standardized CAR model can be writ-
ten equivalently as

R¼ r2
ZðI� qWþÞ�1Mþ ¼ r2

ZðdiagðW1Þ � qWÞ�1; (15)
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where 1 is a vector of all ones and diag (v) creates a
matrix of all zeros except the vector v is on the diagonal.
For both CAR and SAR models, regardless of the num-
ber of neighbors, when using row standardization, it is
sufficient for |q| < 1, which is very convenient. Row
standardization simplifies the bounds of q and makes
optimization easier to implement.
Moreover, consider again the case of an evenly spaced

rectangular grid of points, but this time of finite size,
again using a rook’s neighborhood. Using row standard-
ization, points in the interior of the rectangle are aver-
aged over four neighbors, and they will have smaller
variance than those at the perimeter, averaged over three
neighbors, and the highest variance will be locations in
the corners, averaged over two neighbors. Hence, in gen-
eral, variance increases toward the perimeter. Without
row standardization, even when q controls overall vari-
ance, locations in the middle, summed over more neigh-
bors, have higher variance than those at the perimeter.
Using the example in Eq. 2

R¼ðI�qWþÞ�1Mþ

¼

0:72 0:27 0:15 0:27 0:15 0:10 0:15 0:10 0:08

0:27 0:53 0:27 0:15 0:19 0:15 0:10 0:10 0:10

0:15 0:27 0:72 0:10 0:15 0:27 0:08 0:10 0:15

0:27 0:15 0:10 0:53 0:19 0:10 0:27 0:15 0:10

0:15 0:19 0:15 0:19 0:40 0:19 0:15 0:19 0:15

0:10 0:15 0:27 0:10 0:19 0:53 0:10 0:15 0:27

0:15 0:10 0:08 0:27 0:15 0:10 0:72 0:27 0:15

0:10 0:10 0:10 0:15 0:19 0:15 0:27 0:53 0:27

0:08 0:10 0:15 0:10 0:15 0:27 0:15 0:27 0:72

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

with q = 0.8. The variances are on the diagonal, and
these should be compared to Eq. 3. For an error process
in Eq. 4, higher variance near the perimeter makes more
sense (as in many kriging error maps), and, with a more
natural and consistent range of values for q, row-stan-
dardization is beneficial.
Using row-standardization, and setting q = 1 in

Eq. 11 leads to the IAR model in Eq. 13. In our AR1
analogy, this is equivalent to φ = 1. In this case, Σ�1 is
singular (i.e., does not have an inverse), and Σ does not
exist. It can be verified that Eq. 14 has a zero eigenvalue.
While this may seem undesirable, random walks and
Brownian motion are stochastic processes without
covariance matrices (Codling et al. 2008). Considering
how they are constructed, it helps to think of the vari-
ances and covariances being defined on the increments;
the differences between adjacent variables. For these
increments, the variances and covariances are well-
defined. The IAR distribution is improper, however it is
similarly well-defined on spatial increments or contrasts.
To make the IAR proper, an additional constraint can
be included, ∑iZi = 0. In essence, this constraint allows

all of the random effects to vary except one, which is
subsequently used to ensure that the values sum to zero
as a whole. Geometrically, the sum-to-zero constraint
can be thought of as anchoring the process near zero for
the purposes of random errors in a model. With such a
constraint, the IAR model is appealing as an error pro-
cess in Eq. 4, forming a flexible surface where there is no
autocorrelation parameter q to estimate. The IAR model
is called a first-order intrinsic Gaussian Markov random
field (Rue and Held 2005:93); higher orders are possible
but we do not discuss them here.

The choice of spatial neighborhood structure

There is little guidance in the literature on how to
choose the neighborhood structure in autoregressive
models. One reason for this is that there is rarely a clear
scientific understanding of the mechanism behind spatial
autocorrelation; rather, in most ecological modeling, our
scientific understanding of the system is used to model
the mean structure, and modeling spatial autocorrela-
tion is a secondary consideration. The formulation in
Eq. 4 suggests that the spatial random effect z can be
thought of as a missing covariate that is spatially
smooth, but there are other possibilities as well. Hanks
(2017) shows that the long-time limiting distribution of
a spatio-temporal random walk can result in a spatial
random effect with SAR covariance, indicating that
SAR models can be seen as the covariance that results
when the spatio-temporal process being studied could be
approximated by a random walk. This is an example of
a SAR model arising from a mechanism that may match
a scientific question.
In the absence of a scientific motivation for spatial

autocorrelation, one way to view autoregressive models
is as a modeling choice required to relax the assumption
of independence of y in Eq. 4, conditional on X and z,
when it is not true. In a regression analysis, one might
consider multiple transformations of a response variable
to satisfy the assumption of normality of residuals.
These transformations are not, in general, motivated by
scientific understanding, but rather by modeling expedi-
ency. Similarly, in a spatial analysis, one might consider
multiple autoregressive models, such as SAR and CAR
models with different neighborhood structures. A final
model could be chosen based on AIC, DIC, or other
similar criteria. In this situation, there is little to be
gained by trying to interpret the CAR or SAR model
that best fits the data. Rather, the researcher should
focus interpretation on mean effects (objective 2) or pre-
diction (objective 5), and recognize that choosing a good
neighborhood structure can improve both of these
objectives.
The neighborhood structure of a CAR or SAR model

depends on the connected nodes in the network; these
are almost always defined as the areal units on which
one has observations. This choice can have unintended
consequences, as it implies that the process being studied
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only exists on the specified areal units. This would be
appropriate, for example, when one is modeling recruit-
ment of a species with a known geographic extent, and
when the data collection has encompassed the entire
range of the species. As noted above, autoregressive
models that use row-standardization tend to have higher
marginal variance at the perimeter of the network: this
corresponds with the assumption that we are often less
certain about the state of a system at its boundaries than
we are in more central spatial locations.
This assumption makes little sense when the system

being studied is known to extend beyond the spatial range
of the study. In this case, there is no obvious reason to
assume that higher variance would occur at the perimeter
of the study region. Instead, it would be more appropriate
to extend the range of the spatial random effect by creat-
ing a buffer region of areal units on the boundary of the
study region (e.g., Lindgren et al. 2011). While these buf-
fer areal units would not have observations associated
with them, they would stabilize the marginal variance of
the spatial random effect, and would be appropriate
whenever the process under study is known to extend
beyond the spatial domain of the data.

More weighting: accounting for functional and
structural connectivity

So far, we have reviewed standard spatial autoregres-
sive models. Now, we want to consider their more gen-
eral formulation as graphical, or network models. In
general, the autoregressive component is an “error’’ pro-
cess, and not often of primary interest (compared to pre-
diction or estimating fixed effects parameters, b).
However, for ecological networks, there is a great deal of
interest in studying spatial connectivity or, equivalently,
spatial autocorrelation. We discuss other weighting
schemes for autoregressive models that have been very
rarely, or never, used, but would provide valid autocorre-
lation models for studying connectivity in ecology. In
particular, although the decomposition is not unique, we
introduce weighting schemes for the W matrix that can
separate and clarify structural and functional compo-
nents in network connectivity. By structural, we mean
correlation that is determined by physical proximity,
such as geographic neighborhoods, a distance measure,
etc. By functional, we mean correlation that is affected
by dispersal, landscape characteristics, and other covari-
ates of interest, which we illustrate next.
Consider a spatial network of nodes and edges, with

the response variable measured at nodes, putting us in
the setting of SAR and CAR models. Let eij be a charac-
teristic of an edge between the ith and jth nodes. The
structural aspects can be accommodated in the neigh-
borhood structure – the binary representation of con-
nectivity contains the idea of neighborhood structure.
Then edge weights, wij, between the ith and jth nodes
could combine functional and structural connectivity if
they are modeled as

wij ¼ f ðeij ; hÞ; j 2 N i;
0; j 62 N i;

�
(16)

where h is a p-vector of parameters. To clarify, consider
the case where xi is a vector of p habitat characteristics
of the ith node, ei;j ¼ ðxi þ xjÞ=2, and f ðeij ; hÞ ¼
expðe0ijhÞ (Hanks and Hooten 2013). This allows a model
of the effect that habitat characteristics at the nodes has
on connectivity. If hh < 0, then an increase in the hth
habitat characteristic results in a smaller edge weight
and greater resistance to network connectivity. However,
if hh > 0, then an increase in the hth habitat characteris-
tic results in a larger edge weight and less resistance to
network connectivity. In this example, the mean of the
habitat characteristics found at the two nodes,
ðxi þ xjÞ=2, was used, but any other function of the two
values could also be used (e.g., difference) if it makes
ecological sense. Alternatively, f ðeij ; hÞ could be some-
thing that is directly measured on edges, such as a sum
of pixel weights in a shortest path between two nodes
from a habitat map.
For a matrix representation of Eq. 16, let FðhÞ be a

matrix of functional relationships for all edges, let B be a
binary matrix indicating neighborhood structure, and
W ¼ FðhÞ � B, where ⊙ is the Hadamard (direct, or ele-
ment by element) product. Then FðhÞ � B allows a
decomposition for exploring structural and functional
changes in connectivity by manipulating each separately.
Of course, this must respect the restrictions described
above for SAR and CAR models, and the parameters
need to be estimated, which we discuss in the section on
fitting methods.

Comparing CAR to SAR with practical guidelines

With a better understanding of SAR and CAR mod-
els, we now compare them more closely and make practi-
cal recommendations for their use; see also Wall (2004).
First, we generally do not recommend versions of the
SAR model given by Eqs. 9 and 10. It is difficult to
understand how smoothing/lagging covariates and extra
random effects contribute to model performance, nor to
our understanding, and these models performed poorly
in ecological tests (Dormann et al. 2007, Kissling and
Carl 2008). Henceforth, we only discuss the error model
defined by Eq. 7.
A SAR model can be written as a CAR model and vice

versa, although almost all published accounts on their
relationships are incomplete (Ver Hoef et al. 2017). Cres-
sie (1993: 408) demonstrated how an SAR model with
four neighbors (rook’s neighbor) results in a CAR model
that involves all eight neighbors (queen’s neighbor) plus
rook’s move to the second neighbors. It is evident from
Eq. 5 that specifying first-order neighbors in B will result
in non-zero partial correlations between second-order
neighbors because of the product ðI� BÞðI� BÞ0 in the
precision matrix. Hence, SAR models have a reputation
as being less “local’’ (averaging over more neighbors, so
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causing more smoothing) than the CAR models. In fact,
using the same construction qW for both SAR and CAR
models, Wall (2004) showed that correlation (in Σ, not
partial correlation) increases more rapidly with q in SAR
models than CAR models, which is also apparent when
comparing Eq. 3 to Eq. 8.
Regarding restrictions on q, Wall (2004) also showed

strange behavior for negative values of q. In geostatistics,
there are very few models that allow negative spatial
autocorrelation, and, when they do, it cannot be strong.
Thus, in most situations, qmay be constrained to be posi-
tive. The fact that W in SAR models is not required to be
symmetric may seem to be an advantage over CAR mod-
els. However, we point out that this is illusory from a
modeling standpoint, although it may help conceptually
in formulating the models. For an analogy, again consider
the AR1 model from time series. The model is specified
as Zi+1 = /Zi + mi, so it seems like there is dependence
only on previous times. However, the correlation matrix is
symmetric, and corrðZi;ZiþtÞ ¼ corrðZi;Zi�tÞ ¼ /t.
Note also that this shows that specifying partial correla-
tions as zero (or conditional independence), does not
mean that marginal correlation is zero (i.e.,
corrðZi;ZiþtÞ 6¼ 0 for all t lags). The same is true for
CAR and SAR models. In fact, the situation is less clear
than for the AR1 models, where corrðZi;ZiþtÞ ¼ /t

regardless of i. For CAR and SAR models, two sites that
have the same “distance’’ from each other will have differ-
ent correlation, depending on whether they are near the
center of the spatial network, or near the perimeter; that
is, correlation is nonstationary, just like the variance as
described in Row-standardization.

CAR and SAR in hierarchical models

We now focus on the use of CAR and SAR spatial
models within a hierarchical model. To discuss these
models more specifically and concretely, in the example
and following discussion, consider the following hierar-
chical structure that forms a general framework for all
that follows

y� ½yjgðlÞ; n�;
l � Xbþ zþ e;

z� ½zjR� � Nð0;RÞ;
R�1 � FðN;D; q; h; . . .Þ;
e� ½ejr2� � Nð0;r2IÞ;

(17)

where [�] denotes a generic statistical distribution (Gel-
fand and Smith 1990), with the variable on the left of the
bar and conditional variables or parameters on the right
of the bar. Here, let y contain random variables for the
potentially observable data, which could be further par-
titioned into y ¼ ðy0o; y0uÞ0, where yo are observed and yu
are unobserved. Then ½yjgðlÞ; n� is typically the data
model, with a distribution such as Normal (continuous
ecological data, such as plant biomass), Poisson

(ecological count data, such as animal abundance), or
Bernoulli (ecological binary data, such as occupancy),
which depends on a mean l with link function g, and
other parameters ξ. The mean l has the typical spatial-
linear mixed-model form, with design matrix X (contain-
ing covariates, or explanatory variables), regression
parameters b, spatially autocorrelated errors z, and inde-
pendent errors e. We let the random effects, z, be a zero-
mean multivariate-normal distribution with covariance
matrix Σ. In a geostatistical spatial-linear model, we
would model Σ directly with covariance functions based
on distance like the exponential, spherical, and Matern
(Chiles and Delfiner 1999). The variance r2, of the inde-
pendent component varðeÞ ¼ r2I, is called the nugget
effect. However, in CAR and SAR models, and as
described above, we model the precision matrix, R�1. We
denote this as a matrix function, F, that depends on
other information (e.g., a neighborhood matrix N ¼ B
or C, a distance matrix D, and perhaps others). We iso-
late the parameter q that controls the strength of auto-
correlation. Note, however, there could be other
parameters, h, that form the functional relationships
among N;D; . . ., and R�1. In a Bayesian analysis, we
could add further priors, but here we give just the essen-
tial model components that provide most inferences for
ecological data. The model component to be estimated
or predicted from Eq. 17 is identified in Table 1. Note
that a joint distribution for all random quantities can be
written as ½yjgðlÞ; m�½zjR�½ejr2�, but the only observable
data come from y. The term likelihood is used when the
joint distribution is considered a function of all
unknowns, given the observed data, which we denote
Lð�jyÞ, and this often forms the basis for fitting models
(discussed next) and model comparison (Table 1).

Fitting methods for autoregressive models

Maximum likelihood estimation is one of the most
popular estimation methods for spatial models (Cressie
1993), but it can be computationally expensive. Earlier,
when computers were less powerful, methods were
devised to trade efficiency (on bias and consistency) for
speed, such as pseudolikelihood (Besag 1975) and coding
(Besag 1974) for CAR models, among others (Cressie
1993). Both CAR and SAR models are well-suited for
maximum likelihood estimation (Banerjee et al. 2014).
For spatial models, the main computational burden in
geostatistical models is inversion of the covariance
matrix; for CAR and SAR models, the inverse of the
covariance matrix is what we actually model, simplifying
computations (Paciorek 2013). Thus, only the determi-
nant of the covariance matrix needs computing, and fast
methods are available (Pace and Barry 1997a,b), while if
matrices do need inverting, sparse matrix methods can be
used (Rue and Held 2005). In addition, for Bayesian Mar-
kov chain Monte Carlo methods (MCMC; Gelfand and
Smith 1990), CAR models are ready-made for condi-
tional sampling because of their conditional specification.
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Spatial autoregressive models are often used in general-
ized linear models, which can be viewed as hierarchical
models, where the spatial CAR model is generally latent
in the mean function in a hierarchical modeling frame-
work. Indeed, one of their most popular uses is for “dis-
ease-mapping,’’ whose name goes back to Clayton and
Kaldor (1987); see Lawson (2013a) for book-length treat-
ment. These models can be treated as hierarchical models
(Cressie et al. 2009), where the data are assumed to arise
from a count distribution, such as Poisson, but then the
log of the mean parameter has a CAR/SAR model to
allow for extra-Poisson variation that is spatially pat-
terned (e.g., Ver Hoef and Jansen 2007). Note that this
provides a full likelihood, unlike the quasi-likelihood
often used for overdispersion for count data (Ver Hoef
and Boveng 2007). A similar hierarchical framework has
been developed as a generalized linear model for occu-
pancy, which is a binary model, but then the logit (or pro-
bit) of the mean parameter has a CAR/SAR model to
allow for extra-binomial variation that is spatially pat-
terned (Magoun et al. 2007, Gardner et al. 2010, Johnson
et al. 2013a, Broms et al. 2014, Poley et al. 2014). Condi-
tional autoregressive and SAR models can be embedded
in more complicated hierarchical models as well (e.g., Ver
Hoef et al. 2014). Sometimes that may be too slow, and a
fast general-purpose approach to fitting these types of
hierarchical models, which depends in part on the spar-
sity of the CAR covariance matrix, is integrated nested
Laplace approximation (INLA; Rue et al. 2009). INLA
has been used in generalized linear models for ecological
data (e.g., Haas et al. 2011, Aarts et al. 2013), spatial
point patterns (Illian et al. 2013), and animal movement
models (Johnson et al. 2013b), among others. The grow-
ing popularity of INLA is due in part to its fast comput-
ing for approximate Bayesian inference on the marginal
distributions of latent variables.

EXAMPLE: HARBOR SEALTRENDS

We used trends in harbor seals (Phoca vitulina) to
illustrate the models and approaches for inference
described in previous sections. Harbor seals are abun-
dant along the northwest coast of the United States and
Canada to Alaska (Pitcher and Calkins 1979). Manage-
ment of harbor seals is important due to subsistence and
reliance on these animals by Native Americans (Wolfe
et al. 2009). Consequently, interest in harbor seals led to
many studies that have documented abundance and
trend in Oregon and Washington (Harvey et al. 1990,
Huber et al. 2001, Jeffries et al. 2003, Brown et al.
2005), British Columbia (Bigg 1969, Olesiuk et al. 1990,
Olesiuk 1999), and Alaska (Pitcher 1990, Frost et al.
1999, Boveng et al. 2003, Small et al. 2003, Ver Hoef
and Frost 2003, Mathews and Pendleton 2006).
The study area is shown in Fig. 2 and contains 463

polygons used as survey sample units along the main-
land, and around islands, in Southeast Alaska. Based on
genetic sampling, this area has been divided into five

different “stocks’’ (or genetic populations). Over a 14-
year period, at various intervals per polygon, seals were
counted from aircraft. Using those counts, a trend for
each polygon was estimated using Poisson regression.
Any polygons with fewer than two surveys were elimi-
nated, along with trends (linear on the log scale) that
had estimated variances greater than 0.1. This elimi-
nated sites with small sample sizes. We treated the esti-
mated trends, on the log scale, as raw data, and ignored
the estimated variances. These data are illustrative
because we expected the trends to show geographic pat-
terns (more so than abundance, which varied widely in
polygons) and stock structure connectivity, along with
stock structure differences in mean values. The data were
also continuous in value, thus we modeled the trends
with normal distributions to keep the modeling simpler
and the results more evident. A map of the estimated
trend values (that we henceforth treat as raw data) is
given in Fig. 3, showing 463 polygons, of which 306 had
observed values and 157 were missing.
For neighborhood structures, we considered three

levels of neighbors. The first-order neighbors were based
on any two polygons sharing one or more boundary
point, and were computed using the poly2nb function in
the spdep package (Bivand and Piras 2015) in R (RCore
Team, 2016). Some polygons were isolated, so they were
manually connected to the nearest polygon in space
using straight-line (Euclidean) distance between polygon
centroids. The first-order neighbors are shown graphi-
cally in Fig. 4a with a close-up of part of the study area
given in Fig. 4b. Let N1 be a matrix of binary values,
where a 1 indicates two sites are first-order neighbors,
and a 0 otherwise. Then second-order neighbors, which
include neighbors of first-order neighbors, were easily

FIG. 2. Study area in Southeast Alaska, USA, outlined in
red in the lower left figure. Survey polygons were established
around the coast of the mainland and all islands, which were sur-
veyed for harbor seals. The study area comprises five stocks, each
with their own color, and are numbered for further reference.
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obtained in the matrix N2 ¼ IðN2Þ. Here, Ið�Þ is an indi-
cator function on each element of the matrix, being 0
only when that element is 0, and 1 otherwise. A close-up
of some of the second-order neighbors is shown in
Fig. 4c. The fourth-order neighbor matrix was obtained
as N4 ¼ IðN2

2Þ, and a close-up is shown in Fig. 4d.
We considered covariance constructions that elabo-

rated the three different neighborhood definitions. Let
Ni; i ¼ 1; 2; 4 be a neighborhood matrix as described in
the previous paragraph. Let S be a matrix of binary val-
ues that indicate whether two sites are in different stocks;
that is, if site i and j are in the same stock, then
S½i; j� ¼ 0, otherwise S½i; j� ¼ 1. Finally, let the i, jth
entries in D be the Euclidean distance between the cen-
troids of the ith and jth polygons. Then the most elabo-
rate CAR/SAR model we considered was

W¼Ni �FðhÞ ¼Ni � expð�S=h1Þ � expð�D=h2Þ: (18)

We use Eq. 18 in Eq. 5 and Eq. 6, where for SAR
models B ¼ qW or B ¼ qWþ, and for CAR models
C ¼ qW;M ¼ I or C ¼ qWþ;M ¼ Mþ. Note that, when
considering the spatial regression model in Eq. 4,
varðyÞ ¼ Rþ r2

eI would also be possible; for example, for
a first-order CAR model, varðyÞ ¼ r2

ZðI� qWÞ�1 þ r2
eI.

However, when q = 0, then r2
Z and r2

e are not identifi-
able. In fact, as q goes from 1 to 0, it allows for diagonal

elements to dominate in ðI� qWÞ�1, and there seems lit-
tle reason to add r2

eI. We evaluated some models with the
additional component r2

eI, but r
2
e was always estimated

to be near 0, so few of those models are presented. The
exception is the IAR model, where conceptually q is fixed
at one.
Our construction is unusual due to the expð�S=h1Þ

component. We interpret h1 as an among-stock connec-
tivity parameter. Connectivity is of great interest to ecol-
ogists, and by its very definition it is about relationships
between two nodes. Therefore, it is naturally modeled
through the covariance matrix, which is also concerned
with this second-order model property. Recall that, within
stock, all entries in S will be zero, and hence those same
entries in expð�S=h1Þ will be one. Now, if among stocks
there is little correlation, then h1 should be very small,
causing those entries in expð�S=h1Þ to be near zero. On
the other hand, if h1 is very large, then there will be high
correlation among stocks, and thus the stocks are highly
connected with respect to the behavior of the response
variable, justifying our interpretation of the parameter.
When used in conjunction with the neighborhood
matrix, the expð�S=h1Þ component helps determine if
there is additional correlation due to stock structure (low
values of h1, meaning low connectivity) or whether the
neighborhood definitions are enough (h1 very large,
meaning high connectivity). Similarly, the exp(�D/h2)

FIG. 3. Map of the estimated trends (used as our raw data), where polygons are colored by their trend values. The light grey
polygons have missing data. Because some polygons were small and it was difficult to see colors in them, all polygons were also
overwritten by a circle of the same color. The trend values were categorized by colors, with increasing trends in yellows and greens,
and decreasing trends in blues and violets, with the cutoff values given by the color ramp.
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component models the edge weights of neighboring areal
units in the autoregressive graph as an exponentially-
decreasing function of distance between centroids. While
this component is similar in form to the exponential
covariance function (Eq. 1) in geostatistical models, the
geostatistical model makes the covariance decay expo-
nentially with distance, while in this autoregressive
model, the edge weights in W, which help define the pre-
cision matrix, decay exponentially with distance. Similar
models for edge weights have been employed in other
studies to allow for flexible autoregressive models (e.g.,
Cressie and Chan 1989, Hanks et al. 2016).
We fit model Eq. 4 with a variety of fixed effects and

covariance structures, and a list of those models is given
in Table 2. We fit models using maximum likelihood
(except for the IAR model, which does not have a

likelihood, as discussed earlier), and details are given in
Appendix S1. The resulting maximized values of 2(log-
likelihood) are given in Fig. 5. Of course, some models
are generalizations of other models, with more parame-
ters, and will necessarily have a better fit. Methods such
as Akaike Information Criteria (AIC; Akaike 1973),
Bayesian Information Criteria (BIC; Schwarz 1978), or
others (see, e.g., Burnham and Anderson 2002, Hooten
and Hobbs 2015), can be used to select among these
models. This is an example of objective 1 listed in
Table 1. For AIC, each additional parameter adds a
“penalty’’ of 2 that is subtracted from the maximized 2
(log-likelihood). Fig. 5 shows the number of model
parameters along the x-axis, and dashed lines at incre-
ments of two help evaluate models. For example,
XC4RD has eight parameters, so, using AIC for model

FIG. 4. First-, second-, and fourth-order neighbor definitions for the survey polygons. (a) First-order neighbors for all polygons.
The grey rectangle is the area for a closer view in the following panels: (b) first-order neighbors; (c) second-order neighbors; and (d)
fourth-order neighbors.
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selection, it should be at least 2 better than a model with
seven parameters. If one prefers a likelihood-ratio
approach, then a model with one more parameter should
be better by a v2 value on 1 degree of freedom, or 3.841.
We note that there appears to be high variability among
model fits, depending on the neighborhood structure
(Fig. 5). Several authors have decried the general lack of
exploration of the effects of neighborhood definition
and choice in weights (Best et al. 2001, Earnest et al.

2007), and our results support their contention that this
deserves more attention. In particular, it is interesting
that row-standardized CAR models give substantially
better fits than unstandardized, and CAR is much better
than SAR. Note, however, that these comparisons may
not hold for other data sets. Also, for row-standardized
CAR models, fit worsens going from first-order to sec-
ond-order neighborhoods, but then improves when
going to fourth-order. Using distance between centroids

TABLE 2. Avariety of candidate models used to explore spatial autoregressive models for the example data set.

Model code Fixed effects Covariance model No. parameters

mU 1 r2
eI 2

mC1R 1 r2
ZðI� q½W1�þÞ�1½M�þ 3

XU Xstock r2
eI 6

XC1R Xstock r2
ZðI� q½W1�þÞ�1½M�þ 7

XC1 Xstock r2
ZðI� qW1Þ�1 7

XS1R Xstock r2
Z½ðI� q½W1�þÞðI� q½W1�þÞ��1 7

XS1 Xstock r2
Z½ðI� qW1ÞðI� qW1Þ��1 7

XC2R Xstock r2
ZðI� q½W2�þÞ�1½M�þ 7

XC4R Xstock r2
ZðI� q½W4�þÞ�1½M�þ 7

XC4 Xstock r2
ZðI� qW4Þ�1 7

XI4RU Xstock r2
ZðI� ½W4�þÞ�1½M�þ + r2

eI (improper) 7

XC4RD Xstock r2
ZðI� q½W4 � expð�D=h2Þ�þÞ�1½M�þ 8

XC4RDS Xstock r2
ZðI� q½W4 � expð�D=h2Þ � expð�S=h1Þ�þÞ�1½M�þ 9

XC4RDU Xstock r2
ZðI� q½W4 � expð�D=h2Þ�þÞ�1½M�þ þ r2

eI 9

Notes: For fixed effects, the 1 indicates an overall mean in the model, and Xstock includes an additional categorical effect for each
stock. A [�]+ around a matrix indicates row standardization, and for CAR models, ½M�þ is the appropriate diagonal matrix for such
row standardization. The matrices themselves are described in the example on harbor seals section. For model codes, m indicates an
overall mean only, whereas X indicates the additional stock effect in the fixed effects. C indicates a CAR model, S an SAR model,
and I an IAR model. A 1 indicates a first-order neighborhood, 2 a second-order neighborhood, and 4 a fourth-order neighborhood.
R indicates row-standardization. D indicates inclusion of Euclidean distance within neighborhoods, S a cross stock connectivity
matrix. U at the end indicates inclusion of an additive random effect of uncorrelated variables.

FIG. 5. Two times the log-likehood for the optimized (maximized) fit for the models given in Table 2. Model mU had a much
lower value (350.2) and is not shown. Starting with model XU, the dashed grey lines show increments of 2, which helps evaluate the
relative importance of models by either an Akaike information criterion (AIC) or a likelihood-ratio test criteria.
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had little effect until fourth-order neighborhoods were
used. By an AIC criteria, model XC4RD, with eight
parameters, would be the best model because it achieved
an equal model fit as XC4RDS and XC4RDU with nine
parameters, but was also more than 2 better than any of
the models with seven parameters. For model XC4RDS,
the parameter h1 was very large, making expð�S=h1Þ
nearly constant at 1, so this model component could be
dropped without changing the likelihood. Also, the
addition of the uncorrelated random errors (model
XC4RDU) had an estimated variance r2

e near zero, and
left the likelihood essentially unchanged.
As an example of objective 2 from Table 1, the estima-

tion of fixed effects parameters, for three different
models, are given in Table 3. The model is over parame-
terized, so the parameter l is essentially the estimate for
stock 1. For example, for the XU model, exp
(�0.079) = 0.92, giving an estimated trend of about 8%
average decrease per year for sites from stock 1. It is sig-
nificantly different from 0, which is equivalent to no
trend, at a = 0.05. This inference is obtained by taking
the estimate and dividing by the standard error, and then
assuming that ratio is a standard normal distribution
under the null hypothesis that l = 0. The other estimates
are deviations from l, so stock 2 is estimated to have exp
(�0.079 + 0.048) = 0.97, or a decrease of about 3% per
year. A P value for stock 2 is obtained by assuming that
the estimate divided by the standard error has a stan-
dard normal distribution under the model of no differ-
ence in means, which is 0.111, and is interpreted as the
probability of obtaining the stock 2 value, or larger, if it
had the same mean as stock 1. It appears that stocks 3–5
have increasing trends, and that they are significantly
different from stock 1 at a = 0.05 when tested individu-
ally. In comparison, model XC4R, using maximum like-
lihood estimates (MLE) and Bayesian estimates
(MCMC), are given in the middle two sets of columns of
Table 3. The MLE estimates and standard errors for the
best-fitting model, according to AIC (model XC4RD),
are shown in the last set of columns in Table 3, which
are very similar to the XC4R model. Further contrasts
between trends in stocks are possible by using the vari-
ance-covariance matrix for the estimated fixed effects for
MLE estimates, or finding the posterior distribution of

the contrasts using MCMC sampling in a Bayesian
approach.
Several aspects of Table 3 deserve comment. First,

consistent with much literature, notice that the standard
errors for the spatial error models are larger than for the
independence model XU, leading to greater uncertainty
about the fixed effects estimates (Cliff and Ord 1981,
Anselin and Griffth 1988, Legendre 1993, Lennon 2000,
Ver Hoef et al. 2001, Fortin and Payette 2002). Also, the
Bayesian posterior standard deviations are somewhat
larger than those of maximum likelihood. This is often
observed in spatial models when using Bayesian meth-
ods, where the uncertainty in estimating the covariance
parameters is expressed in the standard errors of the
fixed effects, whereas for MLE the covariance parame-
ters are fixed at their most likely values (Handcock and
Stein 1993).
More recently, researchers have been examining the

effect of autocorrelation on the shifting values of the
correlation coefficients themselves. For example, in
Table 3, when going from classical multiple regression
(Model XU), assuming independent residuals, to any of
the spatial models, the regression coefficients change.
When errors are spatially autocorrelated, the classical
regression model is unbiased for estimating the coeffi-
cients (but not the standard errors of the coefficients;
Cressie 1993, Schabenberger and Gotway 2005, Dor-
mann 2007, Hawkins et al. 2007), so interest centers on
whether spatial models are more efficient (that is, unbi-
ased like classical regression, but generally closer to the
true value). It has been argued that spatial models gener-
ally move coefficients closer to their true values (e.g., Ver
Hoef and Cressie 1993, Dormann 2007, K€uhn 2007),
while more extensive analysis showed ambiguous results
that depended on the shift metric and the model (Bini
et al. 2009).
Moreover, some have argued that classical regression

coefficients may be preferred if the covariates have
strong spatial correlation of their own (a topic called
spatial confounding; Clayton et al. 1993, Reich et al.
2006). To explain, imagine that there are two highly
autocorrelated covariates, and they are collinear (cross-
correlated) as well, but we only observe one of them.
The effect of the unobserved covariate will end up in the

TABLE 3. Estimated fixed effects for several models listed in Table 2.

Parameter

XU XC4R-MLE XC4R-MCMC XC4RD

Est. SE Est. SE Est. SE Est. SE

l �0.079 0.0225 �0.080 0.0288 �0.082 0.0330 �0.077 0.0290
bstock 2 0.048 0.0298 0.063 0.0379 0.063 0.0429 0.058 0.0386
bstock 3 0.093 0.0281 0.095 0.0355 0.097 0.0386 0.092 0.0356
bstock 4 0.132 0.0279 0.135 0.0346 0.138 0.0406 0.132 0.0346
bstock 5 0.084 0.0259 0.093 0.0327 0.096 0.0378 0.089 0.0330

Notes: Both the estimate (Est.) and estimated standard error (SE) are given for each model. All models use maximum likelihood
estimates (MLE), except for XC4R model, we distinguish the MLE estimate with -MLE, and a Bayesian estimate using Markov
chain Monte Carlo with -MCMC.
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error term, causing autocorrelation there that is strongly
correlated to the observed covariate. This can cause
unreliable estimation of the regression coefficient for the
observed covariate. The extent of this effect and how to
correct for it (if at all) is the subject of current interest
and debate (e.g., Hodges and Reich 2010, Paciorek 2010,
Hughes and Haran 2013, Hanks et al. 2015). These
issues, from proper confidence interval coverage, to
shifting regression coefficients, to spatial confounding,
occur for all spatial (and temporal) regression models,
including CAR, SAR, and geostatistical models. These
are actively evolving research areas, and we add little
except to make ecologists aware of them.
For objective 3 from Table 1, consider the curves in

Fig. 6. We fit all combinations of CAR and SAR models,
with and without row-standardization, for the first-, sec-
ond-, and fourth-order neighbors (12 possible models).
All such models had seven parameters, and a few of the
models are listed in Table 2. The likelihood profiles for q
of the three best-fitting models are shown in Fig. 6. The
peak value for XC4R shows that this is the best model,
and the MLE for q for this model is 0.604. This curve
also provides a likelihood-based confidence interval,
known as a profile likelihood confidence interval
(Box and Cox 1964), which essentially inverts a likeli-
hood-ratio test. A 100ð1� aÞ% confidence interval for a
given parameter is the set of all values such that a two-
sided test of the null hypothesis that the parameter is the

maximum likelihood value would not be rejected at the a
level of significance (i.e., the MLE value minus a v2 value
with one degree of freedom, which is 3.841 if a = 0.05).
These are all values above the dashed line in Fig. 6 for
model XC4R, or, in other words, the endpoints of the
confidence interval are provided by the intersection of the
dashed line with the curve, which has a lower bound of
0.113 and an upper bound of 0.868. We also show the
posterior distribution of q for the same model, XC4R,
using a Bayesian analysis. The posterior mean was 0.687,
with a 95% credible interval ranging from 0.315 to 0.933.
The Bayesian estimate used improper uniform priors, so
the joint posterior distribution of all parameters will be
proportional to the likelihood. The difference between
the MLE and the Bayesian estimates for the XC4R model
is due to the fact that the MLE is the peak of the likeli-
hood jointly (with all other parameters at their peak),
whereas the Bayesian posterior is a marginal distribution
(all other parameters have essentially been integrated over
by the MCMC algorithm). Nonetheless, the MLE and
Bayesian inferences are quite similar.
Fig. 7 shows likelihood profiles for the other parame-

ters in the covariance matrix. For the best model,
XC4RD, the solid line in Fig. 7a shows a peak for
log (h2) at 3.717, forming the maximum likelihood esti-
mate and relating to objective 4 from Table 1. Once
again, we show a dashed line at the maximized 2(log-
likelihood) (413.447) minus a v2 value at a = 0.05 on
one degree of freedom (3.841) to help visualize a confi-
dence interval for h2 (the profile likelihood confidence
interval given by all values of the solid line that are
above the dashed line). The log-likelihood drops rapidly
from the MLE (ĥ2 = 3.717) on the left, intersecting the
dashed line and forming a lower bound at 2.894,
whereas the upper limit is unbounded. We return to the
notion of stock connectivity in Fig. 7b. The profile like-
lihood for h1 for Model XC4RDS is given by the solid
line. The likelihood is very flat for larger values of h1,
and in fact it is continuously increasing at an impercepti-
ble rate. Thus, the MLE is the largest value in the
parameter range, which we clipped at log (h1) = 10. A
lower bound is at log (h1) = 0.525, whereas the upper
limit is unbounded again.
Continuing with further inferences from the model,

we consider prediction (objective 5) from Table 1. Algo-
rithms for both prediction and smoothing are given in
Appendix S1. Kriging is a spatial prediction method
associated with geostatistics (Cressie 1990). However, for
any covariance matrix, the prediction equations can be
applied regardless of how that covariance matrix was
developed. We used universal kriging, that is, we
included stock effects as covariates, (Huijbregts and
Matheron 1971, Cressie 1993:151) to predict all unsam-
pled polygons (gray polygons in Fig. 3) using the
XC4RD model. Note that kriging, as originally formu-
lated, is an exact interpolator (Cressie 1993:129) that
“honors the data” (Schabenberger and Gotway
2005:252) by having predictions take on observed values

FIG. 6. The different lines show 2(log-likelihood) profiles of
q for three different models, listed in the legend. If the model is
followed by -MLE, then the maximum of the profile provides
the maximum likelihood estimate, and the 2(log-likelihood) is
given by the left y-axis, while if it is followed by MCMC, then it
is the posterior distribution from a Bayesian model with a uni-
form prior on q, and the density is given by the right y-axis. The
horizontal dotted line is the maximum value for XC4R minus
3.841, the 0.05 a-level value of a v2 distribution on one degree
of freedom.
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at observed sites. In Fig. 8a, we show the raw observa-
tions along with the predictions, making a complete
map for all sites. Of course, what distinguishes predic-
tions using statistical models, as opposed to determinis-
tic algorithms (e.g., inverse distance weighting; Shepard
1968) is that statistical predictions provide uncertainty
estimates for each prediction (Fig. 8b). When kriging is
used as an exact interpolator, the values are known at
observed sites, so the prediction variances are zero at
observed sites. Hence, we only show the prediction stan-
dard errors for polygons with missing data.
We also use the more traditional smoother for CAR

and SAR models, such as those used in (Clayton and
Kaldor 1987), forming objective 6 from Table 1. For
model XC4RD, without any independent component,
this is essentially equivalent to leave-one-out-cross-valida-
tion. That is, the conditional expectation, which is
obtained directly from Eq. 11 (after adjusting for esti-
mated covariate effects) is used rather than the observed
value at each location. When the covariance matrix is
known, for normally distributed data, ordinary kriging is
also the conditional expectation (Cressie 1993:108, 174).
Hence, the predicted and smoothed values, using the con-
ditional expectation, are given in Fig. 8c; note then, that
the predictions are equivalent to Fig. 8a at the unsampled
locations. Two extremes in smoothing approaches are (1)
kriging as an exact predictor, that is, it leaves the data
unchanged (Fig. 8a), and (2) removing observed data to
replace them with conditional expectations based on
neighbors (Fig. 8c). In fact, both are quite unusual for a
smoothing objective. Generally, a model is adopted with
a spatial component, and a noisy measurement error or
independent component. Smoothing then involves find-
ing a compromise between the spatial component and the
raw, observed data. As an example for these data,

consider the XI4RU model, which has an IAR compo-
nent plus an uncorrelated error component. The IAR
model has very high autocorrelation (q = 1), but here we
allowed it to be a mixture with uncorrelated error, and
the relative values of r2

Z and r2
e will determine how much

autocorrelation is estimated for the data. Under this
model, predictions for observed data can fall between the
very smooth IAR predictions and the very rough
observed data. When such a model is formulated hierar-
chically (Eq. 17), often in a Bayesian context, predictions
exhibit a property called shrinkage (Fay and Herriot
1979), where predictions of observed values are some
compromise between an ultra-smooth fit from a pure
IAR model, and the roughness of the raw data (Fig. 8d).
The amount of shrinkage depends on the relative values
of r2

Z and r2
e . In fact, this is usually the case when CAR

and SAR models are used in a generalized linear model
setting because the conditional independence assumption
(e.g., of a Poisson distribution) is analogous to the r2

eI
component. Note that a Bayesian perspective is not a
requirement, a similar objective is obtained using filtered
kriging (Waller and Gotway 2004:306) when there are
both spatial and uncorrelated variance components.
Finally, to complete the example, we return to the idea

of nonstationarity in variances and covariances. Station-
arity is the notion that statistical properties remain
constant (stationary) as we move through space. Station-
arity means that correlation between neighbors on the
edge of the study area are the same as those in the mid-
dle, and that variances are constant throughout. Notice
that, as claimed earlier, row-standardization causes vari-
ance to decrease with the numbers of neighbors (which
are generally greater in the interior of a study area in
contrast to the perimeter) for model XC4R (Fig. 9a),
but it is not a simple function of neighbors alone, as it

FIG. 7. (a) The solid line is the 2(log-likelihood) profile of h2 for model XC4RD. (b) The solid line is the 2(log-likelihood) profile
of h1 for model XC4RDS. For each figure, the horizontal dashed line is the maximum value for the model minus 3.841, the 0.05 a-
level value of a v2 distribution on one degree of freedom.
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depends in complicated ways on the whole graphical (or
network) structure. In contrast, variance generally
increases with the number of neighbors without row-
standardization (model XC4) of the neighborhood
matrix (Fig. 9a). Correlation also decreases with neigh-
bor order, although not as dramatically as one might
expect (Fig. 9b), and not at all (on average) between
first-order to second-order when the neighborhood
matrix is not row-standardized. Box plots summarize all
possible correlations as a function of distance between
centroids (binned into classes, Fig. 9c, d), which show
that while correlation generally decreases with distance
between centroids, there is a great deal of variation. Also
recall that the MLE for q, which is a parameter in the
precision matrix, for model XC4R was 0.604 (Fig. 6),
but for the covariance matrix, correlations are much
lower (Fig. 9b–d). Because weights are developed for
partial correlations, or for the inverse of the covariance
matrix, when we examine the covariance matrix itself,
the diagonal elements are non-constant, in contrast to
typical geostatistical models. It is important to realize
that there is no direct calculation between the estimated
q value in the CAR or SAR model and the correlations

in the covariance matrix; only that higher q generally
means higher correlations throughout the covariance
matrix. One can always invert the fitted CAR or SAR
model to obtain the full covariance matrix, and this
can then be inspected and summarized if needed (e.g.,
Fig. 9), thus improving model diagnostics and our
understanding of the fitted model.

DISCUSSION AND CONCLUSIONS

Autoregressive models are an important class of spa-
tial models that have rarely been explained in practical
terms. We provide the following summary of CAR and
SAR models.

1. Intuition on CAR and SAR models can be obtained
by considering the relationship between autoregres-
sive weights and partial correlations.

2. Row standardization is generally a good idea after
choosing initial neighborhoods and weights. This will
result in CAR models that are generally more local
for a given set of neighbors because, for that same set
of neighbors, the SAR model squares the weights

FIG. 8. Predictions and smoothing for the harbor-seal stock-trend data. (a) Predictions, using universal kriging from the XC4R
model, at unsampled locations have been added to the raw observed data from sampled locations. (b) Prediction standard errors for
unsampled locations using universal kriging from XC4R. (c) Smoothing over all locations using conditional expectation based on
the XC4R model. (d) Smoothing over all locations by using posterior predictions (mean of posterior distributions) using the XI4RU
model in a Bayesian hierarchical model.
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matrix, creating neighbors of neighbors in the preci-
sion matrix.

3. The IAR model is a special case of the CAR model
that uses row standardization and fixes the autocor-
relation parameter at one, which leads to an improper
covariance matrix; however, much like a similar AR1
model, or Brownian motion, these are still useful
models.

In addition, we presented six objectives, some of
which are common, and others less so, in which spatial
autoregressive models could be used. We fit a variety of
CAR/SAR models using MLE and MCMC methods to
an example data set to illustrate all six objectives out-
lined in the Introduction. In what follows, we provide
further discussion on five take-home messages: (1)
thoughts on choosing between CAR and IAR models,
(2) modeling ecological effects in the covariance matrix,

(3) the appeal of spatial smoothing, (4) how to handle
isolated neighbors, and (5) software considerations.
The choice of IAR vs. CAR is confusing, and while

both are often described in the literature together, there
is little guidance on choosing between them. One advan-
tage of the IAR is that it has one less parameter to esti-
mate. It was proposed by Besag and Kooperberg (1995)
in part based on the following: they noticed that for a
certain CAR model, q in Eq. 6 needed to be 0.999972 to
have a marginal correlation near 0.75 (indeed, compare
the estimate of q̂ = 0.604 in our example yielding the
correlations seen in Fig. 9). In many practical applica-
tions, q was often estimated to be very near 1, so Besag
and Kooperberg (1995) suggested the IAR model as a
flexible spatial surface that has one less parameter to
estimate. On the other hand, critics noticed that it may
force spatial smoothness where none exists (e.g., Leroux
et al. 2000). Our point of view is best explored through

FIG. 9. Nonstationarity illustrated for XC4 model, and the same model using row-standardization, XC4R. (a) Marginal vari-
ances of the multivariate covariance matrix (diagonal elements of Σ) as a function of the numbers of neighbors, where circles indi-
cate XC4R and squares indicate XC4. Each symbol is partially transparent. (b) All pairwise correlations as a function of the
neighborhood order between sites. On the left of each neighbor order is XC4R, and on the right is XC4. The larger circle is the aver-
age value. (c, d) Boxplots of pairwise correlation as a function of distance between polygon centroids, binned into classes, for mod-
els XC4R and XC4, respectively.
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the hierarchical model Eq. 17. Consider an example of
count data, where the data model, y� ½yjgðlÞ�, condi-
tional on the mean g(l), is composed of independent
Poisson distributions. Hence, there are no extra variance
parameters m, but rather the independent, nonstationary
variance component is already determined because it is
equal to the mean. In this case, we recommend the CAR
model to allow flexibility in modeling the diagonal of
the covariance matrix (the CAR model can allow for
smaller q values, which essentially allows for further
uncorrelated error). On the other hand, if ½yjgðlÞ; m� has
a free variance parameter in m (e.g., the product of inde-
pendent normal or negative binomial distributions),
then we recommend the IAR model to decrease con-
founding between the diagonal of Σ, essentially con-
trolled by q, and the free variance parameter in m.
The results for Figs. 6 and 7 have confidence intervals

that are quite wide. In general, uncertainty is much
higher when trying to estimate covariance parameters
than regression (fixed effect) parameters. Nevertheless,
the covariance models that we constructed demonstrate
that it is possible to examine the effect of covariates in
the covariance structure (see also Hanks and Hooten
2013). In other words, it is possible to make inference on
connectivity parameters in the covariance matrix, but,
they may be difficult to estimate with much precision if
the data are measured only on the nodes. In our harbor
seal example, when stock effects were put into the mean
structure, there was abundant evidence of different
effects, but when that effect was put into the covariance
matrix, the precision was quite low. It is important to
put connectivity effects into the covariance matrix (in
many cases, that will be the only place that makes sense),
but realize that they may be difficult to estimate well
without large data sets.
From an ecological viewpoint, why do spatial smooth-

ing? Geostatistics had a tradition where modelers were
often adamant that no smoothing occur (“honoring the
data”; Schabenberger and Gotway 2005:224). That tra-
dition is often unknowingly continued with uncritical
use of kriging formulas for prediction. For example, if
we assume that the observed values, without error, are
part of the process of interest, then notice from Fig. 3
that the largest value is 0.835 from the legend on the
right. Recalling that these are trends, on the log scale,
the observed value from the data was exp (0.835) = 2.3,
or more than doubling each year. That is clearly not a
sustainable growth rate and is likely due to small sample
sizes and random variation. That same value from
Fig. 8c is exp (0.039) = 1.04, or about 4% growth per
year, which is a much more reasonable estimate of
growth. The largest smoothed value in Fig. 8c, back on
the exponential scale, was 1.083, or about 8% growth per
year, and the largest value in Fig. 8d, back on the expo-
nential scale, was 1.146, or about 15% growth per year.
These values are similar to published estimates of harbor
seal growth rates in natural populations (e.g., Hastings
et al. 2012). Fig. 8c, d also clarifies the regional trends,

which are difficult to see among the noise in Fig. 3 or by
simply filling in the missing sites with predictions
(Fig. 8a). For these reasons, smoothing is very popular
in disease-mapping applications, and it should be
equally attractive for a wide variety of ecological applica-
tions. In particular, the XI4RU model (Fig. 8d) is
appealing because it uses the data to determine the
amount of smoothing. However, we also note that when
used in hierarchical models where, for the data model,
the variance is fixed in relation to the mean (e.g., bino-
mial, Bernoulli, and Poisson), the amount of smoothing
will be dictated by the assumed variance of the data
model. In such cases, we reiterate the discussion on
choosing between CAR and IAR.
A rarely discussed consideration is the case of isolated

nodes (sites with no neighbors) when constructing the
neighborhood matrix. Having a row of zeros in B in
Eq. 5, or in C in Eq. 6, will cause problems. It is even
easier to see that we cannot divide by zero in Eq. 13, or
during row-standardization. Instead, we suggest that the
covariance matrix be constructed as

r2
I I 0
0 R

� �
;

where we show the data ordered such that all isolated
sites are first, and their corresponding covariance matrix
is r2

I I. The matrix Σ is the CAR or SAR covariance
matrix for the sites connected by neighbors. Note that
one of the main issues here is the separation of the vari-
ance parameters, r2

I and r2
Z in Eq. 5 or Eq. 6. As seen

in Eq. 13, the autoregressive variance is often scaled by
the number of neighbors, and because the isolated sites
have no neighbors, it is prudent to give them their own
variance parameter.
Our final take-home message concerns questions that

a user should ask when fitting autoregressive models
with existing software packages. Does the software
check the weights to ensure the covariance matrix will be
proper? It may be computationally expensive to check it
internally, which lessens the appeal of the autoregressive
models, and the software may trust the user to give it a
valid weights matrix. Does the software use row-standar-
dization internally? How does the software handle iso-
lated sites? These are special issues that only pertain to
CAR and SAR models, so we suggest investigation of
these issues so that the software output can be better
understood.
In closing, we note that “networks,’’ and network

models, are seeing increasing use throughout science,
including ecology (Borrett et al. 2014). Looking again at
Fig. 4, if we remove the polygon boundaries, these are
network models. Spatial information, in the way of
neighborhoods, was used to create the networks. Thus,
more general concepts for CAR and SAR models are
the graphical models (Lauritzen 1996, Whittaker 2009).
A better understanding of these models will lead to their
application as network models when data are collected
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on the nodes of the network, and they can be extended
beyond spatial data. This provides a rich area for further
model development and research that can include, mod-
ify, and enhance the autoregressive models.
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