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Abstract.   Plant population models are powerful tools for predicting climate change impacts in one 
location, but are difficult to apply at landscape scales. We overcome this limitation by taking advantage 
of two recent advances: remotely sensed, species-specific estimates of plant cover and statistical models 
developed for spatiotemporal dynamics of animal populations. Using computationally efficient model 
reparameterizations, we fit a spatiotemporal population model to a 28-year time series of sagebrush (Arte­
misia spp.) percent cover over a 2.5 × 5 km landscape in southwestern Wyoming while formally accounting 
for spatial autocorrelation. We include interannual variation in precipitation and temperature as covari-
ates in the model to investigate how climate affects the cover of sagebrush. We then use the model to fore-
cast the future abundance of sagebrush at the landscape scale under projected climate change, generating 
spatially explicit estimates of sagebrush population trajectories that have, until now, been impossible to 
produce at this scale. Our broadscale and long-term predictions are rooted in small-scale and short-term 
population dynamics and provide an alternative to predictions offered by species distribution models that 
do not include population dynamics. Our approach, which combines several existing techniques in a novel 
way, demonstrates the use of remote sensing data to model population responses to environmental change 
that play out at spatial scales far greater than the traditional field study plot.
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Introduction

Forecasting the impacts of climate change on 
plant populations and communities is a central 
challenge for ecology (Clark et al. 2001, Petchey 
et al. 2015). Population models are ideally suited 
for meeting such a challenge because they provide 

a way to link climate drivers directly to popula-
tion dynamics (Hare et al. 2010, Adler et al. 2012, 
Ross et  al. 2015, Shriver 2016). However, infer-
ence from population models is typically limited 
to small spatial extents because the data required 
are difficult to collect across broad species 
ranges. Almost every study of plant population 
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dynamics relies on demographic observations 
recorded at the meter-to-submeter scale (see, e.g., 
Salguero-Gómez et  al. 2015). Local-scale demo-
graphic data make building population projec-
tion models an easy task (Ellner and Rees 2006, 
Rees and Ellner 2009, Adler et al. 2012), but it is 
very difficult to extrapolate small-scale studies to 
large spatial extents with any certainty because 
the data likely only represent a small subset of 
parameter space and environmental conditions 
(Freckleton et  al. 2011, Queenborough et  al. 
2011). The real challenge is not to simply make 
population forecasts, but to do so at spatial scales 
relevant to policy and management decisions 
(Queenborough et al. 2011).

The ideal tool would be a broadscale, dynamic 
population model (Schurr et  al. 2012, Merow 
et al. 2014), but developing useful models at this 
scale has been limited by the availability of time 
series data at large spatial extents and statisti-
cal methods for fitting high-dimensional spatial 
models. Fortunately, new advances in remote 
sensing and statistics now allow us to overcome 
both of these limitations. First, new remote sens-
ing (RS) methods are now producing accurate 
time series of species-specific plant cover at land-
scape scales. These data can be fit with dynamic 
population models which include yearly fluctua-
tions in climate as covariates. Such RS time series 
have revolutionized models of how climate 
affects ecosystem-level processes (e.g., Running 
et  al. 2004) and have been used to detect long-
term trends in plant population abundance (e.g., 
Homer et al. 2015), but they have yet to be used 
to drive a dynamic population model. Second, 
animal population modelers have developed 
dimension reduction and reparameterization 
techniques to efficiently fit high-dimensional 
spatiotemporal models (see Conn et al. 2015 for 
a review). These new statistical methods have 
yet to be applied to RS-derived plant population 
data at broad scales.

Large-scale, spatially explicit population mod-
els based on RS data could offer a valuable new 
way to investigate the effects of large-scale envi-
ronmental changes playing out at landscape 
and regional scales. Most current assessments of 
how plant and animal populations will respond 
to climate change rely on species distribution 
models (SDMs). SDMs rely on static associations 
between contemporary climate and a species’ 

distribution or, more rarely, abundance to proj-
ect future distribution or abundance (Elith and 
Leathwick 2009) and they are easily applied at 
landscape to continental scales (e.g., Maiorano 
et al. 2013, Clark et al. 2014). However, the short-
term and small-scale population dynamics that 
actually drive the large-scale distributions of spe-
cies are not represented in most SDMs. Because 
SDMs typically rely on occurrence data, their 
projections of habitat suitability or probability 
of occurrence provide little information on the 
future states of populations in the core of their 
range—areas where a species exists now and 
is expected to persist in the future (Ehrlén and 
Morris 2015). Furthermore, because they lack 
short-term dynamics, SDMs usually cannot pro-
duce any estimate of the rate at which local pop-
ulations will increase or decrease in the near term 
and instead project a future equilibrium species 
distribution that may or may not ever be reached. 
Direct validation of such predictions is extremely 
rare (Roberts and Hamann 2012). Large-scale 
dynamic population models could overcome 
these limitations. They would produce spatially 
explicit estimates of species abundance within 
the species range (Ehrlén and Morris 2015), have 
the potential to model expansion in abundance 
outside the range when coupled with dynamic 
models of dispersal, and would provide testable 
predictions of how populations should respond 
to short-term climate perturbations. These short-
term predictions also would give modelers the 
opportunity to repeatedly validate and refine 
their models (Luo et al. 2011).

Sagebrush (Artemisia spp.) ecosystems offer 
an ideal testing ground for new spatially exp
licit population models derived from RS data. 
Sagebrush species are widely distributed (Kuc
hler 1964), they are sensitive to climate (Perfors 
et  al. 2003, Miglia et  al. 2005, Poore et  al. 2009, 
Dalgleish et  al. 2011, Xian et  al. 2012, Apodaca 
2013, Schlaepfer et al. 2014a, b, Harte et al. 2015, 
Homer et al. 2015), new landscape- and regional-
scale time series of sagebrush cover are now 
being produced from aerial imagery (Homer 
et  al. 2012), and forecasts of future sagebrush 
ecosystems are in high demand due to the pre-
carious conservation status of the greater sage-
grouse (Centrocercus urophasianus) (Arnett and 
Riley 2015). SDMs typically predict that much 
of the area occupied by sagebrush ecosystems 
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today will become unsuitable for sagebrush due 
to climate change, resulting in a dramatic loss in 
the extent of sagebrush habitat by the end of this 
century (Shafer et  al. 2001, Neilson et  al. 2005, 
Bradley 2010, Schlaepfer et  al. 2012, Still and 
Richardson 2015). Ecohydrology models supply 
a possible mechanism for sagebrush losses pre-
dicted by SDMs: Climate warming could lead 
to earlier snowmelt, increased evaporation, and 
ultimately less recharge of deeper soil layers 
in the spring (Schlaepfer et  al. 2012, 2014a). In 
warmer parts of its range, increased temperature 
could be especially detrimental to sagebrush as 
it depends on water from deeper soil to survive 
and grow in this arid region (Pechanec et al. 1937, 
Schlaepfer et  al. 2011, Germino and Reinhardt 
2014). In contrast, at higher elevations and in 
colder regions, warming and earlier snowmelt 
could lengthen the growing season and increase 
sagebrush occurrence (Schlaepfer et  al. 2012, 
2014a). Direct observations of individual plants 
and experimental plots tend to agree with these 
models: Growth tends to respond negatively to 
spring and summer temperatures (Miglia et  al. 
2005, Poore et al. 2009, Apodaca 2013) except at 
higher elevations where earlier snowmelt may 
allow for a longer growing season (Perfors et al. 
2003, Harte et  al. 2015). A large-scale, spatially 
explicit population model for sagebrush driven 
by interannual climate variability would provide 
a valuable new tool for assessing how sagebrush 
could respond to climate change in the future.

Building on recent technological advances in 
spatial statistics (Latimer et al. 2009, Conn et al. 
2015) and anticipating ever-increasing availabil-
ity of RS data (He et  al. 2015), we demonstrate 
how large-scale plant population models could 
be used to predict population impacts of cli-
mate change. As a proof of concept, we use a 
process model motivated by Gompertz density-
dependent population growth and a remotely 
sensed time series of sagebrush cover from 
Wyoming (Homer et al. 2012, 2015). We account 
for spatial autocorrelation with dimension reduc-
tion techniques (Latimer et al. 2009, Conn et al. 
2015) and produce spatially explicit estimates of 
sagebrush percent cover. Unlike most SDMs, our 
approach models the dynamics of plant abun-
dance through time, and thus is a population 
model, in the same spirit that models of animal 
counts through time are population models. The 

modeling framework we propose can be applied 
to any spatially explicit time series of plant cover 
or density, but its application to remotely sensed 
data products offers the greatest potential to 
combine the information of population models 
(e.g., population status and temporal dynamics) 
and the spatial extent of SDMs.

Materials and Methods

Data
Remotely sensed time series.—To demonstrate 

our modeling approach, we use a subset of a 
remotely sensed time series of sagebrush (Arte­
misia spp.) canopy cover in Wyoming (Homer 
et al. 2012). As part of a separate study, Homer 
et  al. (2012) estimated sagebrush percent cover 
using a regression tree to relate ground reflect
ances retrieved by three sources of optical ima
gery (QuickBird, Landsat, and AWiFS) to 1780 
field observations of sagebrush cover distributed 
across Wyoming. The regression tree model was 
further validated using another 297 field obs
ervations. For Wyoming sagebrush, the model 
achieved an R2 = 0.65 and an out-of-sample RMSE 
of 5.46% (Homer et  al. 2012). To hind-cast 
sagebrush cover, the regression tree model was 
applied to historical remote sensing images to 
generate yearly predictions of sagebrush cover 
for all of Wyoming for the years 1984–2011. This 
resulted in an annual time series of sagebrush 
cover at 30  m resolution from 1984 to 2011 
(Appendix S2: Fig.  S1). In this remote sensing 
product, values represent the percentage of a 
30  ×  30  m pixel covered by sagebrush. In our 
study, we focused on a 5070  ×  2430  m subset 
totaling 13,689 30 × 30 m pixels each year (Fig. 1). 
Thus, the subset of the remote sensing product 
we use contains 369,603 observations spanning 
27 year-to-year transitions (27 yr × 13,689 pixels).

Climate covariates.—Our approach models 
interannual changes in plant cover as a function 
of seasonal climate variables. We used daily 
historic weather data for the center of our study 
site from the NASA Daymet data set (available 
online: http://daymet.ornl.gov/). The Daymet 
weather data are interpolated between coarse 
observation units and capture some spatial 
variation. We relied on weather data for the 
centroid of our study area. We calculated five 
climate variables from the Daymet data for the 
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time period coinciding with our remotely sensed 
data (1984–2011).

We narrowed our focus to climate covariates 
that we know are important for sagebrush and 
that could be calculated from general circulation 
model projections. The five climate variables in 
our population model are as follows: (1) cumu-
lative, “water year” precipitation for year t  −  2 
(lagPpt), (2) year t − 1 fall-through-summer pre-
cipitation (ppt1), (3) year t fall-through-summer 
precipitation (ppt2), (4) year t − 1 average spring 
temperature (TmeanSpr1), and (5) year t average 
spring temperature (TmeanSpr2), where t − 1 to 
t is the transition of interest. We selected these 
variables a priori based on previous studies (see 

Introduction), although not all emerge as import-
ant predictors in our model.

Additive spatiotemporal model for sagebrush cover
We use a descriptive model for sagebrush 

cover that includes additive spatial and temporal 
effects similar to that described by Conn et  al. 
(2015). Interannual change in percent cover rep-
resents the integrated outcome of recruitment, 
survival, growth, and retrogression (shrinkage) 
of individual plants from year to year. We model 
observed integer percent cover (y) in cell i at time 
t as conditionally Poisson: 

(1)yi,t∼Poisson(μi,t)

Fig.  1. Location of the 5070  ×  2430  meter study area in southwestern Wyoming (black rectangle) and a 
snapshot of the percent cover data in 1984 (detailed inset). Scale bar is relevant for U.S. map only; refer to axes 
labels on the detailed inset of sagebrush percent cover for scale of the study area.
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where μi,t is the expected percent cover of pixel i 
in year t: 

Our model of percent cover change includes 
a density-dependent effect of log-transformed 
cover in the previous year (yi,t − 1), climate effects 
(xt), and a spatial random effect (η) for each pixel 
i. Climate effects were standardized [(xi− x̄)∕σ(x)] 
to improve convergence during the model fitting 
stage and to allow for easier prior specification. 
The intercept, β0,t, was allowed to vary through 
time; these random year effects recognize that all 
observations from a particular year share the same 
climate covariates and thus are not independent. 
We used a Poisson likelihood because integer per-
cent cover values in the sagebrush data product 
can be considered a form of count data. We also 
evaluated a negative binomial model, but found 
little evidence for overdispersion beyond what our 
model was already accommodating via the spatial 
random effects (η). There was no evidence of zero 
inflation in our data, but see below (Accommodating 
zeros) for how we handled the small number of 
zero percent cover observations. We assume that 
the remotely sensed estimates of percent cover are 
“true” and free of error. This need not be the case, 
and if measurement or sampling error is known, 
then it could be included in our Bayesian model 
as a “sampling model” (Hobbs and Hooten 2015).

The spatial random effect (η) accounts for 
spatial autocorrelation among pixels that occur 
near each other in space. Thus, η acts as an off-
set on the intercept (β0,t), creating a spatial field 
that defines how pixels differ from the mean, on 
average, in space (e.g., areas of perennially low 
or high cover, relative to average cover). Fitting 
the model with a spatial random effect (η) is com-
putationally demanding for large data sets such 
as ours. The computational demand is due to the 
required calculations of the spatial covariance 
matrices, which increase as a cubic function of 
the number of locations (Wikle 2010). Key to our 
approach is a dimension reduction strategy that 
greatly reduces the number of parameters needed 
to be estimated to account for spatial variation by 
reducing the size of the spatial covariance matri-
ces that need to be inverted at each Markov chain 

Monte Carlo (MCMC) iteration. Fitting models 
that appropriately account for spatial autocor-
relation over large spatial extents would not be 
feasible without these modern techniques. Our 
dimension reduction strategy expresses the 
high-dimensional spatial random effect, η, as the 
product of an expansion matrix, K, and a smaller 
parameter vector, α (e.g., Hooten et  al. 2003, 
Hooten and Wikle 2007, Conn et al. 2015). We can 
then approximate the spatial effect as:

 

In this case, α is a m × 1 vector of reduced spatial 
random effects, and K is a S × m matrix that maps 
the reduced effects to the full S-dimensional 
space, where S is the total number of observed 
locations. Thus, we are able to reduce the effec-
tive number of parameters from S to m.

The last remaining obstacle is to parameterize 
the matrix of basis functions, K. We use kernel 
convolution (Barry et  al. 1996, Higdon 1998) to 
interpolate the spatial random effect between m 
“knots” that are nonrandomly distributed across 
the space of our study area. This means we are 
modeling spatial random effects at the knot level, 
and we use K to interpolate those effects between 
knots. We use an exponential kernel density to 
define the distance-decay function around the 
knots (w), such that the entries of K are: 

where 

and ds,m is the Euclidean distance between the 
centroid of sample cell s and the location of knot 
m, and σ is the kernel bandwidth. It is possible, 
through exhaustive model selection and fitting, 
to determine the optimal form of the kernel and 
to estimate optimal values for σ (Higdon 2002, 
Hooten and Hobbs 2015). However, given the 
relative size of our data set and computational 
limitations, we defined kernels around 231 knots 
(Appendix S3: Fig.  S2) whose nearest-neighbor 
distances are approximately equal to the range of 

(2)

log(μi,t)= β0,t+β1yi,t−1
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

temporal + dens.dep

+ x�t�
⏟⏟⏟

climate

+ ηi
⏟⏟⏟

spatial

.

(3)�≈K�,

(4)αm∼Normal(0,σ2
η
).

(5)Ks,m=ws,m∕

S∑

s=1
ws,m

(6)ws,m=exp

(
−ds,m
σ

)
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spatial dependence in residuals from a simple gen-
eralized linear model (GLM) fit without climate 
covariates and the spatial random effect (~500 m; 
Appendix S3). An infinite number of knots would 
result in an exact representation of the spatial 
process and covariance model. Computationally, 
using an infinite number of knots is not possible; 
thus, the use of dimension reduction techniques 
serves as an approximation, where the accuracy 
increases with the number of knots. Given the 
trade-off between knot number and computation 
time, we chose to base our knot number on the 
spatial dependence as described above.

The Bayesian posterior distribution of our spa-
tiotemporal model can be expressed as: 

Accommodating zeros
Our process model (in Eq.  2) includes a log 

transformation of the observations (log(yt  −  1)). 
Thus, our model does not accommodate zeros. 
Fortunately, we had very few instances where 
pixels had 0% cover at time t − 1 (n = 47, which is 
0.01% of the data set). Thus, we excluded those 
pixels from the model fitting process. However, 
when simulating the process, we needed to 
include possible transitions from zero to nonzero 
percent cover. We fit an intercept-only logistic 
model to estimate the probability of a pixel going 
from zero to nonzero cover: 

 

where y is a vector of 0s and 1s corresponding to 
whether a pixel was colonized (>0% cover) or not 
(remains at 0% cover) and μi is the expected 
probability of colonization as a function of the 
mean probability of colonization (b0). We fit this 
simple model using the “glm” command in R (R 
Core Team 2013). For data sets in which zeros are 
more common and the colonization process more 
important, the same spatial statistical approach 
we used for our cover change model could be 
applied and covariates such as cover of neigh-
boring cells could be included.

Fitting the model
We fit the spatiotemporal model in R (R Core 

Team 2013) using the “No-U-Turn” Hamiltonian 
Monte Carlo sampler in Stan (Stan Development 
Team 2014a) and the RStan package (Stan 
Development Team 2014b). We obtained poste-
rior distributions of all model parameters from 
three MCMC chains comprised of 1000 iterations 
each, after discarding an initial 1000 iterations as 
burn-in. Short chains of samples are a hallmark 
of the Stan algorithm, which is extremely effi-
cient. Compared to other samplers, fewer itera-
tions are required to achieve convergence. Each 
chain was initialized with unique parameter val-
ues, and the model was fit in parallel using the 
Utah State University High-Performance 
Computing facility. Model fitting required 5 d on 
a four-node central processing unit with 2× AMD 
Opteron Processor 4386 @3.10  Ghz, 64  GB of 
RAM per node, 16 cores per node, and each chain 
launched in parallel on separate cores. We 
assessed convergence visually and calculated 
scale-reduction factors (Appendix S4; R̂ < 1.1 for 
all parameters) (Gelman and Rubin 1992, Gelman 
and Hill 2009).

Simulating the process
We performed four sets of simulations to (1) 

compare observed and simulated equilibrium 
cover, (2) compare observed and simulated year- 
and location-specific cover, (3) forecast future 
equilibrium population states under projected 
climate change, and (4) make temporally explicit 
forecasts of sagebrush cover starting the final 
year of our observations and ending in year 
2098. Using the posterior distribution of model 
parameters, we simulated a matrix of pixels 
equal to the size of the study area (13,689 pixels 
or matrix elements). For simulations (1) and (3), 
we initialized all pixels with arbitrarily low 
cover (1%) and then projected the model for-
ward by randomly drawing climate covariates 
from the observed climate time series (for 1) or a 
perturbed climate time series (for 3). We ran 
equilibrium simulations (1 and 3) for 2000 time 
steps and then compared the output across sim-
ulations, after discarding an initial 100 time 
steps. To calculate average future equilibrium 
sagebrush cover, we ran simulation (3) for each 
global circulation model (GCM) and representa-
tive concentration pathways (RCP) scenario 

(7)

[�,�,�,σ2
η
|y]∝

( T∏

t=1

n∏

i=1
[yi,t|β0,t,β1,�,�][β0,t|β̄0,σ2β0]

)

×

( M∏

m=1
[αm|σ2η]

)
[β̄0][β1][�][σ

2
β0
][σ2

η
].

(8)yi∼Bernoulli(μi)

(9)logit(μi)=b0
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separately and then averaged the results over 
GCMs. For simulation (2), we initialized each 
pixel with its actual percent cover value for time 
t and cell s and projected the model forward one 
time step and compared the one-step-ahead 
forecast with the observed value. For simulation 
(4), we initialized each pixel with the final 
observed value in 2011 and then projected the 
model forward based on GCM yearly weather 
projections. We ran these simulations for each 
GCM and RCP scenario combination separately 
and then aggregated the results over the GCMs 
by calculating the mean and the 90th percentiles 
for each RCP scenario.

We used the posterior mean of each param-
eter for all simulations except for (4) where we 
ran 50 simulations with unique sets of parame-
ters from the chains. Random year effects were 
included in simulations by randomly drawing 
a posterior mean year effect (β0,t) for each iter-
ation (simulations 1 and 3), using the posterior 
mean year effect for a specific year (simulation 
2), or by a drawing a future-year random effect 
from the posterior mean and standard devia-
tion of the mean intercept (simulation 4, e.g., 
β0,T∼normal(β̄0,σ2β0 ) for some future year T). Our 
simulation approach provides a reasonable and 
computationally efficient approximation to the 
true posterior predictive mean when used in 
these scenarios with our data.

We required future projections of climate for our 
study area to conduct the equilibrium and tem-
porally explicit forecasts described above. Thus, 
we used the most recent climate projections from 
the Intergovernmental Panel on Climate Change 
(IPCC), the Coupled Model Intercomparison Pro
ject 5 (CMIP5; available online: http://cmip-pcmdi.
llnl.gov/cmip5/). The CMIP5 provides projections 
from a suite of GCMs; we used projections from 
18 GCMs (Appendix S1: Table S1) that produced 
weather projections for three RCPs: RCP 4.5, RCP 
6.0, and RCP 8.5 (described online: http://tntcat.
iiasa.ac.at/RcpDb/). The three RCPs correspond 
to stabilization of radiative forcing before 2100, 
after 2100, and ongoing increase in greenhouse 
gas emissions, respectively.

To simulate equilibrium sagebrush cover 
under projected future climate, we applied 
average projected changes in precipitation and 
temperature to the observed climate time series. 

For each GCM and RCP scenario combination, 
we calculated average precipitation and tem-
perature over the 1950–2000 time period and 
the 2050–2098 time period. We then calculated 
the absolute change in temperature between 
the two time periods (ΔT) and the proportional 
change in precipitation between the two time 
periods (ΔP) for each GCM and RCP scenario 
combination. Lastly, we applied ΔT and ΔP 
to the observed 28-year climate time series to 
generate a future climate time series for each 
GCM and RCP scenario combination. These 
generated climate time series were used to simu-
late equilibrium sagebrush cover. We simulated 
equilibrium cover separately for each GCM and 
RCP scenario combination before averaging 
the results, but we show the average projected 
climate changes across all models in Table 1.

For the temporally explicit forecasts, we used 
yearly GCM projections from 2012 to 2098 to sim-
ulate the process starting from the end point of 
the remotely sensed sagebrush cover data (ends 
in 2011). We aggregated daily GCM output for 
each GCM and RCP scenario into the seasonal 
climate covariates used to fit our model. These 
yearly climate time series were not aggregated 
further because we ran simulations for each 
GCM and RCP scenario, rather than one simula-
tion per RCP scenario averaged over GCMs. The 
key assumption of our forecasting approach is 
that the historical correlations between weather 
and sagebrush cover change will continue to 
hold in the future.

All data and code necessary to reproduce our 
results have been archived on Figshare (http://
figshare.com/articles/sageAbundance/3485237) 
and are available as release v1.0 of the “sageAbun-
dance” repository on GitHub (http://github.com/
atredennick/sageAbundance/releases/tag/v1.0).

Table 1. Projected changes in temperature and pre-
cipitation at our study area from CMIP5 average 
GCM projections for 2050–2100 relative to average 
temperature and precipitation from 1950 to 2000.

Emissions 
scenario

Absolute change 
in temperature

Percentage of change  
in precipitation

RCP 4.5 2.98° 8.94
RCP 6.0 3.13° 8.64
RCP 8.5 4.79° 11.0

http://cmip-pcmdi.llnl.gov/cmip5/
http://cmip-pcmdi.llnl.gov/cmip5/
http://tntcat.iiasa.ac.at/RcpDb/
http://tntcat.iiasa.ac.at/RcpDb/
http://figshare.com/articles/sageAbundance/3485237
http://figshare.com/articles/sageAbundance/3485237
http://github.com/atredennick/sageAbundance/releases/tag/v1.0
http://github.com/atredennick/sageAbundance/releases/tag/v1.0
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Results

Averaging across all GCMs, precipitation and 
temperature in our study area are projected to 
increase; the magnitude of increase depends on 
the RCP scenario (Table 1). Trajectories of our cli-
mate covariates from GCM projections show 
similar trends (Fig. 2).

All parameters in our model converged on sta-
ble posterior distributions (Appendix S4). Only the 
lagPpt climate covariate can be considered import-
ant based on a 90% credible interval, and it had a 
positive effect on sagebrush percent cover change 
(Fig. 3). In other words, if the year 2000 water year 
was wetter than average, sagebrush cover would 
increase from the 2001 to the 2002 growing season. 
Other climate effects strongly overlapped zero, 
but their posterior means were positive, except 
for fall-through-spring precipitation the first year 

of a cover transition (t − 1), whose posterior mean 
was negative (Fig. 3). The posterior mean for the 
spatial random effect, η, captured the overall spa-
tial structure of the observed data (Appendix S5: 
Fig. S1). This indicates our choice of knot place-
ment and dimension reduction strategy was ade-
quate for describing permanent spatial variation 
in the data.

When we simulated the pixel-based popu-
lation model based on observed climate, it was 
able to reproduce the spatial pattern of observed 
percent cover, averaged over time (Fig.  4A, B). 
Our model shows a tendency to underpredict 
perennially low-percent cover pixels (Fig.  4C), 
but does a better job at predicting high-cover 
pixels. Point predictions are most confident, 
although slightly biased, in low-percent cover 
pixels (Fig.  4D). The model is also able to ade-
quately reproduce observed dynamics when 

Fig.  2. Global circulation model (GCM) yearly 
weather hindcasts (before solid line at 2011) and 
projections (after solid line at 2011) for precipitation 
(A) and temperature (B) at our study area in 
southwestern Wyoming (see Fig. 1).

Fig.  3. Posterior distributions of climate effects. 
The x-axis is the standardized coefficient value because 
we fit the statistical model for sagebrush cover change 
(Eq.  7) using standardized covariate values. Only 
cumulative precipitation at time t  −  2 (pptLag) is 
important (shown in blue; 90% CI does not overlap 
zero). Climate covariate codes: pptLag  =  water year 
precipitation in year t  −  2; TmeanSpr1  =  year t  −  1 
average spring temperature; ppt2 = year t fall-through-
summer precipitation; TmeanSpr2  =  year t average 
spring temperature; ppt1  =  year t  −  1 fall-through-
summer precipitation.
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we make one-step-ahead predictions based on 
observed climate and cover in the previous year 
for each pixel. When we made these in-sample, 
one-step-ahead forecasts, the model achieved 
an RMSE  =  4.31, in units of percent cover. The 
Pearson correlation coefficient between observa-
tions and predictions was 0.62.

When we apply the fitted model to IPCC cli-
mate change scenarios, the model predicts gains 
in sagebrush percent cover, on average (Figs.  5 
and 6A). The spatial effect remains strong enough 
in low-cover regions to counteract the positive 

Fig. 4. Observed and predicted (A, B) equilibrium 
percent cover of sagebrush, and prediction bias and 
precision (C, D) for the extent of our spatial area at 
30  m resolution. Observed equilibrium sagebrush 
cover (A) is the temporal mean of each pixel from the 
28-year time series. Prediction results are from 
simulations that use posterior mean parameter values. 
Precision in (D) represents the variability of each pixel 
over the course of the 2000 iteration simulation.

Fig.  5. Projected equilibrium cover under three 
Intergovernmental Panel on Climate Change scenarios 
(RCP, representative concentration pathways) for our 
study area in southwestern Wyoming. The top panel 
shows equilibrium cover based on simulations using 
observed climate. Subsequent panels show equilibrium 
cover based on perturbed climate for each RCP 
scenario. Forecasts are based on the projected climate 
changes in Table  1 applied to the observed climate 
time series used to fit the statistical model. We used 
posterior mean parameter estimates for all simulations. 
Color bar indicates percent cover of sagebrush in each 
30 × 30 m pixel.
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effect of projected precipitation increases (Fig. 5). 
Thus, our model predicts an increase in the het-
erogeneity of sagebrush cover because projected 
cover increases are smaller in low-cover pixels 
than in high-cover pixels (Fig.  5; Appendix S6: 
Fig. S1). For the temporally explicit forecasts, we 
show spatially averaged values and the associated 
uncertainty due to variability in GCM projections, 
variability in model parameters, and uncertainty 
in our process model (Fig.  6A). Based on our 
model and GCM projections, we forecast an aver-
age increase in sagebrush cover at our study area, 
but a decrease is not outside the realm of possi-
bility (shaded regions in Fig.  6A). The generally 
increasing trend reflects the positive effect of pre-
cipitation on sagebrush cover change estimated 
for our study area (Fig. 3). We also show how our 
model is capable of near-term forecasts in Fig. 6B.

Discussion

Despite the need to forecast population 
responses to climate change over large spatial 
extents, as demonstrated by the wide application 
of SDMs (e.g., Clark et al. 2014), landscape-scale 
population models for plant species remain more 
concept than reality (Schurr et  al. 2012, Merow 
et al. 2014). We introduced a new approach that 
uses methods from the dynamic spatiotemporal 
modeling literature (e.g., Conn et al. 2015) to fit a 
population model to remotely sensed estimated 
of plant percent cover. As a proof of concept, we 
applied our approach to a remotely sensed data 
product of sagebrush percent cover from 1984 to 
2011 in Wyoming (Homer et  al. 2012). We first 
discuss our results specific to sagebrush ecology 
and response to climate and then discuss the 
more general implications and limitations of our 
proposed approach.

Sagebrush response to climate and climate change
The climate effects we estimated, based on 

cover data at 30 m spatial resolution, are consis-
tent with individual-level responses of sagebrush 
to climate-related variables. Research on individ-
ual plants has shown that wetter winters are cor-
related with greater stem growth in sagebrush 
(Poore et  al. 2009, Apodaca 2013) and that 

Fig.  6. Observed (black line before 2011) and 
forecasted (colored lines after 2011) sagebrush 
percent cover. Long-term forecasts (A) were made for 
three Intergovernmental Panel on Climate Change 
emissions scenarios (RCPs 4.5, 6.0, and 8.5) and are 
for the period of 2012 to 2098. Shaded regions show 
limits of the 5th and 95th quantiles for simulations 
conducted using 50 different sets of parameters from 
the MCMC output. Lines show mean trajectories. 
Uncertainty in forecasts arises from uncertainty 
in  global circulation model (GCM) projections, 
uncertainty around the ecological process, and 
uncertainty around parameter estimates. Before 
calculating the mean and quantiles for each year 
across parameter sets and GCMs, we averaged 
percent cover over the 13,689 pixels. Panel (B) shows 
an example short-term forecast (10  yr) using the 
MIROC5 GCM projections under RCP 8.5. Each line 
shows a forecast from one parameter set.
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warmer spring temperatures may enhance sage-
brush growth in cold climates by advancing the 
date of snowmelt and increasing the length of the 
growing season (Perfors et al. 2003, Harte et al. 
2015). In agreement with those individual-level 
responses, posterior means for all precipitation 
and temperature effects in our model were posi-
tive, except for the effect of fall-through-spring 
precipitation in the first year of a cover transition 
(ppt1; Fig. 3). The cumulative amount of precipi-
tation the year before a cover transition (pptLag 
in our model) emerged as the strongest predictor 
of sagebrush cover change (Fig.  3). However, 
mean estimates for the climate effects are rela-
tively weak (Fig. 3).

Such small effects could indicate that sagebrush 
are not very sensitive to interannual climate vari-
ability, that our model is poorly specified, or that 
climate responses are difficult to detect using 
coarse-scale data. Given findings from previous 
research demonstrating the importance of pre-
cipitation and temperature to sagebrush growth 
(Pechanec et  al. 1937, Schlaepfer et  al. 2011, 
Germino and Reinhardt 2014) and regeneration 
(Schlaepfer et al. 2014b), it is unlikely that sage-
brush are insensitive to climate. We used aggre-
gated climate covariates that may not completely 
capture the climate dependence of sagebrush 
cover change. However, the covariates we chose 
closely match the climate-related variables that 
have been shown to drive sagebrush growth, 
survival, and regeneration (e.g., Dalgleish et al. 
2011, Schlaepfer et al. 2014b). More likely, aggre-
gated estimates of plant abundance, such as per-
cent cover, mask interannual variability at the 
level of the individual plant and make it more 
difficult to detect the drivers of interannual 
variability. Additionally, we chose not to down-
scale the Daymet weather data, meaning that in 
a given year all pixels shared the same climate, 
which limits our statistical power. Nonetheless, 
our model was capable of detecting climate 
effects that agree with our knowledge of sage-
brush ecology and allowed us to make forecasts 
of future sagebrush abundance.

Under projected climate, we forecast modest 
increases in sagebrush cover for all RCP scenar-
ios in the long term (Figs. 5 and 6A). Our forecasts 
reflect both the estimated effect size for each cli-
mate covariate and the amount of change in those 
covariates projected by the GCMs. Cumulative 

precipitation the year before a given year-to-year 
transition was the strongest standardized effect 
(Fig. 3), but precipitation is projected to increase 
only moderately (Table  1, Fig.  2) and the nega-
tive effect of fall-through-spring precipitation in 
the first year of a cover transition (ppt1) had an 
offsetting effect. In contrast, mean spring tem-
perature had a weak positive effect on sagebrush 
cover changes, but the projected temperature 
increase is large (Table 1, Fig. 2).

An interesting consequence of explicitly model-
ing the effect of space (through η) is the forecasted 
increase in spatial heterogeneity (Appendix S6: 
Fig. S1). Our model projects little change in low-
cover pixels but substantial increases in the cover 
of high-cover pixels (Fig. 5). Had we not explicitly 
accounted for spatial dependence in our model, 
we would have missed this result. We were 
unable to attribute the spatial structure apparent 
in the data (Fig.  4A) and approximated by our 
model (η; Appendix S5: Fig. S1) to slope, aspect, 
elevation, or coarse soil type (results not shown). 
The lack of correlation between η and landscape 
factors leads us to conclude that the spatial struc-
ture in our data set emerges from some combi-
nation of fine-scale microhabitat associations and 
legacy effects of disturbance.

While we forecast an increase in sagebrush 
cover at our study area, SDM studies typically 
project dramatic declines in climate suitability 
for sagebrush with warming (Shafer et al. 2001, 
Neilson et al. 2005, Bradley 2010, Schlaepfer et al. 
2012, Still and Richardson 2015). There are many 
potential explanations for this apparent contrast, 
ranging from the type of model used to the par-
ticular climate covariates considered, but the 
location of our study area in a cold portion of 
sagebrush’s geographic distribution may be the 
best. The response of plant species to weather 
varies along climatic gradients (e.g., Clark et al. 
2011, Vanderwel et al. 2013), and sagebrush are 
especially sensitive to the timing of snowmelt 
because their growth depends on recharge of 
deep soil water (Schlaepfer et  al. 2012, 2014a). 
In warmer parts of the sagebrush range, earlier 
snowmelt is detrimental to growth and sur-
vival (Pechanec et al. 1937, Schlaepfer et al. 2011, 
Germino and Reinhardt 2014). In colder regions, 
earlier snowmelt due to temperature increases 
can lengthen the growing season and increase 
sagebrush occurrence and cover (Schlaepfer 
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et al. 2012, 2014a). The average annual tempera-
ture across the sagebrush steppe biome is 6.9°C 
(SD = 1.6; Schlaepfer et al. 2011), whereas average 
temperature at our study area from 1980 to 2013 
was 4.6°C (calculated from Daymet estimates). 
Our study area lies at the cold extreme of the sage-
brush range; thus, the weak positive response to 
temperature that we estimated (Fig. 3) and car-
ried through to our forecasts (Figs.  5 and 6A) 
likely represents the positive effect of earlier 
snowmelt, and thus higher moisture availability 
early in the growing season.

A previous analysis of a different subset of the 
remote sensing data set we used also came to a 
different conclusion, projecting future sagebrush 
decline (Homer et  al. 2015). The discrepancy 
between the results of Homer et  al. (2015) and 
ours primarily reflects a difference in the climate 
projections used for projecting future changes 
rather than differences in our inference about 
responses to historical variation in weather. 
Homer et  al. (2015) used downscaled weather 
projections from a single model from the IPCC 
4, whereas we used native-resolution weather 
projections from a suite of models from the IPCC 
5. Consistent with our study, Homer et al. (2015) 
found a generally positive relationship between 
pixel-level sagebrush cover and precipitation, but 
the future climate scenario they chose resulted 
in a mean decrease in precipitation, causing a 
predicted decline in sagebrush cover. A second 
difference is that Homer et  al. (2015) relied on 
regressions of decadal trends in sagebrush cover 
against decadal trends in climate at the level of 
individual pixels. Our current approach is funda-
mentally different in that we specifically model 
the impact of interannual variation in weather on 
year-to-year changes in sagebrush cover using 
a dynamic population model. Thus, our model 
takes advantage of the additional information 
contained within short-term responses to cli-
mate fluctuations. Lastly, the location of Homer 
et al.’s (2015) study area is, on average, at a lower 
elevation than our current study area. The geo-
graphic difference results in different historical 
and projected climate, and, as discussed above, 
sagebrush may respond differently to warming 
depending on geographic location.

We projected sagebrush cover to the end of 
this century, but an important feature of our 
approach is that it can also produce short-term 

forecasts (Fig.  6B). For example, we could fore-
cast the effects of a multiyear regional drought on 
sagebrush cover (Debinski et al. 2010). Validating 
spatial population models against short-term 
predictions would give ecological forecasters a 
way to assess and improve the performance of 
their models, which would greatly increase our 
confidence in long-term forecasts. This cycle of 
prediction, validation, and refinement is missing 
from most currently available population-level 
forecasts of the effects of climate change.

A landscape-scale plant population modeling 
approach: opportunities and limitations

Our approach for modeling plant populations 
overcomes two major hurdles for spatially 
explicit population models. First, we used 
moderate-resolution, remotely sensed estimates 
of sagebrush percent cover as a response vari-
able, enabling us to fit a dynamic population 
model over a large spatial extent. Species-
specific estimates of plant abundance are 
becoming commonplace as remote sensing tech-
nology develops (e.g., Baldeck and Asner 2014, 
Colgan and Asner 2014), and in a few years, sev-
eral remotely sensed time series may be avail-
able. Second, borrowing from new methods in 
spatiotemporal modeling of animal abundance 
(e.g., Conn et al. 2015), we fit the model using a 
dimension reduction strategy that accounted 
for  spatial autocorrelation within a feasible 
computational time. Accounting for spatial 
autocorrelation allows for statistically rigorous 
inference on the effects of interannual climate 
on sagebrush cover change in our study region. 
The spatial covariance structure also provided a 
way to obtain spatially explicit predictions at a 
resolution below that of the climate covariates 
(i.e., within the study region; Figs. 4 and 5). Our 
approach is amenable to any spatially explicit 
time series of plant abundance, but we see 
remote sensing data sets offering the largest 
opportunity for landscape-scale population 
models. Furthermore, it would be straightfor-
ward to include additional covariates related to 
disturbance (e.g., fire) or biotic interactions. 
Thus, we see our method as a first step toward 
coupling the mechanistic power of dynamic 
population models with the spatial extent of 
SDMs. The spatially and temporally explicit 
forecasts made possible by our approach should 
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be especially relevant to land management deci-
sions based on near-term forecasts.

Several a priori modeling decisions determined 
the spatial extent and resolution of our results. We 
retained the native spatial resolution of the remote 
sensing data (30  ×  30  m). This constrained the 
extent that we could reasonably model because 
of the computational challenges in estimating 
spatial random effects. Even with our dimension 
reduction technique, modeling a larger area at 
this resolution would require a greater number 
of spatial knots, and computation time would 
increase substantially (Wikle 2010). To model a 
larger spatial extent, we could aggregate the orig-
inal remote sensing time series data to a coarser 
spatial resolution. This would allow us to model a 
much greater spatial extent with a similar number 
of knots and a similar computation time. While a 
coarser scale model would lose some fine-scale 
detail, it could be applied to a much larger area, 
potentially gaining some strength in estimating 
climate effects by spanning a greater range of 
climate variation. However, gains made by incor-
porating greater regional variability by modeling 
at a coarser resolution could be offset by the loss 
of information inherent when aggregating plant 
responses into larger pixels.

Our spatial extent and resolution also affected 
our use of climate covariates. We did not down-
scale Daymet data to match the spatial resolution 
of the sagebrush data, meaning that in each year 
all pixels share the same climate covariates. This 
is a potential limitation of our study, and could 
explain the weak effect of climate covariates that 
we observed (Fig. 3). We also did not allow differ-
ent portions of our study area to respond to cli-
mate in different ways. Doing so would require 
spatially varying climate effects and a substan-
tial increase in computational time. However, in 
future applications, it will be important to allow 
climate effects to vary over space to better cap-
ture reality. Conn et al. (2015) provide examples 
of how such spatiotemporal interactions can be 
included in abundance models. We might expect 
climate effects to interact with spatial covari-
ates such as soil type, slope, and aspect. In our 
relatively small study area, we did not observe 
important effects of these factors, but it is possi-
ble to include such abiotic data layers as predic-
tors when fitting models at larger spatial extents 
where variability may be greater.

The uncertainty associated with our forecasts 
highlights several opportunities to improve our 
approach. First, parameter uncertainty could be 
reduced by regulating the variance of the poste-
rior distributions of climate covariates via ridge 
regression (e.g., Gerber et  al. 2015). Second, 
uncertainty associated with climate projec-
tions could be reduced by identifying GCMs 
that perform exceptionally well for a particu-
lar study location (e.g., Rupp et al. 2013). Such 
considerations will be important when fore-
casting in support of particular management 
objectives. However, knowledge of uncertainty 
is itself important knowledge for management 
(Bradshaw and Borchers 2000). Deciding that 
no actions should be taken based on the data at 
hand is itself a management decision.

Conclusion

We introduced a new approach to fitting and 
simulating population models at large spatial 
extents with plant population data derived from 
state-of-the-art remote sensing. We used the 
model to forecast future abundances of sage-
brush in Wyoming and found that at our rela-
tively cold site sagebrush should be expected to 
increase in cover. As more species-level remote 
sensing data sets become available and comput-
ing power increases, this approach will be appli-
cable to a wider number of species and even 
larger spatial extents. Future modeling could 
include the effects of nonclimate drivers—
including the effects of species interactions and 
disturbance. For sagebrush, including fire and 
competition with nonnative annual grasses in the 
model may be especially important for a  com-
plete assessment of the effects of climate change 
(Bradford and Lauenroth 2006). Fortunately, our 
spatiotemporal modeling framework could eas-
ily be extended to model additional species and 
dynamic processes as the data become available. 
The approach we have developed here fills an 
important gap in spatial scales between SDMs 
and local-scale demographic population models.
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