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Bayesian sediment transport model for unisize bed load
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[11 Fluvial sediment transport studies have long underscored the difficulty in reliably
estimating transport model parameters, collecting accurate observations, and making
predictions because of measurement error, natural variability, and conceptual model
uncertainty. Thus, there is a need to identify modeling frameworks that accommodate these
realities while incorporating functional relationships, providing probability-based
predictions, and accommodating for conceptual model discrimination. Bayesian statistical
approaches have been widely used in a number of disciplines to accomplish just this, yet
applications in sediment transport are few. In this paper we propose and demonstrate a
Bayesian statistical approach to a simple sediment transport problem as a means to
overcome some of these challenges. This approach provides a means to rigorously estimate
model parameter distributions, such as critical shear, given observations of sediment
transport; provides probabilistically based predictions that are robust and easily
interpretable ; facilitates conceptual model discrimination; and incorporates expert
judgment into model inference and predictions. We demonstrate a simple unisize sediment
transport model and test it against simulated observations for which the “true” model
parameters are known. Experimental flume observations were also used to assess the
proposed model’s robustness. Results indicate that such a modeling approach is valid and
presents an opportunity for more complex models to be built in the Bayesian framework.
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1. Introduction

[2] Among the challenges communicated in the literature
regarding sediment transport, dealing with uncertainty is a
recurring theme. The scope of this uncertainty encompasses
many aspects, including our ability to make accurate meas-
urements [Bunte and Abt, 2001], the effect of natural varia-
tion or stochasticity on the process [Singh, 2009], and our
ability to distill the true underlying relationship that governs
the complex phenomenon into a conceptual model [ Gomez
and Church, 1989]. Because of these uncertainties, there is a
need to identify a framework in which sediment transport
models can accommodate notions of uncertainty, variability,
and error.

[3] Inrecent years, Bayesian statistical models have been
employed to address these challenges in a wide variety of
disciplines. Researchers in ecology, hydrology, and atmos-
pheric and environmental science have increasingly used
the Bayesian framework to model complex phenomena, for
example, distributed rainfall-runoff models, species inva-
sion dynamics, and uncertainty estimation in climate mod-
els [Cressie et al., 2009; Hooten and Wikle, 2007 ; Renard
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et al., 2010; Smith et al., 2009; Wikle and Hooten, 2010;
Vrugt et al., 2008]. Despite the mature models described in
the hydrology and other literature, Bayesian methods have
not been widely applied to sediment transport problems.
This modeling framework was first mentioned by Griffiths
[1982] in the context of geomorphology and has since been
employed by only a few, including Fox and Papanicolaou
[2008], Kanso et al. [2005], and Wu and Chen [2009]. Wu
and Chen [2009] also recognized the limited use of Bayes-
ian methods for sediment transport problems and supposed
that that this may be due to a lack of demonstration to the
sediment transport community.

1.1.

[4] For proper context, it is helpful to draw a distinction
between purely deterministic and traditional and Bayesian
statistical methods. Purely deterministic methods (in the
sense of Laplacian determinism [Laplace, 1825]) assume
that any functional or physically based relationship used in
an analysis is completely representative of the system and
that any associated parameter values are fixed and known.
Regarding our ability to discern this true underlying pro-
cess, G. Box stated that “all models are wrong, but some
are useful.” [Box and Draper, 1987, p. 424]. Modern statis-
tical methods (traditional and Bayesian alike) recognize this
and provide means to make predictions and inference using
noisy observations and imprecise conceptual models.

[s] Bayesian models, like traditional methods such as
maximum likelihood and regression techniques, are robust
statistical methods that provide a means for parameter in-
ference and prediction. When employed in very simple
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scenarios, such as the current sediment transport model,
both approaches are likely to yield convergent solutions
(M. L. Schmelter and D. K. Stevens, Traditional and
Bayesian statistical models in fluvial sediment transport,
submitted to Journal of Hydraulic Engineering, 2011). As
deterministic models become more involved (e.g., the num-
ber of latent parameters increases and/or nested functions
are employed), Bayesian models constructed hierarchically
provide elegant and robust solutions, as evidenced by the
number of applications in the hydrology literature in recent
years. In this paper we provide a simple example of how
the Bayesian framework can be employed in sediment
transport and discuss several of the motivating factors for
why they should be employed. Our thesis is that the sim-
plicity of the proposed model will provide a demonstrated
foundation upon which future sediment transport models
that incorporate increased complexity may be built.

1.2. Challenges in Sediment Transport

[6] Sediment transport is faced with many of the same
challenges faced by the hydrology community, which has
enjoyed wide use of Bayesian methods. Below, we outline a
few of these challenges as they relate to the field of sediment
transport that can be addressed through Bayesian methods.

[7]1 Like other disciplines, sediment transport modeling
involves the estimation of model parameters. For instance,
many transport models require the specification of the criti-
cal Shields number, a quantity that cannot be directly meas-
ured [Wilcock, 1988]. Deterministic approaches to modeling
transport entails the point estimation of model parameters.
Mueller et al. [2005], however, noted that uncertainties in
specifying a single critical shear can lead to large errors
since the process is nonlinear. This estimate can be made
using statistical methods, but it is not uncommon to adjust it
by eye [Erwin et al., 2011; Gaeuman et al., 2009 ; Wilcock
et al., 2003; Mueller et al., 2005; Wilcock et al., 2009;
Wilcock, 1988] because of some nonlinear regression techni-
ques giving too much weight to observations far from
critical (see Wilcock [1988] for a discussion on this). Addi-
tionally, Buffington and Montgomery [1997] compiled data
from eight decades of incipient motion studies and created
lists of reported critical shear values. They noted that the
early researchers in the field [Shields, 1936; Einstein, 1950;
Grass, 1970; Gessler, 1971; Paintal, 1971] acknowledged
that the threshold at which sediments move is “inherently a
statistical problem” and asserted that a frequency distribu-
tion of critical shear values for any given grain size is more
appropriate than any single value (the physical basis for
which is described by Johnston et al. [1998] and Buffington
et al. [1992)). Lavelle and Mofjeld [1987] questioned the
idea of whether or not a single threshold exists at all and
stated that stochastic aspects of transport lead us to reason
that the critical shear concept will not be sharply defined and
that it is most appropriately described using statistical distri-
butions. Critical shear will not be sharply defined in applied
settings because of constantly changing hydraulic condi-
tions, including changing bed topography, turbulence, vary-
ing supplies of bed material from upstream processes, and
irreducible noise brought about by stochasticity [Bunte and
Abt, 2005; Diplas et al., 2008; Gomez and Phillips, 1999;
Grass, 1970; Kirchner et al., 1990; Knighton, 1998 ; Hicks
and Gomez, 2005; McLean et al., 1999].
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[8] Making observations of transport events is also prob-
lematic. In addition to the expense and difficulty in making
sediment transport observations, measurements of sediment
transport are prone to substantial uncertainty [Gaeuman
et al., 2009; Wilcock, 2001]. Variation is inevitably caused
by sampling error as well as natural stochasticity. Variabil-
ity, distinct from uncertainty, is an intrinsically important
characteristic of natural systems and should be considered
when modeling these systems [Clement and Piegay,
2005].

[9] Recent work in hydrology underscores the difficulty
of characterizing structural uncertainty [ Renard et al., 2010],
which is uncertainty due to model lack of fit, and the same
holds for sediment transport. Numerous bed load sediment
transport relations have been suggested [see, e.g., Garcia,
2008; Gomez and Church, 1989]; thus, there is a need to
select one relationship over another, and therefore, some
degree of uncertainty and judgment is associated with this
selection.

[10] Last, sediment transport is known to be variable
even under steady state conditions [Knighton, 1998 ; Hicks
and Gomez, 2005 ; Turowski, 2010], and predictions that are
based on a purely deterministic framework do not necessar-
ily account for this variability. In this case, predictive distri-
butions with quantifiable probabilities are more appropriate
than a single line fitted through a spread of observations.

2. Purpose and Objectives

[11] The goal of this research is to incorporate and
address many of the elements introduced in section 1 and
develop them into a fluvial sediment transport model as a
demonstration of the Bayesian statistical method applied to
sediment transport problems, which can then be used as a
foundation on which to build more complex models. In par-
ticular, our objectives are described below.

[12] 1. The first objective is to demonstrate the develop-
ment and implementation of a Bayesian sediment transport
model that when given transport observations, makes it pos-
sible (1) to estimate a credible interval (the Bayesian analog
to confidence intervals, which is interpreted as the probability
the realized parameter value is found in the specified inter-
val) for the critical shear parameter 7, (2) to estimate a credi-
ble interval for the variance parameter o, a measure of
model misspecification, measurement error, and random vari-
ation, (3) to provide sediment transport predictions delineated
in credible intervals, (4) to compare different process models
for fit via quantitative metrics, and (5) to easily extend or
generalize to accommodate more complex descriptions.

[13] 2. Our second objective is to perform simulation
studies to evaluate the proposed framework, specifically,
(1) simulate synthetic data according to established trans-
port relationships with multiplicative noise according to o2,
(2) validate the model (verify that the model can recover
the parameters that were specified when the synthetic data
were generated), and (3) explore the effect of various speci-
fications for prior information on model inference.

[14] 3. The last objective is to evaluate the model using
observed transport data from flume studies with unisize
sediment: (1) estimate model parameters 7. and o, (2) eval-
uate different process models, and (3) provide a sediment
rating curve in terms of credible intervals.
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3. Formulation of the Bayesian Model

[15] Though Bayesian methods have appeared in the
broader literature, we take a pedagogical approach here
with a specific focus on sediment transport. To clearly
explain and illustrate how such a model is developed and
implemented, we have divided section 3 into the following
subtopics: (1) governing sediment transport relations, which
describe the mathematical formulations we used to model
sediment transport from a physical and deterministic refer-
ence, (2) the specification of the Bayesian model, with con-
siderations to basic Bayesian modeling concepts as well as
likelihood and prior distribution selection, (3) data simula-
tion, which discloses the process for creating synthetic data
from the governing sediment transport relations and known
parameters, (4) computational methods, which provide a
means to integrate the multidimensional relationships that
naturally result from a Bayesian model, and (5) last, a
means for model evaluation whereby the predictive capabil-
ities of the sediment transport model can be assessed. These
subtopics will be described in what follows.

3.1.

[16] We emphasize at this point that the present research
is not about modeling the fine-resolution physics of sedi-
ment entrainment; rather, it is about larger-scale bulk trans-
port. While there are several options for the physical
description of sediment transport, this paper uses an excess
shear model because of its wide recognition in the literature.

[17] The basic principle of an excess shear model is
that the amount of sediment transport is related, nonli-
nearly, to the difference between the force induced on the
grains due to the overlying movement of water and the
amount of force required to move sediment of an arbitrary
size [e.g., Wilcock et al., 2009]. Mathematically, this rela-
tionship is

Governing Sediment Transport Relations

¢ =a(r" -7, (1)
where ¢* is the Einstein transport parameter, 7" is the
Shields number, and 7 is the critical Shields number. The
parameters a and b are empirical coefficients and can take
on a range of values, reflecting the numerous different pro-
posed transport relations. While the individual components
of (1) are entirely nondimensional, these parameters can be
expressed in dimensional terms:

¢ =t @

NCEa

where ¢, is unit sediment discharge in m? s~ ', s is specific
gravity of the sediments, g is acceleration due to gravity in
m s~ 2, and D is particle diameter in m. The Shields number
7* (as described above) is represented by

1

= (s —1)pgD’ ®)

where 7 is the grain shear stress in Pa, and p is the fluid
density in kg m . The critical Shields number quantifies
how much shear is required to move an arbitrary particle
and is defined as

TC

ST o
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where 7, is the critical shear stress in Pa. One method to
estimate shear stress experienced by the grains 7 is pre-
sented by Wilcock [2001]:

7 = 0.052p(gSDgs )" *u', (5)

where p and g are in SI units, as noted above, u is the mean
flow (depth-averaged) velocity in m s™', S is the surface
slope, and Dg;s is the 65th percentile grain size in m. Since
the model proposed here is for a bed of unisize grains, Dgs
simply reduces to D. With the components of (1) defined, a
fully dimensional relationship can be derived in which g,
can be isolated:

b
0.052(gSD) %y e ©)
(s —1)gD pgD)

There exist several variations on the excess shear transport
model presented in (1) that were explored in this research.
While incorporating any number of them would be straight-
forward, we limit the number of models discussed in this
paper to two for pedagogical reasons. These process mod-
els are given in (7) and (8) and are from Meyer-Peter and
Miiller [1948] and Wong and Parker [2006], respectively:

¢ =8(r -7 ()

q =493 —7)'°. (8)

3.2. Specification of Bayesian Transport Model

3.2.1. Bayesian Model Fundamentals
[18] Bayesian modeling is derived from Bayes’ theorem,
which in a statistical context can be written as

[z16][6)

= Teaa

©)

where the square brackets are a conventional Bayesian
notation denoting a probability distribution and the denom-
inator is an unknown normalizing constant. The model in
(9) is conventionally expressed as a proportionality, [f|z]
[z]0]]6], since the computational methods employed in this
paper are able to resolve the underlying posterior distribu-
tion without knowing the normalizing constant.

[19] Were we to observe or collect data on the process z,
the model in (9) tells us that it would be controlled by some
underlying parameter 6. The posterior distribution [6]z]
describes the distribution of values that 6 can assume, given
the observations of z. It is the posterior distribution that
allows us to make inference on the model parameters and
thereby establish credible intervals of values for 6. The
right-hand side of (9) is composed of two parts: the likeli-
hood and the prior. The likelihood [z|0] (i.e., the data
model) describes the distribution of the observations, given
6. The likelihood should describe the structure of the pro-
cess z, given the fact that it is controlled by a parameter 6.
Last, the prior distribution [0] encompasses what is known
about 0 before considering the new observations: it can be
the summary of all previous research in the literature on 6,
or it can simply limit possible ranges of values for 6.
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[20] This basic example can be extended to include a
vector or parameters 0, such that

(0z] o< [z[6][6], (10)
provided that either an appropriate multivariate prior or
individual prior distributions are specified for each element
in 0.
3.2.2. Bayesian Transport Model

[21] A Bayesian model for sediment transport can be
written as

[ch Uz‘log(qs,o)} X (ﬁ [log(qui)|7-cv Uﬂ) [701[02}7 (1 1)
——— il —

Posterior Priors

Likelihood

where g, = (gs04, - - - 7qm’,,)'. The model specified in
(11) makes inference on multiple parameters, 7. and o2,
given a set of observations ¢, of sediment transport. The
product of the i likelihoods represents the joint distribution
of sediment transport observations. Also, the construction
of the model above assumes independence between 7. and
o2, thereby allowing us to take the product of the two distri-
butions as their joint prior density (i.e., [7., 0?] = [7][0?]).
If the parameters cannot be assumed to be independent,
the priors may be specified by [r.,0?] = [r:|0?][0?] or
some other conditional decomposition where the final prior
takes the form of a Jeffreys [Jeffreys, 1946] or some other
default prior.

[22] While it is theoretically possible to analytically
determine the form of the posterior distributions of Bayes-
ian models, this determination is impractical in all but the
most simple model formulations (see Griffiths [1982] for
geomorphic examples of analytically tractable models). In
the case of this model, an analytical derivation of the joint
posterior distribution was not attempted because of inherent
nonlinearities, and the posterior distribution was determined
using the sampling methods explained in section 4.

3.2.3. Likelihood

[23] Irrespective of whether one chooses to derive the
posterior analytically or not, the likelihood and prior distri-
butions must be specified a priori. The likelihood in this
model is specified as a function of the governing equations,
including the parameter 7., and additive noise (controlled by
0?) in log space. Specifically, the likelihood is denoted as

IOg(quoti”Tw 0'2 ~ N(IOg(qA\*,i% 0'2)7 (12)
where each observation log(g,, ) has a mean value defined
by the log() of (6) and variance o2. The selection of a nor-
mal likelihood is ideal from a computational standpoint
because it allows the use of an efficient Gibbs sampler
explained in section 4.2. The log() in the likelihood is a
modeling assumption in which the error structure is
assumed to be additive in log space and is not related to the
log likelihood commonly encountered in maximum likeli-
hood techniques.

[24] The model in (12) implies that the sediment trans-
port process generally follows the governing relationship
specified in (6), but with some variability. In this case, the
variance combines natural variation of the process, mea-
surement error, and model misspecification into one term
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but makes it possible to separate out the variability in sedi-
ment transport due to 7. being a random variable as opposed
to a fixed value. Further separation of variance can be
achieved through hierarchical models [ Cressie et al., 2009].
3.2.4. Priors

[25] The prior distributions for 7. and ¢ must accommo-
date the physical realities of the parameters they represent.
For instance, o> must have positive real support (negative val-
ues of variance are not reasonable); thus, an inverse gamma
(IG) distribution would be an appropriate selection as a prior
(ie., 0* ~ IG(r, q)), where the inverse gamma density is

_ b o 1
" T (q) (%) P\ T2 )

where r and ¢ are hyperpriors related to the mean and var-
iance of an inverse gamma distribution such that » > 2,
q > 2,and

P(a’|r,q)

(13)

E[o*] =

Il "

1

21 _
V= ey

(15)

Given a prior mean 2 and variance 0(272 for the prior distri-
bution of o2 in (11), the corresponding values for » and ¢
can be determined by

o

r=—=5"—>— (16)
Ho? (Miz + UiZ)
1

Ha2T

q +1. (17)

[26] The prior distribution for 7., like that of o2, also has
physical constraints that need to be captured in the specifica-
tion. First, 7. must be positive, and second, if observations
of sediment transport are made, then 7. (a measure of the
critical shear stress averaged over the instantaneous Reyn-
olds stresses) is necessarily less than the minimum shear at
which transport was observed. Intuitively, the lowest flow at
which sediments are moving obviously induces grain shear
greater than critical; otherwise, the grains would not move.
This is an advantage of the Bayesian approach over nonlin-
ear regression. Constrained optimization of the least squares
functions for traditional approaches, though straightforward
in principle, is often difficult in practice. The Bayesian
approach seamlessly incorporates any constraint within the
context of the prior. Given these constraints, a truncated nor-
mal (TN) distribution was selected for the prior on 7, (i.e.,

7o ~ TN(fr,, JTC)I&’). The density of the truncated normal is

P(TC‘/’LTN 0'7—[721, l;) =

where p, and o, are location and shape parameters, a is
the lower bound, b is the upper bound, and ¢() and ®() are
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the probability density function and cumulative density
function of the standard normal distribution, respectively.

4. Computational Methods

[27] As mentioned, an analytic solution for the posterior
shown in (11) is impractical because the truncated normal
prior for 7. will not result in a conjugate (analytically trac-
table) joint posterior distribution. Therefore, a computa-
tional method must be employed that makes it possible to
obtain samples from the posterior distribution. In this
research, Markov chain Monte Carlo (MCMC) was used to
obtain these samples and approximate the posterior distri-
bution of interest.

4.1. Markov Chain Monte Carlo

[28] The purpose of MCMC for model fitting is to con-
struct a Markov chain that has a stationary and ergodic dis-
tribution that coincides with the posterior distribution.
After a number of iterations, the Markov chain will con-
verge to the target distribution. Once a chain has converged
to the target distribution, subsequent realizations from the
chain coincide with the target distribution, and thus sam-
ples can be collected to approximate posterior quantities.
Two different approaches to sampling from the posterior
are used: Metropolis-Hastings (M-H) and Gibbs sampling.
Because a complete description of these methods is beyond
the scope of this paper, only the practical considerations
relating to these methods are presented. Casella and
George [1992] and Chib and Greenberg [1995] provide
helpful starting points for more detailed descriptions of
these algorithms. With reference to the latter condition of
convergence, methods for assessing convergence are dis-
cussed by Gelman et al. [2004] and Robert [2007].

4.2. Sampling Algorithm for Transport Model

[29] In order to fit the model presented in (11), an MCMC
algorithm using a Gibbs sampler [Casella and George,
1992] for the parameter o and an M-H sampler [Chib and
Greenberg, 1995; Hastings, 1970; Metropolis et al., 1953]
for the parameter 7. were implemented.

[30] Because the inverse gamma prior for o2 is conjugate
with the normal likelihood, the full conditional distribution
for 0% can be determined as follows:

1 [T oio?)

X H::l N(qsio.iv UZ)IG(r7 ‘I)

n 1 1 (qs,o,i - qsii)z
=1L (WeXp{ PR

(0_2)*(q+1) o 11
riT(q) L
n 2
o (UZ)—(n/2+q+l)eXp [_ Lz (M + l)} ,
o 2 r

(19)

iqsﬁoJiTm

with the bottom proportionality in (19) having the form of
an inverse gamma kernel (compare to (13)); therefore, the
full conditional distribution for o2 in the MCMC algorithm
is [0?|-] = IG(7,§). The updated parameters are then
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S Py
~ i=1 q_v,n,i — s
= (&= ol Z 45D 4 - 20
g < 2 * r) ( )
== 21
q=3 "ty (21)

where r and ¢ are the hyperpriors from (16) and (17).

[31] Because of the inability to analytically determine
the full conditional for 7., the M-H algorithm was adopted
for the critical shear step in the MCMC sampling proce-
dure. This algorithm requires a set of observations 950 the
parameters for our prior distributions, u,. and 002 (and
their corresponding r and ¢ parametenzations from (16)
and (17)) for the variance parameter, and p.,, o>, a, and b
for the critical shear parameter. The MCMC algorithm is
provided in Appendix A.

5. Model Evaluation

[32] The goals of model evaluation were to determine
the ability of the Bayesian transport model (1) to make cor-
rect inference on the parameters 7. and o (parameter iden-
tifiability), (2) to discriminate between competing process
models, and (3) to provide reasonable transport predictions.
To test this, several strategies were employed. The first was
to use synthetic observations whose true underlying param-
eter values were known. This makes it possible to compare
the inferred parameters to the true, known parameters of
the synthetic observations. Next, we used transport obser-
vations for unisize sediment in a laboratory flume. Unlike
the synthetic observations, the underlying parameter values
and process model are unknown. Using the laboratory
observations, predictive distributions were calculated and
compared to the observed transport events. To help dis-
criminate between competing models, we calculated the
deviance information criterion (DIC), which is a measure
of model fit to parsimony. Last, we evaluated the model’s
sensitivity to different prior specifications.

5.1.

[33] The model described in (11) requires the specifica-
tion of prior distributions for 7. and o2, which are truncated
normal and inverse gamma, respectively. The truncated
normal distribution is very flexible and can take on numer-
ous different shapes, resulting from the specification of dif-
ferent prior parameter values. The truncated normal

Sensitivity to Prior Specification

distribution is specified as 7. ~ TN(r, ,O’T() The hyperp-

riors, pr., 07, b, and a control the shape of the probability
density function. The goal of a sensitivity study is to try
different parameterizations of 7. and assess how they influ-
ence posterior inference.

[34] The same argument applies for the prior of o2,
though the inverse gamma distribution is not nearly as flex-
ible in terms of the types of shapes it can assume. The prior
for o? is specified as o® ~ IG(r,q), although, instead of
specifying r and ¢ directly, we will specify hyperpriors 2
and o2 -, for the mean and variance. These hyperpriors are
then used to calculate r and q through (16) and (17).

5.2. Posterior Prediction

[35] Checking the posterior predictive distribution (PPD)
makes it possible to evaluate how well model predictions
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fit the observations. Formally, the posterior predictive dis-
tribution is defined as the posterior distribution integrated
over the parameters [Gelman et al., 2004]. In our multi-
parameter sediment transport model, the posterior predic-
tive distribution [log(qs,)[log(qs,)], where g, is a vector
of unobserved events, is found by

/ / llog (@ o) log(s ), 7 |7, o%llog(a o) Jdrede®.  (22)

The PPD can be used to either make predictions of sedi-
ment transport for future observables or to evaluate how
well the model fits the actual process observations. The cal-
culation of (22) is done through composition sampling
[Tanner, 1996]. Using the PPD, we can make predictions
under the same conditions as our observations and compare
the predictions to the observations.

5.3. Model Discrimination

[36] Because of the large number of prospective trans-
port models, there exists uncertainty as to which model will
result in the best fit. The deviance information criterion
was described by Spiegelhalter et al. [1998] and provides a
metric by which model fits and parsimony can be com-
pared. The “best” model is one in which DIC is mini-
mized. The DIC is convenient since it can be easily
calculated using MCMC samples and does not require any
intractable analytic solutions.

6. Experimental Setup

[37] To achieve the goals specified above, four distinct
data scenarios were simulated. These synthetic observa-
tions were generated using (6), where realizations for the
“true” parameters, 7, and o> were assigned. Table 1 shows
all the parameter values used to simulate observations.
Numerous deterministic approaches for estimating 7, have
been published in the literature, with the first by Shields
[1936] followed by approximations to Shields’ data by
Brownlie [1981], who proposed the following relation for
the critical Shields number:

7. = 0.22Re,"® +0.06exp{—17.77Re, "}, (23)
where Re, is the particle Reynolds number,
gRDD
Re, = Y& (24)
v

where R is the submerged specific gravity (R = s — 1) and
v is the kinematic viscosity of water. The relation in (23)
provides a method to specify a plausible 7, using the previ-
ously designated parameter values proposed in Table 1 and
is only used for the purpose of data simulation and not for
parameter inference.

[38] Prescribing prior parameters for o2 is more direct.
Values of o2 ranging from 0 to approximately 1 provide

Table 1. Values for Fixed Parameters
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realistic relationships between shear and sediment dis-
charge. Both low- and high-variance data sets were simu-
lated, with values {02 : 0.05,1.10}.

[39] In addition to synthetic observations, real flume
observations from Smart [1984] were used in our Bayesian
transport model. The observations reported by Smart
[1984] are of unisize sediment transport in planar beds and
steep slopes and therefore are appropriate for this simple
unisize Bayesian sediment transport model.

7. Results and Discussion
7.1.

[40] Four distinct data scenarios were simulated for model
testing purposes, each consisting of a unique combination of
low- and high-variance with many and few observations.
Specifically, data scenario 1 consisted of 21 observations
with a variance of 0.05 (many low-variance observations);
data scenario 2 had six observations with a variance of 0.05
(few low-variance observations); data scenario 3 consisted of
21 observations with a variance of 1.10 (many high-variance
observations); last, data scenario 4 had 6 observations with a
variance of 1.10 (few high-variance observations). These
data scenarios shown in Figure 1.

[41] In addition to four data scenarios, four distinct prior
specifications were used in model fits. Histograms of these
prior densities are illustrated in Figure 2. These priors were
designed to represent a variety of prior scenarios: a diffuse
prior (known informally as a noninformative prior) that has
a lower bound at zero and an upper bound above the mini-
mum shear at which transport was observed to account for
accidental sampling at low flows (prior 1; Figure 2a), a dif-
fuse prior on compact support whose mean is known to be
inaccurate (prior 2; Figure 2b), an informative prior with
an inaccurate mean and low variance (prior 3; Figure 2c),
and an informative prior whose density increases with
proximity to the lowest measured shear (prior 4; Figure
2d). Table 2 shows the specified prior means and 95% cred-
ible intervals for each 7, prior scenario. Because each data
scenario has a true variance of either 0.05 or 1.10, priors
for o were set at the known value for each data scenario
with a small variance (u,2 = {0.05,1.10}, o2 = 0.15) to
isolate the effects of prior specification on critical shear.
For data scenarios 1 and 2, the prior for ¢ has a mean of
0.05. For data scenarios 3 and 4 the prior mean is 1.10.
Thus, both the high- and low-variance data scenarios will
have accounted for the true variance so that the effects of
different critical shear priors can be evaluated.

[42] The simulated observations were also used in a
more robust test of parameter identifiability. A diffuse prior
(prior 1) was assumed for critical shear, and a set of three
vague priors (a prior variance of 1000) for o> was tested
(see Table 3). Prior 1A has an expected value of 0.001 (an
underestimate by a factor of 50 for data scenarios 1 and
2 and an underestimate by a factor of 1100 for data scenar-
ios 3 and 4). Prior 1B has an expected value of 0.275

Simulation and Sensitivity Studies

a b s S T(°C) p(kgm™?)

v (10 m?s™h g(ms™?) D (mm) u(ms ")

8 3/2 2.65 0.002 5 1000

1.519 9.81 8.0 {u:0.5...3.0}
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Plot of simulated observation scenarios. Each data scenario is a distinct combination of high

and low variance and many and few observations. (a) Data scenario 1: N = 21, % = 0.05. (b) Data sce-
nario 2: N =6, o> = 0.05. (c) Data scenario 3: N =21, o> = 1.10. (d) Data scenario 4: N =6,

% = 1.10.

(overestimates the true variance of data scenarios 1 and 2
by a factor of 5.5 and underestimates the true variance of
data scenarios 3 and 4 by a factor of 4). Prior 1C has an
expected value of 5 (100 times larger than the true variance
for data scenarios 1 and 2 and 4.5 times larger than the true
variance for data scenarios 3 and 4). Table 3 presents the
expected values, variances, and 95% credible intervals for
these priors.

7.1.1. Inference on Model Parameters

[43] The main purpose of the simulation studies was to
determine the robustness of posterior inference on 7. given
different data and prior scenarios. Table 4 contains the sim-
ulation results, including the expected value of the posterior
estimate of critical shear and critical Shields number along
with their 95% credible intervals grouped by scenario.
Model misspecification is not a factor in these simulation
results since the Meyer-Peter and Miiller (MP-M) relation
[Meyer-Peter and Miiller, 1948] was used for both data
simulation and parameter estimation.

[44] In each model fit, expert opinion must inform the
Bayesian sediment transport model through the prior, and
there are many different ways of parameterizing the prior dis-
tribution for 7... The diffuse prior (prior 1) shown in Figure 2a

is the least informative of all the priors; it simply states that
critical shear must be greater than zero and is necessarily less
than some shear at which sediment transport has been
observed. All values within this range are equally probable
under the diffuse prior. Prior 2, the diffuse prior on compact
support shown in Figure 2b, gives nearly uniform probability
to critical shear values over a restricted range of the support
in prior 1. The lower bound of prior 2 is no longer zero but
was set to 1.55 Pa. The upper bound was also changed from
10 to 4.45 Pa. Given the fact that the true critical shear of the
simulated results is 6.72 Pa, the specification of prior 2 is
known to exclude the true critical shear value and will pro-
hibit the M-H sampler from exploring the portion of the pa-
rameter space outside of this compact support. Prior 3, shown
in Figure 2c, was specified to be inaccurate in its mean but
not overly limiting in its lower and upper bounds. So, unlike
prior 2, the specification of prior 3 permits any value between
zero and 10 Pa to be possible, but not with equal probability;
the most probable values for 7, are centered at 3.00 Pa with a
small variance. Prior 4, seen in Figure 2d, favors critical shear
values proximal to the upper bound of 10 Pa. Prior 4 is useful
for situations in which the first observation of sediment trans-
port is supposed to be near critical.
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Figure 2. Four prior scenarios. Vertical red line denotes true 7. in simulated data scenarios. Parameter-
ization follows TN(u,,, 0. ,a,b). (a) Prior scenario 1, (b) prior scenario 2, (c¢) prior scenario 3, and

(d) prior scenario 4.

[4s] Using these prior scenarios, we observe similarities
and disparities in the posterior distributions across data sce-
narios (see Table 4). First, accurate inference was never
obtained using the diffuse prior on compact support (prior
2). As was mentioned, the specification of prior 2 restricted
the lower and upper bounds, thereby excluding the true crit-
ical shear value from the set of possible parameter values.
What one observes in Table 4 is that no amount of data can
overcome this restriction: data scenario 1 to data scenario 4
all result in unacceptable inference. Unless there are com-
pelling (e.g., physically realistic) reasons to do so, priors
using compact support should be avoided. The other priors,
however, have varying performance across data scenarios.

[46] Prior 1 can serve as a default for situations where no
specific information regarding critical shear is known. The

Table 2. Priors for 7.°

Prior E[7.] 95% CI
1 5.00 (0.039) 0.26-9.75 (0.002-0.075)
2 3.00 (0.023) 1.62-4.38 (0.013-0.034)
3 3.00 (0.023) 2.51-3.49 (0.019-0.027)
4 8.17 (0.063) 0.26-9.75 (0.002-0.075)

The critical Shields number is in parentheses. CI, credible interval.

practical effects of prior 1 simply constrain possible values
for critical shear between a lower bound of zero and an
upper bound of 10 Pa with equal probability. The results in
Table 4 show that using a diffuse prior is a very safe mod-
eling strategy to employ in any of the data scenarios. Even
for the most limiting data set (data scenario 4), where
observations are few and variance is high, a diffuse prior
results in acceptable inference on 7. The posterior distribu-
tions show that where there are more observations, the
inferred critical shear values approach the true value used
to generate the data.

[47] The prior specification with the widest range of
results was prior 3. This prior is informative in that a region
of the interval [0, 10] was given higher density than others
(see Figure 2c). Prior 3, however, provides misleading in-
formation for critical shear. While the true value of 7. is
6.72 Pa, the 95% credible interval for prior 3 is [2.02,3.98],

Table 3. Vague Priors for o°

Prior E[6?] Var[o?] 95% CI
1A 0.001 1000 1.8 x 107 t0 0.0042
1B 0.275 1000 0.049-1.132
1C 5.0 1000 0.910-20.40
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Table 4. Posterior Inference Results for 7.°

Posterior
Data Scenario Prior E[7.] 95% CI
1 1 6.75 (0.052) 6.70-6.78 (0.052-0.052)
2 4.18 (0.032) 3.45-4.45 (0.027-0.034)
3 6.74 (0.052) 6.70-6.78 (0.052-0.052)
4 6.75 (0.052) 6.70-6.78 (0.052-0.052)
2 1 6.67 (0.052) 6.61-6.71 (0.051-0.052)
2 3.77 (0.029) 2.01-4.44 (0.016-0.034)
3 3.32(0.026) 2.32-4.38 (0.018-0.034)
4 6.67 (0.052) 6.61-6.71 (0.051-0.052)
3 1 6.63 (0.051) 6.35-6.80 (0.049-0.053)
2 4.23(0.033) 3.56-4.44 (0.027-0.034)
3 4.44 (0.034) 3.01-6.25 (0.023-0.048)
4 6.64 (0.051) 6.39-6.80 (0.049-0.053)
4 1 6.54 (0.051) 6.04-6.82 (0.047-0.053)
2 4.02 (0.031) 2.62-4.44 (0.020-0.034)
3 3.55(0.027) 2.50-4.63 (0.019-0.036)
4 6.57 (0.051) 6.05-6.82 (0.047-0.053)

“The critical Shields number is in parentheses. For each data scenario
the true value of 7. is 6.72 Pa (77 = 0.052).

as shown in Table 2. Unlike prior 2, which had compact
support, the support of prior 3 maintains the lower bound
of zero and the upper bound of 10 Pa. While this prior is
misleading, it does not prohibit the M-H sampler from
exploring the entire interval [0, 10]. What we see is that in
situations where there are sufficient data (data scenario 1,
for example), the misleading prior is overwhelmed by the
observations, and the posterior still correctly infers the true
value of the critical shear parameter. With fewer observa-
tions and increasing variance, however, prior 3 asserts
increased influence over the posterior distribution, resulting
in unacceptable inference in the remaining data scenarios.
Thus, inaccurate priors do not pose insurmountable prob-
lems when there are sufficient observations, while situa-
tions with few observations will result in unacceptable
inference under prior 3.

[48] The final prior (prior 4; Figure 2d) shows uniformly
acceptable posterior inference for all data scenarios. Like
priors 1, 2, and 3, it has support [0, 10] but gives higher
probability to critical shear values close to the upper bound.
In data collection scenarios where low transport rates are
collected, as suggested by Wilcock [2001] for reference
shear, prior 4 is particularly useful since expert opinion can
inform the model that critical shear is somewhere near the
lowest transport observation.

[49] More informative priors, like prior 4, can bolster in-
ference in scenarios with only a few low transport rate
observations. Table 5 shows the posterior inference on crit-
ical shear using three progressively more informative

Table 5. Comparison of Priors for Data Scenario 4*

Posterior
Prior El7.] 95% CI CI Range
Diffuse 6.54 (0.051) 6.04-6.82 (0.047-0.053) 0.78 (0.006)
Vague 6.57 (0.051) 6.05-6.82 (0.047-0.053) 0.77 (0.006)
Informative 6.62 (0.051) 6.27-6.84 (0.048-0.053) 0.57 (0.005)

“The critical Shields number is in parentheses. For each data scenario
the true value of 7. is 6.72 Pa (7} = 0.052).
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Figure 3. Progressively informative priors for data sce-
nario 4.

priors, presented in Figure 3. The diffuse prior is similar to
prior 1 in that it gives nearly equal probability to any criti-
cal shear value between the lower and upper bounds. The
vague prior, similar to prior 4, provides some information
to the model regarding where the true value for critical
shear is expected. The informative prior gives preference to
values close to the true value. What one sees in Table 5 is
that using the same observations (data scenario 4), posterior
inference is bolstered by prior information. The posterior
expectation for critical shear approaches the true value as
the information carried in the prior increases. Further, the
range of the 95% credible interval also decreases. In sum,
well-specified priors provide more precise estimates of crit-
ical shear.

[s0] The preceding analysis is helpful to isolate the sensi-
tivity of posterior inference on critical shear since the variance
parameter was assumed known. In all practical exercises,
however (such as the flume experiment whose results follow
in section 7.2), this is not reasonable. To this end, we fit three
models to data scenarios 1 and 3 using the diffuse prior (prior
1) for critical shear and three vague priors for the variance pa-
rameter, each with an inaccurate mean. This analysis makes it
possible to determine how sensitive posterior inference on
model parameters is affected by inaccurate priors for o and a
diffuse prior for 7. Table 6 shows the results of this analysis.

[5s1] The true variance parameter for data scenario 1 is
0.05, and it is 1.1 for data scenario 3. The priors on o2,
however, have mean values that range from being 1100

Table 6. Posterior Inference on Model Parameters Using Priors
1A-1C for ¢* and Prior 1 (Diffuse) for 7.2

Prior Parameter Data Scenario 1 Data Scenario 3
1A Te 6.75 (6.71-6.78) 6.64 (6.40-6.80)
o? 0.06 (0.03-0.10) 0.91 (0.50-1.62)

1B Te 6.75 (6.70-6.79) 6.64 (6.40-6.79)
o? 0.08 (0.05-0.15) 0.92 (0.50-1.65)

1C Te 6.73 (6.60-6.83) 6.63 (6.33-6.81)
o? 0.52 (0.91-20.5) 1.36 (0.76-2.42)

*Values are the expected value of posterior distribution; values in paren-
theses denote the 95% credible interval. True critical shear value is 6.72 Pa;
true variance for data scenario 1 is 0.05 and is 1.1 for data scenario 3.
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times smaller than the true variance to 100 times larger
than the true variance. On one extreme, the model fit to
data scenario 3 using prior 1A, which assumed a prior
mean of 0.001, had a posterior mean of 0.91 and a 95%
credible interval that contained the true realized value of
1.1. Prior 1B provided nearly identical inference despite a
prior mean of 0.275 compared to 0.001. Prior 1C was an
overestimate of o2, resulting in a posterior mean closer to
the true value of 1.1 but with a relatively wider credible
interval. For data scenario 1, whose true variance was 0.05,
prior 1A, an underestimate by a factor of 50, performed
well, inferring a mean value of 0.06 and a tight credible
interval. Prior 1B resulted in posterior inference in which
the lower bound of the credible interval contained 0.05,
and prior 1C resulted in unacceptable inference since the
95% credible interval did not contain the 0.05. The results
in Table 6 indicate that it is far better to have a vague prior
for o2 that underestimates the true parameter value (even
by 1100 times) than it is to overestimate. It should be noted
that in all these model fits, regardless of the prior on o2,
posterior inference on critical shear always contained the
true value for 7., only with varying degrees of precision, as
shown in the associated credible intervals.
7.1.2. Model Discrimination

[52] Because there exist numerous bed load relations in
the literature, there is a tyranny of choice when it comes
time to model sediment transport. Indeed, Gomez and
Church [1989] noted that there are more bed load relations
than there are good data sets with which to test them. A gen-
eral criterion for a desirable model is one that is able to pro-
vide good fit to observations while minimizing the number
of parameters used to obtain that fit. The deviance informa-
tion criterion provides a metric that quantitatively measures
model fit and parsimony, allowing competing models to be
compared. A simulation test was performed to verify the
utility of the DIC in model discrimination for sediment
transport. Synthetic data were generated using the MP-M
bed load relation, and two different model fits were per-
formed; one used as a process model the MP-M equation,
and the other used the updated parameterization of the
MP-M relation proposed by Wong and Parker [2006]
(W-P), introduced earlier as (7) and (8). These results are
presented in Table 7. In comparing models, the magnitude
of the DIC is irrelevant; it is used as a relative measure
between models. Table 7 shows us that the MP-M correctly
infers the true realized value of 7., while the W-P model
underestimates the realized value. This pattern is repeated
in the flume observations for reasons discussed in section
7.2.1. The MP-M model also has a smaller DIC value than
the W-P model, a result we would expect because the MP-
M relation was used in the data simulation step of this test.

Table 7. Deviance Information Criterion (DIC) Results for Com-
peting Simulation Models*

Posterior
Model DIC E[7.] 95% C1
Meyer-Peter and Miiller  46.95 6.70 (0.052) 6.63-6.76 (0.051-0.052)

Wong and Parker 72.16 6.25(0.048) 5.71-6.57 (0.044-0.051)

The critical Shields number is in parentheses. True value of 7. is 6.72
Pa (17 = 0.052).
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Last, the MP-M model has a credible interval that is narrower
than that for the W-P model, so on the basis of these results
the MP-M model can be identified as the “better” model.
This demonstrates that the DIC can provide a guideline by
which competing scientific theories may be compared.

7.2. Flume Observations

[53] The simplicity of the model presented in (6) requires
that any flume observations used must meet several criteria.
First, the flume observations must be for unisize (or near
unisize) sediments; second, because the proposed model
does not account for bed forms, the transport must occur
over a planar bed; third, since the phenomenon of interest
is bed load transport of gravel, a unisize bed composed of
grains larger than approximately 8 mm were sought. The
experiments of Smart [1984] meet these criteria and were
used to evaluate the suitability of the proposed model. Spe-
cifically, we used the 10.5 mm bed load results with our
Bayesian transport model: this experiment consists of 26
sediment transport observations in steep flumes for a nearly
uniform distribution of grains.

[54] Unlike the simulation studies, the true parameter val-
ues of critical shear and variance are unknown for the Smart
[1984] data. Given the results from the simulation studies,
however, a general modeling strategy was developed. The
simulation studies showed that the use of a diffuse prior
(prior 1 in Figure 2a) is a defensible default prior. Accord-
ingly, the prior for critical shear was specified as 7, ~
TN(10, 5000, 0,20). The prior for the variance parameter
was specified using judgment as to its mean and variance. A
scatterplot of the transport observations demonstrated a low
variance, similar to the low-variance scenarios 1 and 2 in
the simulation studies. Using these simulation studies as a
reference, a prior for the variance was specified to have a
mean value of 0.1 and a variance of 1000; the (r, ¢) hyperp-
riors were then solved for using equations (16) and (17).
These priors are graphed in Figure 4.

[55] Two different models were fit, each using a different
process model included as (7) and (8). Tables 8 and 9 sum-
marize the posterior inference on both critical shear and
variance for each model fit. Also presented are the DIC val-
ues computed for each model fit. Last, Figure 5 shows the
posterior predictive distribution for each model fit. Figures
5a and 5c¢ show the 68%, 90%, and 95% credible intervals
of the predictive distribution, represented in darkening
shades of gray. Figures 5b and 5d show a partitioning of
variability in predictions due to (1) the fact that critical
shear is being modeled as a random variable instead of a
fixed value and (2) the variance parameter o2, which is a
multiplicative (additive in log space) error term represent-
ing measurement error, natural variability of transport, and
model misspecification. The combined region in Figures Sb
and 5d is the same 95% credible interval shown in Figures
Sa and 5Sc.

7.2.1. Inference on 7. and 6>

[s6] We see in Table 8 that the inferred critical shear pa-
rameter is not independent of the bed load relation used in
the model. The MP-M model infers a critical shear of
0.080 Pa, which is reasonable given the steep slopes of the
flume studies [Cao, 1986]. The W-P model, however, infers
an entirely distinct posterior distribution for critical shear;
the 95% credible interval for the MP-M models does not
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Figure 4. Prior distributions for Smart’s [1984] observations. The vertical red line denotes the mini-

mum shear that produced transport.

overlap with that of the W-P model. This is because the
MP-M and W-P models have differing values for the a and
b coefficients in an excess shear formulation. At the most
basic level, given values of g, b, and 7%, it is expected that
solutions for 7 in (1) would yield distinct results. Tradi-
tionally, the MP-M and W-P equations assume that the crit-
ical Shields number is fixed and known at 0.047. Given the
difficulty in specifying the critical Shields number in prac-
tice, the present research advocates the measurement of ¢*
and 7" and the estimation of 7 based on the measurements
and prior knowledge. We see that the existence of a single
critical shear value that is portable from one transport rela-
tion to another is therefore unreasonable because different
process models may result in distinct posterior parameter
spaces.

[s71 The inferred parameter values for o2, as shown in
Table 9, however, are in agreement between the MP-M and
W-P models, at 0.14. Further, the posterior credible inter-
vals for 0% under the MP-M and W-P models are consistent.
7.2.2. Model Discrimination

[s8] The DIC values, as reported in Tables 8 and 9,
though somewhat inconclusive, seem to indicate that the
MP-M model provides the better fit for the number of pa-
rameters estimated since it has the smallest value, 25.85
compared to 26.17. The models fitted to the flume observa-
tions do not exhibit as large a difference in their DIC values
as was the case for the simulated observations in Table 7,
possibly inferring only a slight superiority of the MP-M

Table 8. Comparison of Process Model Performance on the Smart
[1984] 10.5 mm Flume Observations for 7.

7. Posterior

Model DIC E[T.] 95% CI

Meyer-Peter and Miiller 25.85 13.87 (0.080) 12.52-14.94 (0.072-0.086)
Wong and Parker 26.17 8.00(0.046) 5.10-10.66 (0.029-0.062)

“The critical Shields number is in parentheses.

model. Both of the process models used in this research are
broadly defined as excess shear models, which have the
form ¢* = a(r* — 7)" for 7 < 7* and 0 otherwise. The
Bayesian formulation presented in this paper models pa-
rameters a, b, and 7* as fixed and 7 as a random variable
and variance o according to (11). The MP-M and W-P
models fit into the definition of the excess shear models
since parameters a and b are specified directly.
7.2.3. Posterior Prediction

[59] A major difference between the predictive results of a
purely deterministic approach to sediment transport modeling
and those from a Bayesian model is that in the latter, the pre-
dictions are functions of random variables, as shown in (22),
and are therefore random variables themselves. This charac-
teristic means that predictions in a Bayesian transport model
can be represented in terms of probabilities. The plots con-
tained in Figure 5 show the PPDs for the model runs and pro-
vide prediction ranges that can be assigned a probability of
occurrence. What this shows is that, like purely deterministic
approaches, the Bayesian framework can employ determinis-
tic equations to make predictions, but unlike deterministic
approaches, it does so using probability distributions for the
parameters and predictions. The results in Figure 5 are very
informative since the parameter and measurement uncer-
tainty have been fully propagated through the analysis,
resulting in a range of credible predictions. The PPD repre-
sents what can be reasonably predicted given the parameter,
measurement, and structural uncertainty related to the sedi-
ment transport phenomenon.

Table 9. Comparison of Process Model Performance on the Smart
[1984] 10.5 mm Flume Observations for o°

o Posterior

Model DIC E[0?] 95% CI
Meyer-Peter and Miiller 25.85 0.14 0.08-0.23
Wong and Parker 26.17 0.14 0.08-0.24
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Figure 5. Posterior predictive intervals for Smart’s [1984] observations. (a and b) The Meyer-Peter
and Miiller bed load relation and (c and d) the Wong and Parker relation.

[60] Figures 5a—5d show subtle changes in shape over
the range of observed transport events due to the their re-
spective process models. The MP-M model consists of two
distinct slopes: higher slope at lower shears that then flat-
tens out at higher shears. The W-P model, however, is gen-
erally flatter throughout because 7. is much lower than for
the MP-M equation. The W-P relation tends to underpredict
relative to the observed transport rates, whereas the MP-M
relation tends to slightly overpredict. This is seen in Figures
S5a and 5c since the observed transport rates are located
generally on the low side of the PPD. Alternately, the
observations in the W-P relation are located generally
higher than the PPD. These discrepancies derive from the
deterministic models and do not represent an inadequacy of
the inferential framework [Box and Tiao, 1992].

[61] Figures 5b and 5d show how much variation in the
posterior predictions can be partitioned to the underlying dis-
tribution of 7. (as shown in the light band running down the
center of the PPD) as well as what can be attributed to the
underlying variability, measurement error, and model mis-
specification shown by the darker area. The Bayesian trans-
port model in (11) is admittedly simple in its construction,
and more complicated models may account for a different
partitioning of variability to different terms. The implications
of this partitioning suggest that some of the variability is

reducible (measurement error and model misspecification),
while another portion is not (natural variability).

[62] Given the model results using the flume data, the
MP-M relation was identified as the most reasonable
relation for these observations. This assessment is based in
part on the MP-M model having a slightly lower DIC value,
but more so because it identifies a tighter credible interval
than the W-P relation and further because this credible
interval is centered on values that are consistent with our
understanding of critical shear in steep flumes.

8. Implications and Conclusions

[63] Having tested our model framework using both
simulated and laboratory observations, we now conclude
by broadly discussing sediment transport models, charac-
teristics of the Bayesian framework, and the connections
between the two in order to identify where a Bayesian
approach to sediment transport modeling addresses specific
needs of the discipline.

8.1.

[64] Early work recognized that a threshold for transport
is better described by a statistical distribution than a fixed
parameter. In many applied sediment transport problems,

Implications of Bayesian Model
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there is considerable difficulty in specifying justifiable val-
ues for critical shear, especially when one accounts for the
multiplicity of bed arrangements and varying hydraulic con-
ditions that affect incipient motion. To further complicate
this, results from this research show that inferred values of
critical shear are not independent of the process model
used; therefore, a given critical shear value (or distribution
of values) that provides the best fit for one relation may
result in a very poor fit for a different bed load relation.
Additionally, Wilcock [2001] notes that when estimating
sediment transport rates, strictly formula-based approaches
are notoriously inaccurate and sampling campaigns are ex-
pensive. One current approach to sediment transport model-
ing is described by Wilcock [2001], who proposes the use of
a deterministic transport relation that is calibrated through
easily obtained transport samples (i.e., low-transport obser-
vations). In this approach, the reference shear parameter, a
surrogate for critical shear, is adjusted until a best fit to the
observations is obtained. This method employs the use of
observations, expert judgment, and a deterministic relation-
ship to provide predictions. Once this model is calibrated,
predictions are described by a line fitted to the observations,
but deviations from these predictions due to parameter,
measurement, and structural uncertainty are not quantified.

[65] A Bayesian sediment transport model is very easily
adapted to the approach described above since expert opin-
ion still gets to inform the model as to the values of critical
shear through the prior, and transport observations are used
to update the expert opinion in a formal way that incorpo-
rates variability and error. The reference shear approach
requires the specification of a single value for 7,, whereas a
Bayesian approach models critical shear as a random vari-
able arising from a probability distribution. Describing crit-
ical shear as a random variable is more consistent with the
realities of sediment transport, as discussed by Shields
[1936], Einstein [1950], and, later, Buffington and Mont-
gomery [1997]. Further, a Bayesian approach to sediment
transport modeling is very efficient since it provides a single
framework that robustly (1) estimates model parameters, (2)
makes probability-based predictions, (3) incorporates expert
knowledge, and (4) provides a means for model discrimina-
tion. The results of our model make it possible to explicitly
account for predictive uncertainty in sediment transport for-
mulae, given observations, thereby allowing prediction
uncertainty to be incorporated in subsequent analyses, such
as sediment budgets and river restoration modeling.

[66] Because of its ability to account for uncertainty, this
framework would be particularly useful in geomorphological
work related to river restoration. Stewardson and Rutherford
[2008] observed that there exists a tendency for river manag-
ers to assume that the physical components of river restora-
tion, such as sediment transport, are well understood with
minimal errors. They then demonstrate that there is “unrea-
sonable confidence” [Stewardson and Rutherford, 2008, p.
68] in deterministic approaches to sediment transport and
conclude that “rarely is any thought given to the best
approach to modeling, including the calculation of input pa-
rameters to minimize uncertainties in restoration decisions.”
[Stewardson and Rutherford, 2008, p. 75]. Additionally,
Wheaton et al. [2008] noted that the river management com-
munity has largely brushed uncertainties aside. Because of
this, the interactions between scientists and river managers
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are often tenuous [Wilcock et al., 2003]. To ameliorate this,
Wilcock et al. [2003] concluded that uncertainty in model
predictions must be clearly communicated so that manage-
ment decisions can be better informed. Research in this area
can either “ignore the uncertainty and hope that it is not
debilitating for the project at hand, or accept the uncertainty
and use it as a feature of the research” [Graf, 2008]. A
Bayesian approach to sediment transport modeling, such as
that offered here, robustly addresses the challenges
expressed above.

[67] Further, the interpretation of the predictive distribu-
tions is intuitive. Whereas traditional statistical methods
report confidence intervals that represent the percent of time
the constructed interval will contain the true, fixed parameter
value, Bayesian credible intervals are statements of probabil-
ity; for example, the probability that the parameter of interest
is contained in this interval is (1 — «)%. This simple inter-
pretation of model results facilitates the “clear communica-
tion of uncertainty” recommended by Wilcock et al. [2003].

[68] Last, because Bayesian models provide posterior
predictive distributions, intuitive assessments of predictive
uncertainty are avoided. Of the numerous studies pub-
lished on decision making under uncertainty, 7versky and
Kahneman [1973] discuss how intuitive assessments of
confidence are biased by representativeness and input con-
sistency. A conclusion of their research is that individuals
are prone to experience a high degree of confidence in
highly fallible judgments; stated otherwise, intuitive assess-
ments of the credibility of predictions are usually highly
overconfident. The posterior predictive distribution devel-
oped in (22), however, avoids the shortcomings of intuitive
assessments of uncertainty and provides a robust measure of
the uncertainty in model predictions.

8.2. Model Extensions for Future Implementations

[69] The simple model disclosed in this research demon-
strates how a Bayesian sediment transport model may be
developed. The present model is simple for pedagogical
purposes and certainly does not represent the full complex-
ity that is possible. Some specific extensions that are being
pursued by the current authors are multifraction bed load
transport, which incorporates description of how different
grain sizes are transported; inclusion of turbulence struc-
tures and hiding effects; mixture models and model averag-
ing for model inference or to accommodate unknown error
structures [Xiao et al., 2011]; development of hierarchical
implementations that account for different error sources;
evaluation of implications in constructing sediment mass
balances; and incorporating uncertainty into model forcing
observations (such as streamflow).

[70] The established hydrology literature demonstrates
potential uses for the Bayesian framework in sediment
transport as well. Renard et al. [2010] provide a compre-
hensive example of how Bayesian approaches can be lever-
aged to inform model selection and error structure and how
uncertainty can inform a model; such an approach applied
to sediment transport would be a valuable contribution.
Pre-MCMC hydrology literature illustrates the potential
use of decision theory in hydrology and how it can inform
decision on the basis of customizable loss functions that
account for the capital and maintenance costs of overdesign
and the monetary consequences of inadequate design
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[Davis et al., 1972; Duckstein and Szidarovszky, 1977,
thereby providing an optimal decision from a decision-
theoretic perspective. Given the broad challenges faced in
the sediment transport community, it is our belief that
Bayesian models can provide a tool for innovation.

Appendix A: MCMC Algorithm

[71] L. Select a starting value for critical shear, 7.(0).

[72] 2. For iterations, k = 1,2,...N, (1) calculate g,|7.
(k — 1) using (6), (2) calculate updated parameters 7 and g
using (20) and (21), (3) obtain kth sample for o ~ IG
(7,4), (4) sample 7. ~ TN[7.(k — 1), 02,12, (5) calculate
qs |Te+ using (6), (6) calculate the ratio p via

p= 9y qovaz(km%‘mm(f%]
[qs|qo7 Uz(k)][Tc(k - 1) Hr.s 0—72?

)

and (7) accept or reject proposed value 7.+

relf) = {:(k - 1),

with probability p,
with probability 1 — p.

[73] This algorithm is repeated N times until an adequate
number of samples is obtained from the target distribution.
The total number of samples from the target distribution is
equal to the number of samples N less the number of itera-
tions required for burn-in Nyym.in(the number of samples
required for convergence on target density). These samples
from the target distribution can then be used to make infer-
ence on the parameters of interest: 7, and 2.
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