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INTRODUCTION

Abstract

The analysis of animal tracking data provides important scientific under-
standing and discovery in ecology. Observations of animal trajectories using
telemetry devices provide researchers with information about the way animals
interact with their environment and each other. For many species, specific
geographical features in the landscape can have a strong effect on behavior.
Such features may correspond to a single point (eg, dens or kill sites), or to
higher dimensional subspaces (eg, rivers or lakes). Features may be relatively
static in time (eg, coastlines or home-range centers), or may be dynamic (eg, sea
ice extent or areas of high-quality forage for herbivores). We introduce a novel
model for animal movement that incorporates active selection for dynamic
features in a landscape. Our approach is motivated by the study of polar bear
(Ursus maritimus) movement. During the sea ice melt season, polar bears spend
much of their time on sea ice above shallow, biologically productive water
where they hunt seals. The changing distribution and characteristics of sea ice
throughout the year mean that the location of valuable habitat is constantly
shifting. We develop a model for the movement of polar bears that accounts for
the effect of this important landscape feature. We introduce a two-stage
procedure for approximate Bayesian inference that allows us to analyze over
300 000 observed locations of 186 polar bears from 2012 to 2016. We use our
model to estimate a spatial boundary of interest to wildlife managers that
separates two subpopulations of polar bears from the Beaufort and Chukchi

seas.
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way animals interact with their environment (eg, Manly
et al., 2002; Johnson et al., 2008) and each other (eg, Niu

For decades, study of animal movement has led to
important scientific understanding and discoveries in
ecology (Hooten et al., 2017). Observations of animal
trajectories using telemetry devices, such as radio collars,
have provided researchers with information about the

et al., 2016; Scharf et al., 2016; 2018). In the case of the
former, one of the most common approaches used by
ecologists is to analyze the rates at which animals use
certain types of habitats relative to the distribution of
habitat types available to them (Manly et al., 2002; Lele
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and Keim, 2006; Hooten et al, 2017). Such analyses
typically model the probability of an individual using a
particular location as a weighted combination of all
available locations (eg, Johnson et al, 2006; Northrup
et al., 2013). The weights are then referred to as the
resource selection function (RSF) and provide insight
into which portions of a landscape are most valuable to
the study species. What constitutes an available location
depends on the characteristics of the particular species
under study and the rate at which telemetry observations
are gathered.

For many species, specific geographical features in the
landscape can have a strong effect on where individuals
choose to move (Tracey et al., 2005). Such features are
sometimes well summarized by a single point (eg, dens or
kill sites), but may also correspond to higher dimensional
subspaces (eg, rivers or lakes). Their locations may be
relatively static in time (eg, coastlines or home-range
centers in Brost et al, 2016), or may be dynamic,
potentially varying periodically (eg, sea ice extent or
areas of high-quality forage for herbivores). The term
phenology is used to refer to those characteristics of an
ecosystem that demonstrate seasonal patterns of varia-
tion. While not always framed in the context of resource
selection, these landscape features can nevertheless be
thought of as resources, and the behavior of animals may
demonstrate selection for (or against) points near the
feature. We introduce a novel suite of models for the
analysis of animal movement that incorporates active
selection for features in a landscape that may have
complex and dynamic shapes.

Our modeling framework is motivated by the study of
polar bear (Ursus maritimus) movement. Polar bears
spend much of their time on sea ice over shallow,
biologically productive water where they hunt ringed
seals (Pusa hispida). The distribution of this primary food
source can be highly variable and is known to depend on
a wide variety of factors including season, bathymetry,
and various characteristics of the sea ice (eg, Kelly et al.,
2010). Ringed seals depend heavily on sea ice throughout
their lives and use both fast ice (ice that is connected to
land) and pack ice (ice that is free to drift) (eg, Finley
et al., 1983; Wiig et al., 1999) for feeding, rearing pups,
and molting. A consistent pattern across multiple studies
is that some of the most valuable habitat for ringed seals,
and hence polar bears, is near the interface between sea
ice and the ocean (Frost et al., 2004; Durner et al., 2009;
Crawford et al., 2012; Rode et al., 2015; Atwood et al.,
2016) especially during the sea ice melt season, the part
of the year when sea ice first breaks up and contracts
toward the pole, then freezes and expands southward
again. The changing distribution and characteristics of
sea ice throughout the late spring through early fall mean
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that the location of valuable ice-edge habitat is constantly
shifting.

As climate change alters the rate at which sea ice thaws
and freezes, as well as the size of its minimum and
maximum extents, there is an increasing concern about
how polar bears are responding to these dramatic shifts in
their environment (Rode et al., 2014). Our goal is to develop
a model for the movement of polar bears that explicitly
accounts for the effect of the changing sea ice and can be
incorporated into a wide variety of hierarchical models used
to better understand polar bear ecology. In Section 3, we use
our model to estimate a spatial boundary of interest to
wildlife managers that separates two subpopulations of
polar bears from the Beaufort and Chukchi seas.

2 | MODEL DEVELOPMENT

2.1 | Feature preference

To account for an individual's preference for areas in a
landscape near (or far from) a particular feature of
interest, we take a use-availability approach. We define
the selection weight of a particular location to be a
parametric function of the distance from the location to a
feature of interest on the landscape. Estimates of the
relevant parameters provide a summary of how strongly
the feature affects the behavior of observed individuals.
We model availability similar to Hjermann (2000), Christ
et al. (2008), Johnson et al. (2008), and Brost et al. (2015)
who used radial distributions centered on the most
recently observed location to define the continuously
valued availability at each point in time.

Let u(t) be the location of an individual at time
t € {1,...,,T}, where we assume for now that observation
times are equally spaced with no missing values. We
define the conditional probability density for u(t) as

[ﬂ([)lﬂ(t - 1)5 Uis M(t)’ Tz]
o« Nu@); u(t — 1), opb)=1g(u(); M), 70, (1)

where we use square brackets to denote a probability
density, and N(x; u, ) denotes the normal probability
density function with mean g and variance X evaluated
at x. For t > 1, the conditional distribution is propor-
tional to the product of two components, the first of
which is the density of a bivariate Gaussian distribution
centered on the previous location of the individual that
defines the availability of each point on the landscape as
in Christ et al. (2008). The availability component
induces positive autocorrelation in the joint process
m= @), .. y(T)j, with larger values of Jj resulting
in processes with greater distances between consecutive
locations and faster, more erratic movement.
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The function g is a RSF and controls the effect a
particular feature in the landscape has on an individual's
movement. Let M(t) denote the set of points that
comprise the feature of interest (eg, the interface between
sea ice and ocean). We define the function g as

gu; M), ) = eXp{—Xrenji&l(t)II#(t) - x|5/2%,
()

(where ||-||, is the €, or Euclidean norm) so that the value
of g is highest near M(t), and drops to zero as u(t)
moves away from AM(t). The value of 72 controls the
range at which g effectively reduces to zero. We show in
Section 2.2 why this particular parametric form for the
RSF can be used to leverage computational efficiencies in
parameter estimation.

In practice, it will often be useful to define g such that
it achieves its largest values at locations p () near M(t)
so that the conditional density given in (1) has probability
mass concentrated near M(t). Specifying g in this way
provides a method for modeling movement that exhibits
preference for the region of the landscape near the
feature of interest.

The model for the discrete-time continuous-space
process u provides a useful tool for modeling the
movement of an individual responding to a one-dimen-
sional feature on a landscape. In Section 3, we apply the
model to the movement of polar bears with the ultimate
goal of clustering individuals into disjoint subpopulations
based on space use. By including availability and resource
selection as part of a larger hierarchical structure, we are
able to account for polar bear's preference for habitats
that facilitate the depredation of seals, which, if ignored,
might result in biased inference about subpopulation
membership.

The conditional density in (1) is only defined up to a
constant of proportionality, f NQu(t); p(t — 1), 0512)1»1
g(u(t); M(t), 2)du(t), that must be computed as part of
any likelihood-based estimation procedure. We employ a
Bayesian hierarchical methodology and fit our model for
polar bear movement using Markov chain Monte Carlo
(MCMC), which requires calculation of the normalizing
constant several times at each iteration of the algorithm.
For a general feature, M(t), the normalization constant is
not analytically tractable. Thus, some form of numerical
integration is required to fit the model to data, the
computational cost of which precludes such an approach
in our application. In the RSF literature, the normal-
ization constant has typically been approximated using
either a coarse spatial discretization (eg, Warton and
Shepherd, 2010; Brost et al., 2015), or a randomized
scheme based on an “availability sample” (eg, Northrup

et al., 2013). In the next section, we introduce a novel and
computationally efficient approach for computing the
necessary normalization constant that leverages conju-
gacy in the distributional form for u (¢).

2.2 | Linearization approximation

We implement a novel approximation technique that
assumes locally linear structure in the shape of M(¢),
allowing for efficient approximation of the true
conditional density of u(t). To motivate our approx-
imation, we note that, for the special case when M(t)
is a straight line, the RSF as defined in (2) can be
written in a form similar to that of a bivariate
Gaussian density function with a rank-deficient
covariance matrix.

2.21 | RSF for straight lines

First, we consider the case of a vertical line, ’M(t), in the
real plane so that M(t) = {(x, y) € R% x = h}. For this
case, we have

gu(); M), 1)
- exp{—%@u(t) — (h, YJQE) @ (D) - (h, y>’>},

Q@) = (T;Z g)

for all real-valued y. To allow for /T/(J(t) that are straight,
but not necessarily vertically oriented, we rotate the
coordinate system through an angle 6. Let R(6) be the
cos6 —sin®
sin® cos® )’
and let 6 be defined such that R'(G)T/((t) =
{(x,y) € R* x = h} for some real-valued h. Note that
the inverse of a rotation matrix, R-1(8) = R(—0), is also
equal to its transpose, R'(6). The RSF defined in (2) is
invariant under rigid transformations such as rotations;
therefore,

rotation matrix defined as R(6) E(

8 (0: M), 1) = g® ©)p(1): R @)M), )
= exp{-1(u(®) - (1, Y)IR®)
X Q@R O)®(®) - (b, y)}.

222 |
features

Linearizing complex landscape

The resulting form for [p(¢)|p(t — 1), f/\\/(J(t)] is propor-
tional to the product of two Gaussian distributions, one of
which is improper. Provided 0 < 72, the product is a
proper bivariate Gaussian distribution with mean,
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pr =0 (- 1) + R(©)Q(r®)R (6)i#), and covar-
iance, =* = (0,2 + R(6)Q (2R (6))~, where ff is any
point in /rﬁ(t). The distributional form of u(¢)|u(t — 1),
fM(t) implicitly defines the appropriate normalization
constant in (1). Thus, if there exists some straight line
M(t) that represents a close approximation to M(t) near
p(t — 1), then g(u(t); M(t), 72) may provide a reason-
able approximation for g(u(t); M(t), %) that alleviates
the computational burden of repeatedly calculating the
necessary normalization constant. A natural candidate
for f/\%(t) is the line that is tangent to M(t) at the point on
M(t) closest to u(t — 1), because this is the portion of
the feature most relevant to the conditional distribution
of u(t).

Let m(t) be the point in M(¢) nearest to u(t — 1), and
let /T/(J(t) be the set of points that lie on the line tangent to
M(t) at m(t). Figure 1 shows a schematic illustrating the
way the product of the two Gaussian components in (1)
combine to result in a third Gaussian distribution. For M(t)
to result in an adequate approximation of the RSF, the
linearized feature need only resemble the true feature in the
vicinity of u (¢). Outside of the immediate neighborhood, the
availability distribution will be essentially zero, reducing the
impact of errors in the RSF approximation. We discuss the
appropriateness of the linearization approximation in greater
detail and offer practical guidance for its use in future studies
in Supporting Information D.

3 | APPLICATION

3.1 | Goals and previous work

There are a total of 19 recognized polar bear subpopulations
in the circumpolar Arctic (Figure 2; Obbard et al., 2010).
However, the boundaries that delineate the subpopulations
are challenging to precisely define because there are few
barriers to movement for polar bears, and the changing

FIGURE 1 The product of the two
densities in the left plot (one of which is
improper) results in the density shown in
the right plot. In the context of polar bear
movement, the two densities in the left
plot represent the location of an
individual on day ¢t — 1 (point) and the
resource selection function defined by the
linearized boundary between, for
example, the sea ice and the ocean
(diagonal line). The true boundary is
represented by the dashed curve. The
density shown in the right plot represents
the conditional density for the true
location on day ¢
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extent and drift of the sea ice leads to periods of the year
when individuals from different subpopulations may use
overlapping portions of the landscape. Nevertheless, there
are important reasons to determine a clear delineation of
the subpopulation boundaries. For example, wildlife
management agencies such as the US Fish and Wildlife
Service (USFWS) use subpopulation boundaries to help
guide management decisions for polar bears, which are
currently listed as “threatened” under the Endangered
Species Act (US Fish and Wildlife, 2016). There is also
evidence that polar bears from different subpopulations are
responding to climate change with differing degrees of
success (Rode et al, 2014; Ware et al, 2017). Statistical
methods that make use of polar bear movement data have
been used to estimate these boundaries in the past
(Amstrup et al, 2005). In what follows, we focus on
demonstrating how our model may be used for estimating a
subpopulation boundary between the Chukchi Sea (CS) and
Southern Beaufort Sea (SB) subpopulations. We compare
previous statistical approaches with our proposed metho-
dology in Supporting Information A.

3.2 | Movement process model

With the exception of mothers denning on land, most polar
bears remain on the ice in the summer, following it north as
it retreats away from continental land masses. Polar bears
are specialist carnivores that use areas near the interface of
sea ice and ocean to hunt seals during the sea ice melt
season (Durner et al., 2009). However, some polar bears do
remain on land through the warmest part of the year and,
in fact, Atwood et al (2016) concluded that there is
evidence the number of individuals exhibiting this behavior
is increasing.

Two of the primary characteristics of polar bear move-
ment are a tendency for most individuals to prefer portions
of the landscape near the edge of the sea ice (Durner et al.,
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2004; Ware et al, 2017), and a tendency for individuals to
occupy a general spatial region corresponding to the
particular unobserved subpopulation to which an individual
polar bear is a member. To address the effect of the sea ice,
we specify a model for movement that incorporates
preference for areas near the sea ice boundary as it changes
in time. We account for polar bears that remain on land
during the summer by also including coastline as a feature
on the landscape associated with increased rates of use, as
individuals that spend the summer on land tend to remain
on islands and/or near the coastline for most of the season
(Rode et al., 2015). By accounting for habitat variability, we
hope to avoid inadvertently clustering bears into subpopula-
tions that confound true subpopulation spatial regions with
movement responding to changing sea ice.

We took a Bayesian hierarchical modeling perspective,
allowing us to specify models for both measurement error
and the true unobserved movement process in a single
coherent framework. We used a discrete-time approach to
specify a model for polar bear movement, in which the
conditional probability density for the location of an
individual is proportional to a product of components
corresponding to resource availability and selection. The
discrete-time approach was motivated by the scale at which
we have measurements of Arctic sea ice, which features as a
direct effect in our model for movement. We used estimates
of the extent of sea ice provided by the National Snow and
Ice Data Center (Fetterer et al, 2010) that are available at
daily intervals at 4 km resolution; thus, we modeled move-
ment as a discrete-time stochastic process on a daily scale.

Let u,(t) denote the location of individual
i €f{l,.., N} at time t € 7;, where 7; is a consecutive
set of times from the reference set 7 = {1,..., T}, and let z;
be a binary random variable that equals 1 if individual i
belongs to the CS subpopulation, and 0 if it belongs to the
SB subpopulation (for the general case of more than two
subpopulations, z; may be specified as a categorical
variable coming from a multinomial distribution).
Additionally, denote by M(t) the set of points in the
plane defined by the union of coastline, and the edge of
the sea ice. Figure S5 shows realizations of the dynamic
feature of interest, M(t), for 3 days in 2018. We modeled
the conditional distribution of u,(t) as

[, (O, (t = 1), 05, Bess Msps Zcss Esns Zis T
& N(ﬂi(t); Hcs» ZCS)ZiN(ﬂi(t)§ Msp> z:SB)I_ZIA
@
X Ny (0); gy (¢ = 1), G2 L) eming g (a (£); M(E), 72)komin
(ii) (iii)

(3

Each component in (3) captures a different feature of
the movement process. Namely, these are (i) the

association of each individual bear with a subpopula-
tion-level central place, (ii) the temporal dependence
between locations on consecutive days, and (iii) a RSF
that appropriately weights locations near a coastline or
the edge of the sea ice. The first two terms can be thought
of as a two-component availability function that incorpo-
rates a subpopulation activity center and movement
constraints, similar in many respects to the modeling
specification of Christ et al. (2008) and Johnson et al.
(2008). The third term is a RSF that models the
preference polar bears exhibit for habitat near either a
coastline, or the sea ice boundary. The exponents in
components (ii) and (iii) are indicator functions that
remove those effects at the initial time point for which we
assumed the only information we had about an
individual's location came from their association with a
particular subpopulation.

3.3 | Activity centers and subpopulation
membership

The second component in (3), for t > min(7;), and first
component for ¢t = min(7;) is a bivariate Gaussian
distribution centered on one of two central places, gy
and ucg, corresponding to the centers of the SB and CS
subpopulations, respectively. The 2 X 2 covariance ma-
trices, Z¢s and Xgg, control the strength of the effect the
subpopulation center has on the movement of each
individual. As the marginal variances of Zcs and Xgp
increase, individuals are allowed to range farther from
their central place. We specified prior distributions for
Ycs and Xgg based on their spectral decompositions.
Details are provided in Supporting Information B.

The binary random variables, z;, indicate the parti-
cular subpopulation with which individual i associates.
We specify Bernoulli prior distributions for each z; with
probability 0.5, corresponding to balanced a priori
classification of each individual.

3.4 | Time-varying RSF

For the application to polar bear movement, we modified
the RSF introduced in (2) slightly to account for an
important aspect of polar bear ecology. Polar bears'
preference for habitat near the coastlines and boundary
between ocean and sea ice can vary seasonally through-
out the year. Previous analyses of polar bear movement
concluded that the preference for habitat near the sea ice
boundary is highest during summer and autumn months
and weakest in the spring (Durner et al., 2004; 2009;
Wilson et al., 2016). Thus, we defined a RSF with the
same shape characteristics as in (2), but with an added
indicator function that accounts for the difference in
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seasons when the landscape feature is most relevant, and
when it has negligible impact on movement. Let a and b
denote the days of the year (0,...,364) on which this
“summer” season begins and ends, respectively. Then the
modified RSF was defined as

g (1); M(1), T2) = Lacicpexp{— min [|u(¢)
XEM(L)

— x|3 /273 ()]

We specified Gaussian prior distributions for the
end-points of the “summer” such that a~N (135, 14%),
b~N (319, 14?), corresponding to prior start and end date
distributions with means of May 15 and November 15,
respectively, and a standard deviation of 2 weeks.

One way to interpret this generalization of (2) is to
define the RSF in the original way, but let 72 vary in time.
The modified RSF given by (4) arises for the case of a
dynamic 72 parameter that is constant and finite during
the “summer” season, and infinite during the rest of the
year. Thus, outside of the season defined by (a, b) the
landscape feature defined by M(t) has no effect on
movement.

3.5 |

We analyzed telemetry observations of N = 186 polar
bears made by the USFWS and the US Geological Survey
(USGS) (available through the USGS data portal) using a
variety of different telemetry device types contaminated
with measurement error of varying severity. All loca-
tions were projected to a grid using an Albers equal area
projection, with all distances measured in kilometers.
In each case, we modeled the observed locations as
centered on the true, unobserved location of the
individual with an additive measurement error process
as s;(t*) = u,(t*) + g (t*), t* € (1, T), where the distri-
bution for g;(t*) depends on the particular device used to
make the observation s;(t*), and we allowed measure-
ments to be made at any point on the continuous
interval (1, T). We provide full details related to the
measurement error model and address the misalign-
ment between this continuous-time scale and the
discrete scale used to model the movement process in
Supporting Information B.

Measurement error

3.6 | Results

3.61 | Subpopulations

Using a two-stage approach, we fit the model to all
observations made by USFWS and USGS from 2012 to
2016 (186 unique individuals). Table 1 gives the posterior
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medians and equal-tailed 95% credible intervals for each
variance parameter, as well as relevant prior distributions
and hyperpriors. Figures 2 and 3 shows the posterior
mean of each z; grouped by the agency that tagged the
individuals. Posterior means of the class indicator
variables can be interpreted as the posterior probability
that individual i is a member of the CS subpopulation.

To produce a meaningful spatial delineation of the
two subpopulations from which our study animals were
drawn, we used a derived quantity related to the inferred
locations of the subpopulation activity centers. If we
consider the observation of a single new location, u;, (¢),
and integrate across all arbitrary features, effectively
removing the effect of the RSF, it can be shown that the
posterior probability that z;,, = 1 is given by

Pr(zys1 = 1y (6), Mg Mgpr Zcs, Zsp)
N(#J.H(t); Hcs» 2cs)
N(I“L]+1(t); Msp» 3sp)

For the case of an uninformative prior, p,,, = 0.5, the
contour corresponding to Pr(z;y; = 1) = 0.5 is defined
by the points in the plane where the two normal densities
are equal. It can be shown that these contours are the
roots of quadratic polynomials in two dimensions. By
computing the contour at each iteration in the MCMC
algorithm, we obtained draws from the posterior
distribution, a summary of which provides wildlife
managers with a way to delineate the boundary between
the two subpopulations. Figure 4 shows a map of the
region encompassing the CS and SB. The solid black line
corresponds to a central-measure summary of the
posterior distribution of the derived spatial boundary,
and the dashed lines show equal-tailed 95% pointwise
credible intervals computed orthogonal to the solid line
(more details are given in Supporting Information C).

TABLE 1 Posterior medians and equal-tailed credible intervals
for all model parameters, as well as prior distributions and

hyperparameters
Posterior summary
Prior

Parameters Median (2.5%, 97.5%) density
glf 272 (267, 277) 1G(6, 1125)
72 8600 (8000, 9500) IG(6, 32000)
o 16.5 (16.3, 16.6)
T 93 (89, 97)
Zi see Figure 3 Bern(0.5)
a 69 (28, 83) N(135, 14%)
b 337 (327, 349) N(319, 14%)
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FIGURE 2 Subpopulation boundaries of polar bears (Obbard et al., 2010; US Fish and Wildlife, 2016). Subpopulation abbreviations are:
Southern Beaufort Sea (SB), Northern Beaufort (NB), Kane Basin (KB), Norwegian Bay (NW), Lancaster Sound (LS), Gulf of Boothia (GB),
M'Clintock Channel (MC), Viscount Melville Sound (VM), and Western Hudson Bay (WH)

sub-population
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(Chukchi Sea [CS]) [Color figure can be
USGS viewed at wileyonlinelibrary.com]
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The portion of the inferred boundary most relevant in
this application is in the bottom right quarter of the map
and suggests at most a small shift from the currently
accepted subpopulation delineation, denoted by the large
polygons with thin black lines (also shown in Figure 2).
The discrepancy between the currently used subpopula-
tion boundary and the one we derive in this paper is
likely due to a combination of factors including both the
use of novel statistical methodology and systematic
changes to polar bear behavior as subpopulations
respond to rapidly changing habitat conditions. We also
note that a potentially informative landscape feature,
ocean depth, has been included in past RSF analyses of
polar bears but was not accounted for in this analysis. A
goal of future statistical and ecological research is to
develop methods that can account for both the sea ice
boundary and landscape features like ocean depth.

3.6.2 | Response to habitat
characteristics

The posterior distribution of the parameters defining the
“summer” season suggests that the feature M(t), defined

Pief-WiLEY
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as the union of the interface between sea ice and ocean
and the continental coastlines, has the greatest impact on
the behavior of polar bears between March 10 and
December 3. While the end of the season aligns closely
with prior expectations, there appears to be evidence in the
data that polar bears show a preference for habitat near
either coastlines or the edge of the sea ice more than 2
months earlier than expected. However, we note that
because of the way telemetry devices were deployed, the
posterior distribution for a must be interpreted with
caution. In particular, telemetry devices were affixed to
polar bears each spring between mid-March and late-May
opportunistically, with polar bears close to logistical bases
located along the Arctic coast more likely to be tagged
than polar bears far from the coastline (Wilson et al., 2014;
2016). Additionally, the majority of units were affixed to
females, as male polar bears require specialized radio
transmitters. Thus, it is possible that the way in which data
were gathered may be confounding our inference about
the start of the “summer” season.

The posterior distribution for 7 had a median value of
approximately 90 km, suggesting that polar bears prefer
habitat within about 180km of the sea ice edge or

FIGURE 4 The thin lines represent trajectories drawn from the process imputation distributions (Supporting Information B) of all polar
bears from 2012 to 2016. The colors correspond to the posterior means of z;, with dark hues corresponding to values close to 0 (Chukchi Sea
[CS]) or 1 (Southern Beaufort Sea [SB]) and white corresponding to values close to 0.5. Weekly measurements of sea ice extent for March—
September 2016 are shown as background polygons, with the darkest polygon corresponding to open ocean, the second darkest polygon to
March 1, and the lightest polygon to September 30. The heavy black line shows central-measure summary of the distribution for the derived
spatial boundary where, marginally, the probability of subpopulation membership is balanced (Section 3.6). The dashed lines show
pointwise equal-tailed 95% credible intervals orthogonal to the central-measure boundary. The large simple polygons with thin black borders
show the current subpopulation delineations (CS and SB from left to right; see Figure 2) [Color figure can be viewed at
wileyonlinelibrary.com]
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coastline during the “summer” season on average. In
comparison, Durner et al. (2004) concluded that polar
bears selected habitat near the sea ice edge during July
24-May 30, with the strongest effect occurring during
July 24-November 15 when polar bears showed a
preference for habitat within about 100 km. Durner
et al. (2004) also showed that, from November 16-May
30 (approximately the period of maximum sea ice extent),
polar bears continued to show a weakened preference for
habitat near the sea ice interface, but at a larger range of
distances. The relevant findings in Durner et al. (2009)
were similar; polar bears showed a preference for habitat
within approximately 200 km of the sea ice edge. Durner
et al. (2009) also found that, during the period of
maximum sea ice extent, polar bears showed a preference
for habitat within approximately 200 km of coastlines.
Thus, our conclusions about the timing and relevant
spatial range of the effect of sea ice edge and coastline are
consistent with those discussed in previous studies.

4 | DISCUSSION
Our novel approximation method based on the lineariza-
tion of a potentially time-varying spatial feature, M(t),
reduces the computational burden of fitting models in the
common RSF framework, allowing researchers increased
flexibility in the types of RSFs they can specify in
mechanistic models for movement. We demonstrated our
approach in an application involving the movement of
polar bears as they responded to seasonal shifts in sea ice
during 2012-2016. Recently, there has been a significant
increase in research focused on the so-called “green-
wave” hypothesis (eg, Aikens et al., 2017), which posits
that herbivorous animals align their movement with
bands of high-quality forage that shift throughout spring
as different elevations and latitudes experience phenolo-
gical changes. Our modeling approach represents a way
to validate the hypothesis if information about the shape
of the greenwave is known, or potentially estimate the
location of the posited band of high-quality forage based
on the observed movement patterns of herbivores.
Several models for animal movement that seek to
elucidate the complex relationship between individuals
and their habitat have been proposed in the literature.
Many recent models for movement are not explicitly
framed in terms of RSFs, yet share important connec-
tions with our proposed methodology. A few important
examples are Hanks et al. (2011; 2015), and Buderman
et al. (2018) who used the same multiple-imputation
based two-stage approach to model individual responses
to landscape features in a discrete-space framework.
While Hanks et al. (2011; 2015) required a third stage of

analysis to obtain population-level inference, Buderman
et al. (2018) used a hierarchical model construction
similar to our approach that permits joint inference
about individual and population-level parameters of
interest, although at the cost of additional computation
time. Additionally, Johnson et al. (2008) and Scharf et al.
(2017) modeled individual-level movement using a
continuous-space framework that is able to capture a
tendency of individuals to “drift” toward particular
landscape features. Importantly, while Hanks et al.
(2011; 2015), Scharf et al. (2017), and Buderman et al.
(2018) allowed for time-varying responses to landscape
features (analogous to the way we modeled a seasonal
response of polar bears to the habitat described by
M(t)), none of these approaches explicitly accounted for
dynamic landscape features that change in shape and
location through time.

The linearization approximation methodology can also
be extended to higher dimensional spaces and features.
For instance, in marine environments, RSFs based on two-
dimensional features, such as isotherms, may be locally
approximated using rank-deficient Gaussian distributions
corresponding to infinite planes. One-dimensional features
in three-dimensional spaces, such as wind or ocean
currents, can also be approximated with improper
distributions (see Supporting Information E for mathema-
tical details). In practice, researchers will need to evaluate
the appropriateness of a linearization approximation;
however, in many cases, our methodology offers a way
to include complex drivers of movement that might
otherwise have been computationally inaccessible.
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