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Agent-based methods allow for defining simple rules that generate com-
plex group behaviors. The governing rules of such models are typically set a
priori, and parameters are tuned from observed behavior trajectories. Instead
of making simplifying assumptions across all anticipated scenarios, inverse
reinforcement learning provides inference on the short-term (local) rules gov-
erning long-term behavior policies by using properties of a Markov decision
process. We use the computationally efficient linearly-solvable Markov de-
cision process to learn the local rules governing collective movement for a
simulation of the selfpropelled-particle (SPP) model and a data application
for a captive guppy population. The estimation of the behavioral decision
costs is done in a Bayesian framework with basis function smoothing. We
recover the true costs in the SPP simulation and find the guppies value col-
lective movement more than targeted movement toward shelter.

1. Introduction. Understanding individual animal decision-making processes in social
groups is challenging. Traditionally, agent-based models (ABMs) of individual interactions
are used as building blocks for complex group dynamics (Couzin et al. (2002), McDermott,
Wikle and Millspaugh (2017), Scharf et al. (2016), Vicsek et al. (1995), Scharf et al. (2018)).
ABMs attempt to recreate what is observed in nature by defining a mechanistic model a
priori. While the simple individual-based rules lead to complex group dynamics, ABMs suffer
from preprogrammed behavior after reaching some equilibrium, challenges to incorporate
interactions with habitat, and no notion of memory (Ried, Müller and Briegel (2019)). The
goal of inverse modeling is to instead learn the underlying local rules from observations of
sequential behavior decisions (Kangasrääsiö and Kaski (2018), Lee et al. (2017), Yamaguchi
et al. (2018)).

Parameters of ABMs, in practice, need to be tuned or learned by supervised learning
(Hooten, Wikle and Schwob (2020), Ried, Müller and Briegel (2019), Wikle and Hooten
(2016)). A recent alternative to supervised learning is reinforcement learning (RL). RL is
goal-oriented learning from continuous interaction between an agent and its environment
(Sutton and Barto (1998)). That is, RL methods learn parameters controlling global behavior
by trial and error experiments within the defined environment and local rules. The agents
learn preferences by paying costs to (or receiving rewards from) the environment and choose
optimal behavior by minimizing the cumulative expected future costs (also referred to as
“costs-to-go”). Similar to difficulty in tuning ABMs, defining the cost function to produce
desired long term behavior is challenging (Finn, Levine and Abbeel (2016), Ng and Russell
(2000), Arora and Doshi (2021)).

In systems where observations of behavior trajectories can be collected, inverse reinforce-
ment learning (IRL) methods aim to learn the state costs or costs-to-go that governed the
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observed agents’ decisions. Ng and Russell (2000) introduced the first IRL algorithms, in-
cluding dynamic programming which solves a system of equations based on the state transi-
tion probabilities and a grid search method for exploring potential state costs that may have
generated observed trajectory samples. As surveyed by Arora and Doshi (2021), many more
methods have since been developed or adapted to address problems of meaningful size and
nonidentifiability of the costs. In fact, Ng and Russell (2000) showed, in general, there does
not exist a unique solution to the state costs for systems with finite state space which requires
subsequent modeling assumptions. The methods can be broadly categorized as maximum
margin optimization (Ratliff, Bagnell and Zinkevich (2006)), entropy optimization (Ziebart
et al. (2008)), Bayesian IRL (Choi and Kim (2011), Jin et al. (2017), Ramachandran and Amir
(2007), Sosic, Zoubir and Koeppl (2018)), and deep learning IRL (Wulfmeier, Ondruska and
Posner (2015)), with the majority of the methods being applied to Markov decision processes
(MDPs). The benefit of Bayesian frameworks to address the nonidentifiability of costs in IRL
is that they provide a distribution of costs that can generate the observed expert behavior and
incorporate prior information to constrain state costs (Ramachandran and Amir (2007)).

Because the state cost function is a concise description of the task (Ng and Russell
(2000), Ramachandran and Amir (2007)), many of the aforementioned methods parameter-
ize the likelihood by the immediate state costs. A computational challenge associated with
parametrizing the likelihood by the costs is the necessity to solve the forward MDP; each it-
eration, as often, the likelihood still involves calculating the state costs-to-go. An alternative
class of MDP, the linearly-solvable MDP (LMDP) introduced by Todorov (2009), is linear in
its solution for the optimal policy and thus less computationally costly for forward modeling.
The LMDP is defined by a set of passive dynamics that describe an agent’s state transitions
in the absence of state costs or environmental feedback and then the optimal state transitions
minimize costs-to-go. Moreover, IRL for LMDPs does not require the forward solution for
each iteration, as there is a linear relationship between the costs-to-go and immediate state
costs. Therefore, inference about immediate state costs can be obtained by transformation
of the estimated costs-to-go. As a special case, Dvijotham and Todorov (2010) showed that
maximum entropy IRL is the solution to an LMDP with uniform passive dynamics. How-
ever, the maximum entropy IRL algorithms are parameterized by the state costs and require
the computationally intensive step of solving the forward RL problem (Ziebart et al. (2008)).
Kohjima, Matsubayashi and Sawada (2017) proposed a Bayesian IRL method for learning
state costs-to-go for LMDPs using variational approximation.

As argued by Ried, Müller and Briegel (2019), an MDP (or LMDP) for collective ani-
mal movement is a better model for the system than traditional selfpropelled particle (SPP)
models (Vicsek et al. (1995)). The MDP incorporates the internal processes of an animal by
modeling the behavior as perception (state space), planning (state values), and action (see
Hooten, Scharf and Morales (2019) for related individual-level models). Furthermore, the
behavior is governed by feedback from the environment (which includes other agents) rather
than assuming automatic interaction rules. Few applied examples of IRL for collective ani-
mal movement exist in the literature. Exceptions include the application of maximum entropy
IRL to flocking pigeons of Pinsler et al. (2018) and Bayesian policy estimation of the SPP
and Ising models (Sošić et al. (2017)).

We present the first application of IRL for collective animal movement using Bayesian
learning of state costs-to-go for an LMDP. As an extension of Kohjima, Matsubayashi and
Sawada (2017), we reduce the dimension of the state space with basis function approxima-
tion, compare variational approximation to MCMC sampling, and consider the multiagent
LMDP. We first demonstrate the modeling framework for a simulation of the Vicsek et al.
(1995) SPP model to illustrate the mechanisms of the LMDP framework in Section 3. In Sec-
tion 4 we use the new methodology to estimate state costs-to-go for collective movement of
guppies (Poecilia reticulata) in a tank to infer trade-offs between targeted motion and group
cohesion. Finally, we discuss the findings and direction for future work in Section 5.
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2. IRL methodology.

2.1. LMDP. We focus on the discrete state space LMDP, defined by the tuple (S, P̄, γ,R)

where S = {1, . . . , J } is a finite set of states, γ ∈ [0,1] is a discount factor, R : S → R

is a state cost function, and P̄ is a J × J transition probability matrix with elements p̄ij

for i = 1, . . . , J and j = 1, . . . , J corresponding to the transition from state i to state j

under no control (e.g., passive dynamics). We denote an observation from the set of states as
s ∈ {1, . . . , J } and the state cost at state i as ri for i = 1, . . . , J (see Appendix 5 Table 1 for a
notational reference).

The policy (e.g., how to choose the next state) of an LMDP is defined by continuous
controls, u = {uj ∈ R; ∀j = 1, . . . , J }, such that the controlled dynamics are expressed as

(1) p(st = j |st−1 = i) = pij (u) ≡ p̄ij exp(uj ),

and the controls are defined to be 0 when the passive transition probability is 0 (i.e., if p̄ij = 0,
then pij (u) = 0). The controls, uj , are interpretable, as the cost the agent is willing to pay to
go against the passive dynamics (Todorov (2009)). For a given policy the joint costs of the
state and control, l(i,u), are

(2) l(i,u) = ri + KL
(
pi(u)||p̄i

)
,

where ri is the immediate state cost for states i = 1, . . . , J and KL(·) is the Kullback–Leibler
(KL) divergence between the controlled transition probability, pi(u) = (p̄i1 exp(u1), . . . ,

p̄iJ exp(uJ ))′, and passive transition probabilities, p̄i = (p̄i1, . . . , p̄iJ )′. The KL divergence
penalty requires the agent to “pay” a larger price for behavior that deviates from the passive
dynamics (Todorov (2007)).

The state costs-to-go, vi , for i = 1, . . . , J , are the discounted sum of future expected costs
incurred from beginning in state i,

(3) vi = l(i,u) + E

[
γ

T∑
t=1

l(j,u)

]
,

where the expectation is with respect to the controlled transitions (1). The value of T deter-
mines whether the problem has finite- or infinite-horizon (e.g., T < ∞ or T = ∞). A finite-
horizon LMDP can be modeled as an infinite-horizon LMDP by assuming the agent remains
in the final observed state and incurs no future costs (Todorov (2007)). Costs-to-go can also
be interpreted as relative time to goal completion where a smaller cost-to-go indicates that the
agent can reach a desirable state more quickly by transitioning to that state than transitioning
to a state with a higher cost-to-go. Based on the definition, there is a recursive relationship
between the cost-to-go functions such that (Sutton and Barto (1998), Todorov (2009))

(4) vi = l(i,u) + E[γ vj ].
The forward problem of the LMDP solves for the optimal set of controls that minimize the
cost-to-go and can be expressed by the Bellman optimality equation (e.g., Bellman (1957))
for the state costs-to-go, vi , for i = 1, . . . , J ,

(5) vi = min
u

(
l(i,u) + γ

∑
∀j∈S

pij (u)vj

)
,

where the summation is over the reachable states j ∈ S as determined by the policy pij (u) for
all j ∈ S (i.e., the expectation in (3) is now expressed as the sum over the discrete distribution
defined by (1)). The computational advantage of the LMDP for RL is the Bellman optimality
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can be solved analytically using the method of Lagrange multipliers for the optimal transition
probabilities (Todorov (2009)),

(6) p∗(st = j |st−1 = i) = p̄ij exp(−γ vj )∑J
k=1 p̄ik exp(−γ vk)

.

By substituting equation (6) into the Bellman optimality (5) and exponentiating, the optimal
costs-to-go are a solution to an eigenvector problem that is obtained using a power iteration
method (Todorov (2009)), which we demonstrate in Section 3.

2.2. Inverse reinforcement learning (IRL). Assume we observe a collection of sequences
of optimal behavioral state trajectories, D = {D1, . . . ,DN }, and Dn = {sn0, . . . , snT }, where
snt is the observed state for individual n, for n = 1, . . . ,N , and time point t , for t =
0,1, . . . , T . Then, the observed state transitions are summarized into frequencies, yij =∑N

n=1
∑T

t=1 I (snt = j |sn(t−1) = i). We assume that each individual operates according to
an LMDP with identical parameters, (S, P̄, γ,R), but that the state costs, R, and, therefore,
costs-to-go, v, are unknown. The likelihood of D is

(7)

P(D|P̄,v) =
N∏

n=1

T∏
t=1

J∏
i=1

J∏
j=1

p∗(snt = j |sn(t−1) = i)

=
J∏

i=1

J∏
j=1

(
p̄ij exp(−γ vj )∑
k p̄ik exp(−γ vk)

)yij

,

for all individuals n = 1, . . . ,N , times points t = 1, . . . , T , transitions from state i ∈ S to
state j ∈ S, and the second equality is based on the optimal transitions (6). We express the
costs-to-go vector, v = (v1, . . . , vJ )′, as a linear combination of features in the J ×nb matrix
X with unknown weights β (e.g., v = Xβ). We estimate the weights in a Bayesian framework
by assuming the following hierarchical prior:

(8)
β ∼ N

(
0,

1

τ
Inb

)
,

τ ∼ Gamma(0.1,0.1),

where 0 is an nb-dimensional vector of zeroes and the parameters are estimated using MCMC
sampling and variational approximation with the statistical platform Stan using the R pack-
age rstan (Carpenter et al. (2017), Stan Development Team (2020)). For the MCMC sampling
we used the Hamiltonian Monte Carlo with no-U-turn sampler (e.g., Hoffman and Gelman
(2014)) which is the default algorithm in Stan. For variational inference, Stan assumes a
Gaussian approximating distribution on a transformation of the parameters to a continuous
domain (Kucukelbir et al. (2015)). We provide brief definitions of the algorithms and the Stan
code in an online supplement Schafer, Wikle and Hooten (2022). Note that the costs-to-go
are only estimable up to a constant, due to the exponential in (7), and, therefore, all resulting
mean costs-to-go functions are shifted to have a minimum value of 0 which typically corre-
sponds to a terminal state or a state in which an agent incurs no cost indefinitely (Todorov
(2009)).

3. SPP LMDP. We illustrate the LMDP for collective movement using the Vicsek et
al. (1995) SPP model. The SPP model is an ABM for flocking behavior in which collective
behavior is induced by an agent assuming the mean direction of agents within its neighbor-
hood (Vicsek et al. (1995)). Therefore, the rule governing the agent’s behavior is based on
the assumption that a collective agent will travel in the same direction as the group.
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We consider the dynamics of the SPP model for agents n = 1, . . . ,N , as formulated by
Sošić et al. (2017), for the direction θnt and location (xnt , ynt ) as

θn(t+1) = 〈θnt 〉ρ + εnt , εnt ∼ N
(
0, σ 2)

,

xn(t+1) = xnt + vnt · cos(θnt ),

yn(t+1) = ynt + vnt · sin(θnt ),

(9)

where the agent heads in the mean direction, 〈θnt 〉ρ , of other agents, including itself, within
a neighborhood of radius ρ with a speed of vnt . The local misalignment of an agent is the
difference between the mean neighborhood direction and the agent’s direction, 〈θnt 〉ρ − θnt .
Sošić et al. (2017) formulated the SPP model as an MDP with 13 discrete actions correspond-
ing to turning angles, φ ∈ [−60◦,−50◦, . . . ,60◦] and a discrete state space defined by a grid
of local misalignment values. The local misalignment grid was defined by J = 36 equally
sized bins of 10 degrees with centers s = (±180◦,−170◦, . . . ,170◦)′. An agent of the SPP,
MDP chooses a turning angle, φnt , given the observation of local misalignment bin, snt =∑

si∈s si ∗ I(si − 5◦ ≤ 〈θnt 〉ρ − θnt ≤ si + 5◦), where I(·) is an indicator function. The distri-
bution of the next direction, given the turning angle, is θn(t+1)|φnt ∼ N(θnt + φnt , σ

2). In our
simulation we assumed a constant velocity of 1 (i.e., vnt = 1 ∀n = 1, . . . ,N; t = 1, . . . , T ),
fixed interaction radius ρ = 0.1, and turning angle standard deviation of 10 degrees (i.e.,
σ = 10°). All angular differences were calculated with the two argument arc-tangent func-
tion.

We defined the state cost function, R, as

(10) ri =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if si = 0°,

2.5 if |si | ≤ 15°,

4 if |si | ≤ 25°,

5 otherwise,

where the state si ∈ s, i = 1, . . . , J , corresponds to the center of the local misalignment bin.
The costs were chosen based on the results of Sošić et al. (2017) which estimated the lowest
cost for si = 0° and monotonically increasing costs with increasing |si | by applying an inverse
model to trajectories generated by (9). Additionally, the costs were constrained in magnitude
such that exp(−ri) was not numerically 0 (Todorov (2009)).

To embed the MDP of Sošić et al. (2017) into the LMDP framework, as outlined by
Todorov (2007), we summed over the turning angle action space to derive the transition
probabilities for changes in local misalignment states at time t and t + 1. We assumed agents
synchronously chose their next state, so the group orientation does not depend on the order of
agents’ decisions. The turning angle was, therefore, equivalent to the change in state (i.e., the
difference in states was the difference in directions); this implied a continuous transition dis-
tribution for the next state, given the turning angle, sn(t+1)|φnt ∼ N(snt +φnt , σ

2), which can
be discretized to provide a transition probability function over the discrete grid, defined by s.
The LMDP passive state transition probabilities were constructed by summing over the con-
ditional transition probabilities, given the discrete turning angles, φ ∈ [−60◦,−50◦, . . . ,60◦],
of the MDP. Therefore, the passive dynamics between the discrete grid cell centers si and sj
are a discretization of a mixture of normal distribution functions,

(11) p̄(sj |si) ∝ ∑
φ∈[−60◦,−50◦,...,60◦]

	

(
sj − si − φ + 5◦

10◦
)

− 	

(
sj − si − φ − 5◦

10◦
)
,

where 	 is the standard normal cumulative distribution function and the discretization length
5° was determined by the half-length of the state grid cells. The passive dynamics were
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then normalized to have row sums equal to one (i.e.,
∑

j∈S p̄(sj |si) = 1). Lastly, as stated
in Section 2.1, the true costs-to-go can be calculated as the solution to an eigenproblem.
The SPP LMDP setup defines an infinite-horizon problem without an absorbing state (i.e.,
p̄ii �= 1 for any i = 1, . . . , J ), so we choose to consider the average cost LMDP, defined by
the following system of equations:

(12) z = 1

λ
diag

(
exp(−r)

)
P̄z,

where z = exp(−v) is a J -dimensional vector referred to as the desirability function,
diag(exp(−r)) is a J × J diagonal matrix with the elementwise exponentiation of the nega-
tive state costs, exp(−r) = (exp(−r1), . . . , exp(−rJ ))′, on the main diagonal, P̄ is the J × J

passive transition probability matrix, λ is the principal eigenvalue of [diag(exp(−r))P̄], and
− log(λ) corresponds to the average cost of each time step (see supplementary information
in Todorov (2009)). The scaling by the largest eigenvalue allows for numerical stability in
estimation. The system of equations is solved by initializing the vector z to all ones, z = 1,
and repeatedly multiplying by [ 1

λ
diag(exp(−r))P̄] until convergence. This method is referred

to as Z-iteration in the LMDP literature (Todorov (2009)). When applied to the SPP exam-
ple here, the true cost-to-go function is symmetric about 0° with larger relative differences
between states near 0° than states with local misalignment greater in absolute value than 25°
(Figure 1). Because the states with local misalignment values greater in absolute value than
25° have the same immediate cost (10), the differences are related to the average number of
time steps it takes an agent to be able to turn toward the group, as defined by the passive
dynamics; the passive dynamics do not allow an agent to turn more than 90° in one step.

We simulated from the calculated optimal policy with 200 agents for 100 time points and
calculated the state transition frequencies using the following algorithm:

1. Initialize (xn0, yn0, θn0), and calculate local misalignment to determine grid cell sn0 for
n = 1, . . . ,200.

2. Repeat the following for t = 1, . . . ,100 synchronously for n = 1, . . . ,200:

(a) Sample next local misalignment from p∗(·|sn(t−1) = i).
(b) Calculate turning angle, φnt , as difference between θn(t−1) and 2a.
(c) Update location (xnt , ynt ) according to (9), θnt = θn(t−1) +φnt , and local misalign-

ment snt .

We estimated the costs-to-go with full MCMC sampling and variational approximation for
comparison. Additionally, we estimated the costs-to-go for each state separately (e.g., X = I)
and with Gaussian basis functions with centers on every other grid cell to reduce the state
dimension by a factor of 2.

From Figure 1 it is evident that all modeling scenarios estimated the relative true costs-to-
go and the estimates from MCMC sampling capture more uncertainty than those from vari-
ational approximation. It appears the uncertainty of the estimates increases with an increase
in local misalignment and the difference is more apparent for the variational approximation.
This pattern generally reflects the amount of data; there were more transitions to states with
smaller local misalignment. Furthermore, there were no transitions to states in grid cells cen-
tered on −170°, −150°, 170°, ±180° misalignment.

The LMDP framework for IRL allows for efficient estimation of the state costs ri from the
estimation of the cost-to-go by rearranging (12),

(13) ri = log(λ) + vi + log
(∑

j

p̄ij exp(−vj )

)
,
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FIG. 1. Estimated cost-to-go function for a Vicsek et al. (1995) SPP model using LMDP IRL for Bayesian
MCMC sampling and variational approximation under known passive dynamics. The models either used Gaussian
basis functions (dashed lines) or independent state parameters (solid lines). The shaded regions correspond to the
95% C.I. The open circles is the true cost-to-go function calculated from equation (12). The mean and true
cost-to-go functions were shifted to have minimum 0.

for i = 1, . . . , J . Figure 2 shows that the estimated costs from the mean cost-to-go functions
in Figure 1 generally match the arbitrary state costs defined in (10).

For the MCMC estimation with bisquare basis functions, there is an increase in cost-to-
go and uncertainty at the boundaries. The obvious spike at 180° is the cost-to-go for the
state defined by local misalignment less than −175° and greater than 175°. The Gaussian
basis functions were not defined on a circle, but rather the continuous real line and could be

FIG. 2. Estimated state costs for a Vicsek et al. (1995) SPP model using LMDP IRL for Bayesian MCMC
sampling and variational approximation under known passive dynamics. The models either used Gaussian basis
functions (dashed lines) or independent state parameters (solid lines). The open circles are the true state costs
from (10).
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contributing to the lack of smoothness near the boundary. Additionally, some flexibility is
lost in estimation by reducing the dimensionality of the state space with the basis functions.

4. Guppy application. We used the data publicly available from Bode et al. (2012) on
an experiment involving a captive population of guppies (Poecilia reticulata). Groups of 10
same sex guppies were filmed from above in a square tank with one corner containing gravel
and shade which is defined by a point. The shaded corner provided shelter and is hypothesized
to be attractive to the guppies. The guppies were released in the tank in the opposite corner.
Bode et al. (2012) determined positions from video tracking software at a rate of 10 frames
per second. The data made available by Bode et al. (2012) consist of movement trajectories
truncated to the time points when all individuals were moving, until one guppy reached the
shaded target area; the range of time series was 20-285 frames. There were 26 experiments
with 12 experiments consisting of all females and 14 males (Figure 3). We used trajectories
from all experiments to estimate the cost-to-go functions based on movement headings.

FIG. 3. Trajectories of all 26 experiments of groups of 10 guppies in a tank. The target is located at the point
marked “T.” The panel labels are “experiment number,” sample size. Experiments in first two rows are female
(fm) groups and rows three to five are male (ml) groups.
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FIG. 4. An illustration of the state for a guppy at the location marked by a star. The large solid arrow indicates
the guppy’s heading. The dashed arrow indicates the straight-line direction from the guppy’s location, and the
angle marked by 1 is the guppy’s target misalignment (i.e., how much the guppy should change its current heading
to face the target). The dotted line indicates the current average group direction as calculated from all of the solid
arrows (including itself), and the angle marked by 2 is the guppy’s local misalignment (i.e., how much the guppy
should change its current heading to head in the average direction). The angles labelled 1 and 2 would have
opposite signs where turning angle 1 would result in a turn to the right and turning angle 2 would result in a turn
to the left.

We defined an LMDP for the guppy trajectories with a discrete state space of local mis-
alignment and target misalignment. Local misalignment was defined as in Section 3, and tar-
get misalignment was defined as the difference between the current heading and the direction
to the target point (Figure 4). We rescaled all pixel locations to the unit square and calculated
the local misalignment between an individual and all other individuals. The assumption of in-
teraction with all other agents is reasonable, as the movement was bounded and there were no
visual obstructions outside the target area (Bode et al. (2012)). The two misalignment states
were discretized using the same 36 bins of length 10°, as in the previous section, resulting in
a discretized grid of J = 36×36 states. We assume a fixed discount factor of 1 (i.e., all future
costs/rewards are not discounted). For state transitions we assumed synchronous updates, as
in the SPP simulation. Across the 26 experiments there were 7816 unique state transitions.
Estimation of parameters in the guppy application was done by variational approximation
due to the size of the state space.

For the first set of estimated costs-to-go, we assumed the passive dynamics to be discrete
uniform (e.g., p̄ij ∝ 1 for all i, j = 1, . . . , J ). The features, X, considered were the identity
matrix and 819 multiresolution bisquare basis functions generated uniformly within the grid-
ded state space by the R package FRK (Zammit-Mangion (2020)), referred to as “Identity”
and “Bisquare,” respectively, in Figure 5. The results shown in Figure 5 show a similar pattern
among feature matrices with the bisquare basis functions providing more smoothing across
the state space. In general, the results suggest the guppies perceived less cost for aligning with
other guppies, as the low costs-to-go in the center of the figure are concentrated around 0°,
and there is more flexibility in target alignment, as the low costs-to-go have more spread along
the target misalignment axis. When comparing the two feature matrices (Figure 5), there is
more contrast between the estimated cost-to-go function values, estimated with bisquare basis
functions, than the identity matrix that is likely attributable to the dimension reduction.

To assess the sensitivity to the assumed passive dynamics, we estimated the costs-to-go
under a set of passive dynamics corresponding to an independent, normal random walk on
the gridded state space with standard deviation 90°. The standard deviation was chosen to be
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FIG. 5. Variational posterior mean costs-to-go for the guppy experiments for a gridded state space of target
and local misalignment across two sets of features: full (identity matrix) and bisquare basis functions. The passive
dynamics are assumed to be discrete uniform, and the mean estimated costs have been shifted to have a minimum
of 0. A lower value associated with the legend for v indicates states with lower costs-to-go and, therefore, states
to which the guppies are estimated to choose to transition.

large enough to ensure all nonzero transition probabilities to use all of the observed data. The
variational posterior mean and standard deviation for the costs-to-go are shown in Figure 6.
Comparing to the previously estimated states, the variational posterior mean cost-to-go func-
tions are similar. The variational posterior standard deviations reflect the pattern of observed
frequencies with states more frequently observed having smaller uncertainty.

In Figures 5 and 6 the diagonal pattern can be attributed to the corners, appearing far
when plotted in the 2-D plane, but are close together in circular space, so they have similar
costs-to-go.

FIG. 6. Variational posterior mean costs-to-go (left panel) and standard deviations (right panel) for the guppy
experiments for a gridded state space of target and local misalignment with passive dynamics assumed to be a
normal random walk and bisquare basis functions. The mean estimated costs-to-go have been shifted to have a
minimum of 0. A lower value associated with the legend for v indicates states with lower costs-to-go and therefore
states to which the guppies are estimated to choose to transition.
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FIG. 7. Marginal costs-to-go of target and local misalignment for the guppy experiments for a gridded state
space of target and local misalignment with passive dynamics assumed to be a normal random walk and bisquare
basis functions. The mean estimated costs have been shifted to have a minimum of 0. The lower costs-to-go
increase the probability of transitioning into that state.

The marginal costs-to-go, based on the estimates in Figure 6, are shown in Figure 7,
where the costs-to-go are calculated as the mean across all values of the other state vari-
able and shifted to have a minimum of 0. There is evidence of collective alignment, as
shown in the local misalignment costs-to-go function, due to the minimum cost occur-
ring at 0° with gradual increase as misalignment increases in absolute value. Furthermore,
the guppies appear to perceive local misalignments from −15° to 45° as equally optimal
which can be contrasted with the sharp dip in cost-to-go for 0° local misalignment in the
SPP simulation Figure 1. The dip in the target misalignment cost-to-go function corre-
sponds to the grid cells, defined by −55° to −45° and −45° to −35°, suggesting it is
less costly to approach the upper corner with the target 55° to 35° to the right. From in-
spection of the observed data shown in Figure 3, it appears many of the guppies moved
across the tank to the left first which would require a right turn to decrease the target mis-
alignment. A symmetry constraint could be applied to the costs-to-go by considering the
absolute target alignment if it were assumed to be equally costly to approach from the
right or left. Simulations of an example of guppy movement and estimated decision mak-
ing from the costs-to-go in Figure 6 can be found at https://github.com/schafert/inverse-irl-
guppy.

5. Discussion. Collective motion from generative local interaction rules limit possible
behavior, but the (L)MDP framework extends the definition of the agent to include perception
and internal processes (Ried, Müller and Briegel (2019)). By estimating the state costs-to-go
or value functions, system specific local rules can be estimated.

https://github.com/schafert/inverse-irl-guppy
https://github.com/schafert/inverse-irl-guppy
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Our analysis of the captive guppy populations confirms previous works that find evi-
dence of social interactions between individuals (Bode et al. (2012), McDermott, Wikle
and Millspaugh (2017), Russell, Hanks and Haran (2016)). However, instead of defin-
ing a set of behavioral rules a priori, we estimated the decision-making mechanisms.
Our results suggested the captive guppies value collective movement more than tar-
geted movement toward shelter which was not previously explored by Russell, Hanks
and Haran (2016) or McDermott, Wikle and Millspaugh (2017). Furthermore, the behav-
ioral mechanisms determined by the cost-to-go functions were nonlinear and nonsymmet-
ric.

In general, our inference is constrained to relative differences in costs-to-go. This is
similar to the estimation of relative selection probabilities in animal resource selection
modeling (Hooten et al. (2017), Hooten et al. (2020)), and, therefore, IRL can still pro-
vide useful inference. However, the SPP simulation demonstrated the ability to recover
the magnitude of the true state costs and the true magnitude of the cost-to-go func-
tion.

It may be possible to improve the inference for the guppy data by relaxing the assumptions,
estimating passive dynamics, and expanding the state space to include other features. We
tested sensitivity of inference to choice of passive dynamics with two simple models. We did
not detect a substantial difference, but for full quantification of uncertainty, joint estimation
of passive dynamics could be considered. In future work, estimation of the passive dynamics
parameters such as the random walk variance may be helpful. Additionally, the state space
could include features based on physical distance to assess hypotheses about zonal collective
movement which is a primary feature of collective movement ABMs (e.g., Couzin et al.
(2002)). A feature based on distance to target could similarly allow for interaction with the
target to vary with location to relax the assumption that an individual interacts with the target
in the same manner everywhere.

In the SPP simulation and guppy application, we assumed a discount factor of 1 which
may be realistic for trajectories from such a short time frame. For observations spanning
longer periods of time, it would be more realistic to assume there is some loss of memory
about past states which would correspond to a discount factor less than 1. Additionally, the
discount factor can also be interpreted as the degree to which agents behave optimally (Choi
and Kim (2014)). It might be expected that observations from animals in the wild are sub-
ject to more stochasticity than experimental settings and, therefore, do not always behave
optimally.

Another modeling choice was the grid size of the discrete state space. There is a prece-
dence for discrete state spaces in animal movement modeling (Hooten et al. (2010), Hanks,
Hooten and Alldredge (2015)). Biologically, the assumption of a discrete state space as-
sumes the individual perceives values within the range of the bin as equally costly. For
the guppy experiments the evaluation of the state at a 10° resolution could be adjusted
given expert opinion or model based estimates of navigational ability (Mills Flemming et
al. (2006)).

There exist several avenues for extensions of the model to accommodate the behavior
of free-ranging animals. First, alternative animal movement models could be proposed for
the passive dynamics (Hooten et al. (2017)). Second, covariates could be included on either
the costs-to-go or passive dynamic models which would allow for heterogeneous decision
making. Another interesting avenue would be to explore the methodology related to subtask
completion for LMDPs (Earle, Saxe and Rosman (2018)). For example, a group of animals
on the landscape navigating to a destination may require the completion of subtasks, such as
traversing wildlife corridors.
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APPENDIX: LMDP NOTATION

TABLE 1
LMDP notation used throughout the manuscript in order of appearance

Symbol Definition

S Discrete state space with values {1, . . . , J } and observations are denoted as s

P̄ J × J passive transition probability matrix
p̄ij An element of P̄; passive transition probability from state i to state j

γ Discount factor in [0,1]
R State cost function with values denoted ri for i ∈ S

u Continous controls which define the policy (1)
uij An element of u
pij (uij ) Controlled transitions or policy defined by continuous controls and passive dynamics (1)
p∗(st = j |si = i) Same as pij (uij )

l(·,u) State and control cost function; it is the sum of the state cost R and KL divergence between
passive and controlled transition probabilities (2)

v Cost-to-go function or the expected discounted future state control costs (3) with values
denoted by vi for i ∈ S
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SUPPLEMENTARY MATERIAL

Stan algorithms and code (DOI: 10.1214/21-AOAS1529SUPPA; .pdf). Definitions of the
HMC, NUTS, and variational approximation algorithms and Stan model code.

Guppy movement animations (DOI: 10.1214/21-AOAS1529SUPPB; .zip). Animations
of the observed movement for one guppy experiment along with simulated trajectories from
the learned policy: stochastic and least cost behavior.

REFERENCES

ARORA, S. and DOSHI, P. (2021). A survey of inverse reinforcement learning: Challenges, methods and progress.
Artificial Intelligence 297 103500. MR4241224 https://doi.org/10.1016/j.artint.2021.103500

BELLMAN, R. (1957). Dynamic Programming. Princeton Univ. Press, Princeton, NJ. MR0090477
BODE, N. W., FRANKS, D. W., WOOD, A. J., PIERCY, J. J., CROFT, D. P. and CODLING, E. A. (2012).

Distinguishing social from nonsocial navigation in moving animal groups. Amer. Nat. 179 621–632.
CARPENTER, B., GELMAN, A., HOFFMAN, M. D., LEE, D., GOODRICH, B., BETANCOURT, M., BRUBAKER,

M., GUO, J., LI, P. et al. (2017). Stan: A probabilistic programming language. J. Stat. Softw. 76.
CHOI, J. and KIM, K.-E. (2011). Map inference for Bayesian inverse reinforcement learning. In Advances in

Neural Information Processing Systems 1989–1997.
CHOI, J. and KIM, K.-E. (2014). Hierarchical Bayesian inverse reinforcement learning. IEEE Trans. Cybern. 45

793–805.
COUZIN, I. D., KRAUSE, J., JAMES, R., RUXTON, G. D. and FRANKS, N. R. (2002). Collective memory and

spatial sorting in animal groups. J. Theoret. Biol. 218 1–11. MR2027139 https://doi.org/10.1006/jtbi.2002.
3065

https://doi.org/10.1214/21-AOAS1529SUPPA
https://doi.org/10.1214/21-AOAS1529SUPPB
http://www.ams.org/mathscinet-getitem?mr=4241224
https://doi.org/10.1016/j.artint.2021.103500
http://www.ams.org/mathscinet-getitem?mr=0090477
http://www.ams.org/mathscinet-getitem?mr=2027139
https://doi.org/10.1006/jtbi.2002.3065
https://doi.org/10.1006/jtbi.2002.3065


1012 T. L. J. SCHAFER, C. K. WIKLE AND M. B. HOOTEN

DVIJOTHAM, K. and TODOROV, E. (2010). Inverse optimal control with linearly-solvable MDPs. In ICML 335–
342.

EARLE, A. C., SAXE, A. M. and ROSMAN, B. (2018). Hierarchical subtask discovery with non-negative matrix
factorization. In International Conference on Learning Representations.

FINN, C., LEVINE, S. and ABBEEL, P. (2016). Guided cost learning: Deep inverse optimal control via policy
optimization. In International Conference on Machine Learning 49–58.

HANKS, E. M., HOOTEN, M. B. and ALLDREDGE, M. W. (2015). Continuous-time discrete-space models for
animal movement. Ann. Appl. Stat. 9 145–165. MR3341111 https://doi.org/10.1214/14-AOAS803

HOFFMAN, M. D. and GELMAN, A. (2014). The no-U-turn sampler: Adaptively setting path lengths in Hamilto-
nian Monte Carlo. J. Mach. Learn. Res. 15 1593–1623. MR3214779

HOOTEN, M. B., SCHARF, H. R. and MORALES, J. M. (2019). Running on empty: Recharge dynamics from
animal movement data. Ecol. Lett. 22 377–389. https://doi.org/10.1111/ele.13198

HOOTEN, M., WIKLE, C. and SCHWOB, M. (2020). Statistical implementations of agent-based demographic
models. Int. Stat. Rev. 88 441–461. MR4176185 https://doi.org/10.1111/insr.12399

HOOTEN, M. B., JOHNSON, D. S., HANKS, E. M. and LOWRY, J. H. (2010). Agent-based inference for ani-
mal movement and selection. J. Agric. Biol. Environ. Stat. 15 523–538. MR2788638 https://doi.org/10.1007/
s13253-010-0038-2

HOOTEN, M. B., JOHNSON, D. S., MCCLINTOCK, B. T. and MORALES, J. M. (2017). Animal Movement:
Statistical Models for Telemetry Data. Chapman and Hall/CRC, Boca Raton, FL.

HOOTEN, M. B., LU, X., GARLICK, M. J. and POWELL, J. A. (2020). Animal movement models with mecha-
nistic selection functions. Spat. Stat. 37 100406. MR4109595 https://doi.org/10.1016/j.spasta.2019.100406

JIN, M., DAMIANOU, A., ABBEEL, P. and SPANOS, C. (2017). Inverse reinforcement learning via deep Gaussian
process. In Conference on Uncertainty in Artificial Intelligence.

KANGASRÄÄSIÖ, A. and KASKI, S. (2018). Inverse reinforcement learning from summary data. Mach. Learn.
107 1517–1535. MR3835277 https://doi.org/10.1007/s10994-018-5730-4

KOHJIMA, M., MATSUBAYASHI, T. and SAWADA, H. (2017). Generalized inverse reinforcement learning with
linearly solvable MDP. In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases 373–388. Springer, Berlin.

KUCUKELBIR, A., RANGANATH, R., GELMAN, A. and BLEI, D. (2015). Automatic variational inference in
Stan. In Advances in Neural Information Processing Systems 568–576.

LEE, K., RUCKER, M., SCHERER, W. T., BELING, P. A., GERBER, M. S. and KANG, H. (2017). Agent-based
model construction using inverse reinforcement learning. In 2017 Winter Simulation Conference (WSC) 1264–
1275. IEEE.

MCDERMOTT, P. L., WIKLE, C. K. and MILLSPAUGH, J. (2017). Hierarchical nonlinear spatio-temporal
agent-based models for collective animal movement. J. Agric. Biol. Environ. Stat. 22 294–312. MR3692466
https://doi.org/10.1007/s13253-017-0289-2

MILLS FLEMMING, J. E., FIELD, C. A., JAMES, M. C., JONSEN, I. D. and MYERS, R. A. (2006). How well
can animals navigate? Estimating the circle of confusion from tracking data. Environmetrics 17 351–362.
MR2239677 https://doi.org/10.1002/env.774

NG, A. Y. and RUSSELL, S. J. (2000). Algorithms for inverse reinforcement learning. In ICML 663–670.
PINSLER, R., MAAG, M., ARENZ, O. and NEUMANN, G. (2018). Inverse reinforcement learning of bird flocking

behavior. ICRA Swarms Workshop.
RAMACHANDRAN, D. and AMIR, E. (2007). Bayesian inverse reinforcement learning. In IJCAI 7 2586–2591.
RATLIFF, N. D., BAGNELL, J. A. and ZINKEVICH, M. A. (2006). Maximum margin planning. In Proceedings

of the 23rd International Conference on Machine Learning 729–736.
RIED, K., MÜLLER, T. and BRIEGEL, H. J. (2019). Modelling collective motion based on the principle of

agency: General framework and the case of marching locusts. PLoS ONE 14 e0212044. https://doi.org/10.
1371/journal.pone.0212044

RUSSELL, J. C., HANKS, E. M. and HARAN, M. (2016). Dynamic models of animal movement with spa-
tial point process interactions. J. Agric. Biol. Environ. Stat. 21 22–40. MR3459292 https://doi.org/10.1007/
s13253-015-0219-0

SCHAFER, T. L., WIKLE, C. K. and HOOTEN, M. B. (2022). Supplement to “Bayesian inverse reinforcement
learning for collective animal movement.” https://doi.org/10.1214/21-AOAS1529SUPPA, https://doi.org/10.
1214/21-AOAS1529SUPPB

SCHARF, H. R., HOOTEN, M. B., FOSDICK, B. K., JOHNSON, D. S., LONDON, J. M. and DURBAN, J.
W. (2016). Dynamic social networks based on movement. Ann. Appl. Stat. 10 2182–2202. MR3592053
https://doi.org/10.1214/16-AOAS970

SCHARF, H. R., HOOTEN, M. B., JOHNSON, D. S. and DURBAN, J. W. (2018). Process convolution approaches
for modeling interacting trajectories. Environmetrics 29 e2487. MR3799912 https://doi.org/10.1002/env.2487

http://www.ams.org/mathscinet-getitem?mr=3341111
https://doi.org/10.1214/14-AOAS803
http://www.ams.org/mathscinet-getitem?mr=3214779
https://doi.org/10.1111/ele.13198
http://www.ams.org/mathscinet-getitem?mr=4176185
https://doi.org/10.1111/insr.12399
http://www.ams.org/mathscinet-getitem?mr=2788638
https://doi.org/10.1007/s13253-010-0038-2
http://www.ams.org/mathscinet-getitem?mr=4109595
https://doi.org/10.1016/j.spasta.2019.100406
http://www.ams.org/mathscinet-getitem?mr=3835277
https://doi.org/10.1007/s10994-018-5730-4
http://www.ams.org/mathscinet-getitem?mr=3692466
https://doi.org/10.1007/s13253-017-0289-2
http://www.ams.org/mathscinet-getitem?mr=2239677
https://doi.org/10.1002/env.774
https://doi.org/10.1371/journal.pone.0212044
http://www.ams.org/mathscinet-getitem?mr=3459292
https://doi.org/10.1007/s13253-015-0219-0
https://doi.org/10.1214/21-AOAS1529SUPPA
https://doi.org/10.1214/21-AOAS1529SUPPB
http://www.ams.org/mathscinet-getitem?mr=3592053
https://doi.org/10.1214/16-AOAS970
http://www.ams.org/mathscinet-getitem?mr=3799912
https://doi.org/10.1002/env.2487
https://doi.org/10.1007/s13253-010-0038-2
https://doi.org/10.1371/journal.pone.0212044
https://doi.org/10.1007/s13253-015-0219-0
https://doi.org/10.1214/21-AOAS1529SUPPB


COLLECTIVE MOVEMENT INVERSE REINFORCEMENT LEARNING 1013

SOSIC, A., ZOUBIR, A. M. and KOEPPL, H. (2018). A Bayesian approach to policy recognition and state rep-
resentation learning. IEEE Trans. Pattern Anal. Mach. Intell. 40 1295–1308. https://doi.org/10.1109/TPAMI.
2017.2711024
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