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Summary

1. Biological monitoring programmes are increasingly relying upon large volumes of citizen-science data to

improve the scope and spatial coverage of information, challenging the scientific community to develop design

andmodel-based approaches to improve inference.

2. Recent statistical models in ecology have been developed to accommodate false-negative errors, although cur-

rent work points to false-positive errors as equally important sources of bias. This is of particular concern for the

success of any monitoring programme given that rates as small as 3% could lead to the overestimation of the

occurrence of rare events by as much as 50%, and even small false-positive rates can severely bias estimates of

occurrence dynamics.

3. We present an integrated, computationally efficient Bayesian hierarchical model to correct for false-positive

and false-negative errors in detection/non-detection data. Our model combines independent, auxiliary data

sources with field observations to improve the estimation of false-positive rates, when a subset of field observa-

tions cannot be validated a posteriori or assumed as perfect. We evaluated the performance of the model across a

range of occurrence rates, false-positive and false-negative errors, and quantity of auxiliary data.

4. The model performed well under all simulated scenarios, and we were able to identify critical auxiliary data

characteristics which resulted in improved inference.We applied our false-positive model to a large-scale, citizen-

science monitoring programme for anurans in the north-eastern United States, using auxiliary data from an

experiment designed to estimate false-positive error rates.Not correcting for false-positive rates resulted in biased

estimates of occupancy in 4 of the 10 anuran species we analysed, leading to an overestimation of the average

number of occupied survey routes by asmuch as 70%.

5. The framework we present for data collection and analysis is able to efficiently provide reliable inference for

occurrence patterns using data from a citizen-sciencemonitoring programme.However, our approach is applica-

ble to data generated by any type of research and monitoring programme, independent of skill level or scale,

when effort is placed on obtaining auxiliary information on false-positive rates.
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Introduction

Biological monitoring programmes are fundamental to much

of our understanding about the natural world and play an inte-

gral role in biodiversity conservation by providing valuable

knowledge about the state of ecosystems and populations

(Jones 2011). To increase the spatial coverage of information,

many monitoring programmes are solely based on, or have

incorporated, data collected by the general public (i.e. citizen

scientists) (Dickinson et al. 2012). For example, the North

American Breeding Bird Survey (BBS), an avian monitoring

programme made up of 2800 volunteer survey routes, gener-

ates the largest source of information used to determine the

status and trends of bird populations for Canada and the

United States (Sauer, Fallon & Johnson 2003; Sauer & Link

2011). These and other citizen-science programmes have

improved our understanding of the presence, spread and

response to management of invasive species (Hooten et al.

2007; Gallo & Waitt 2011) and emerging diseases (Hosseini,

Dhondt & Dobson 2004).

Global trends of ecosystem degradation and loss of biodi-

versity (Hooper et al. 2012), coupled with uncertainty related

to changing environmental conditions (Bellard et al. 2012) and*Correspondence author. E-mail: vr45@cornell.edu

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society

Methods in Ecology and Evolution 2016, 7, 900–909 doi: 10.1111/2041-210X.12542



a need to make observations over large spatial spatial extents

with limited resources, are challenging the scientific commu-

nity to develop efficient ways of using large volumes of citizen-

science data to address these and other emerging issues. As

with any scientific study, accuracy may be improved by

addressing aspects of sampling design (e.g. selection of study

sites, training observers) and those which are model based (e.g.

accounting for heterogeneity in detection). Much effort has

been placed on design-based suggestions for improving biolog-

ical monitoring programmes in general (Nichols & Williams

2006), which includes a wealth of sampling design and data

analysis techniques to account for key sources of heterogeneity

in our observations (Williams, Nichols & Conroy 2002;

Mackenzie & Royle 2005; Mackenzie et al. 2006). However,

even the best study design may require model-based

approaches to improve accuracy, as not all heterogeneity can

be accommodated through improved sampling designs

(Pacifici et al. 2015). Sources of heterogeneity are common in

all data based on the observation of organisms, even when col-

lected by professional scientists or well-trained technicians

(McClintock et al. 2010b). However, the skill level of citizen-

science volunteers can be more variable and harder to control,

increasing the likelihood of errors such as false-positive detec-

tions (Farmer, Leonard &Horn 2012; Hochachka et al. 2012).

As volunteer-based programmes increase in popularity, the

development of model-based approaches to improve accuracy

of large volumes of citizen-science data is key to increase the

level of trust, scope and applicability of the resulting inference

(Dickinson et al. 2012; Tulloch et al. 2013).

The value of any type of monitoring data depends on how

these data can be used to infer true occurrence or absence of an

event of interest (Farmer, Leonard & Horn 2012). Therefore,

model-based approaches aimed at improving accuracy of

monitoring data should focus on ways to account for known

sources of bias within this context, such as the probability of

missing an event that occurred, and the probability of report-

ing an event that did not occur. We illustrate the need to cor-

rect for these defined sources of error using Bayes’ theorem,

which is a natural way to characterize the probability structure

of the occurrence or absence of an event (Efron 2013; Hobbs &

Hooten 2015). For example, if interest is in estimating the

probability of an event (e.g. the presence of a disease), when

interpreting results from testing a sample for a specific disease,

the probability that the sampled individual has the disease,

given that the individual tested positive for the disease, can be

described as

pðAjBÞ ¼ pðBjAÞpðAÞ
pðBjAÞpðAÞ þ pðBjAcÞpðAcÞ eqn 1

where p(B|A) is the probability of a positive detection of the

disease (B) given that the individual has the disease (A), p(A) is

the prevalence of the disease in the sampled population,

p(B|Ac) is the probability of testing positive for the disease

when the individual does not have the disease, and p(Ac) is the

probability of being healthy (Fig. 1).

While accounting for both false-positive [p(B|Ac)] and false-

negative [p(B|A)] errors is common in epidemiology, most

work on the application of Bayes’ theorem in ecology has

focused on the detection of an event given that has occurred, p

(B|A) (MacKenzie et al. 2002; MacKenzie 2006), and there is

an extensive body of work that examines how ignoring false-

negative errors influence our interpretation of key processes in

population and community dynamics (Risk, de Valpine &

Beissinger 2011; Ruiz-Gutierrez & Zipkin 2011). As a result,

data collection and analysis techniques have been developed

that allow for the direct estimation of p(B|A), including other

sources of heterogeneity using occupancy models (Mackenzie

et al. 2006). The main modification is the addition of repeated

observations within sampling periods, during which a site is

assumed to be closed to changes in the true occurrence of an

event. This repeated sampling design is suggested as the best

approach for monitoring the state of ecosystems and biodiver-

sity (Elphick 2008; Jones 2011), and despite their increasing

popularity in applied ecology, few citizen-science monitoring

programmes result in data appropriate for analysis using an

occupancy framework (e.g. Kery et al. 2010; van Strien et al.

2010).

Less attention has been focused on ways to account for the

probability of mistakenly detecting an event that has not

occurred, p(B|Ac), or false-positive probability, aside from a

few notable exceptions (e.g. Royle & Link 2006; McClintock

et al. 2010a;Miller et al. 2012). So far, this work indicates that

false-positive errors are also important sources of bias, where

rates as low as p(B|Ac) = 0�01 can cause the overestimation of

the probability of occurrence of an event by as much as 30%

(Royle & Link 2006). This is of considerable concern given the

mounting evidence for the presence of false-positive errors

across diverse systems, where rates as high as p(B|Ac) = 0�11
have been estimated in avian (Simons et al. 2007) and anuran

studies (McClintock et al. 2010a). False-positive errors are

likely to occur in situations where it is difficult to distinguish

between individual observed events, such as species with simi-

lar calls (e.g. grey treefrogs in the Eastern US), or morphology

(e.g. Contpus sp. flycatchers). Given the increasing trend to

monitor biological diversity with the help of citizen scientists,

the ability to reduce the occurrence of, and correct for, both

false-positive and false-negative errors are critical for future

large-scale monitoring programmes, in particular when the

objective is to detect the occurrence of uncommon or isolated

events (e.g. introduced species on the invasion front) or to

monitor changes in a system. False-positive errors have also

been shown to bias our understanding of fundamental ecologi-

cal processes such as species turnover, colonization and extinc-

tion (McClintock et al. 2010a,b; Miller et al. 2013). The main

challenge with correcting for false-positive errors is that, unlike

the false-negative probability, design-based modifications

alone do not provide enough information to estimate p(B|Ac)

without the need for additional field sampling information

(McClintock et al. 2010b; Farmer, Leonard&Horn 2012).

Examples of approaches to deal with false-positive errors

include limiting the inclusion of a subset of unreliable data (e.g.

Molinari-Jobin et al. 2012) or eliminating them altogether

(e.g. Hochachka et al. 2012) from analyses. More formal

approaches range from categorizing observations based on
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their degree of reliability, to the development of statistical

models that formally deal with uncertainty in observations (see

detailed summaries in Miller et al. 2015; Chambert, Miller &

Nichols 2015). Chambert, Miller & Nichols (2015) categorized

current false-positive statistical models into three categories,

largely based on how different types of information are mod-

elled to inform false-positive rates. The Site Confirmation

Model relies on being able to assume, or having additional

direct information on, the true state of occurrence of a site for

a subset of observations (e.g. Clement et al. 2014). Several

examples exist of this popular approach, which has been found

to perform well for cases when the probability of occurrence is

high (Miller et al. 2011, 2013). The Calibration Model is

described as incorporating independent sources of data to

inform both false-positive and false-negative probabilities, in

addition to field observation data. Lastly, the Observation

Model Confirmation expands on previous efforts to correct

inference a posteriori (e.g. Gardiner et al. 2012) and uses differ-

ent types of additional information collected during the sam-

pling event to categorize field observations as belonging to one

of four categories: true absences, true presences only, false pos-

itives only and a combination of false absences and presences

(Chambert,Miller &Nichols 2015).

The Site Confirmation Model shares similarities with the

Observation Model Confirmation approach in that a subset of

field observations must be classified as true or false detections,

either by knowing or assuming the true state in the former, or

by confirming the true state based on field observations a pos-

teriori in the latter. The utility of these approaches to biological

monitoring programmes is constrained by the feasibility of

obtaining field data that can be assumed or classified as perfect

(i.e. free from error). Therefore, the Calibration Model is the

most promising approach for long-term or large-scale moni-

toring programmes, for it relaxes the need for additional field-

based information, and could potentially make use of a wide

range of auxiliary sources of information on false-positive

errors (Chambert,Miller &Nichols 2015).

Although data to inform false-positive rates may not be reli-

ably collected by observers conducting standard surveys, they

may be informed by independent data collected outside of the

normal survey design. Such independent sources of informa-

tion on false-positive errors can be collected using experimental

trials to estimate the probability of detecting an event that has

not occurred [i.e. p(B|Ac)]. For example, one can play a number

of bird calls under field or laboratory conditions for a set of

observers, and record how often a species was listed as present

when their call was not actually played. Such information can

be collected at small-scales, such as testing the ability of a few

field technicians working on a specific research project. For lar-

ger monitoring programmes, an online platform could be used

to test thousands of volunteer citizen-science participants

using both visual and auditory test trials (e.g. Frog Quiz:

https://www.pwrc.usgs.gov/frogquiz/). Each trial is assumed

to be independent of other trials, between and among individu-

als, and information about each participant (e.g. skill level,

years of experience) could be further associated as covariates

of false-positive probabilities.

Here, we expand upon the proposed framework for the

Calibration Model with the objective of improving accuracy of

biological monitoring data, including that of citizen-science-

based programmes. We developed a Bayesian hierarchical

model, which incorporates an independent, auxiliary source of

information about false-positive errors to improve inferences

on occurrence patterns. Our model differs from the one pro-

posed by Chambert, Miller & Nichols (2015) in the fact that

we include auxiliary information only for false-positive errors,

which are more difficult to estimate from within-sample data,

and use information collected during repeat sampling events to

inform false-negative rates. In addition, we used a simulation

study to explore the performance of our model across a range

of volumes of independent auxiliary information on false-posi-

tive rates under different scenarios of occupancy, false-negative

and false-positive errors. We further provide the first applica-

tion of a Calibration Model using data from a large-scale, citi-

Fig. 1. The probability structure of Bayes’

theorem for starting out at an initial state and

moving into stateAwith probability p(A). The

true presence of an event (e.g. true state: A)

can be positively observed (B) with probability

p(B|A) or not observed with probability 1 � p

(B|A). From the initial state, the probability of

not being present, or being in stateAc is p(Ac),

and the probability of a false-positive observa-

tion (B) of state A is p(B|Ac), and a negative

observation can occur with the probability

1 � p(B|Ac).
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zen-science monitoring programme and contrasted these infer-

ences with a standard occupancy model to demonstrate the

improvement in inference (i.e. reduced bias) by incorporating

within- and out-of-sample data to jointly inform false detection

rates. Lastly, we discuss potential extensions to themodel, such

as including covariates on effort and observer skill level on

false-positive probabilities.

All full-conditional distributions in our model can be

derived in closed form, allowing for the use of a computation-

ally efficient Gibbs sampling algorithm (Hooten, Larsen &

Wikle 2003; Dorazio & Rodriguez 2012) to sample all model

parameters, reducing the tuning needed to reachmodel conver-

gence. This is especially important to address increasing needs

of large-scale biological monitoring programmes, including

those based on citizen scientists. The false-positive model we

present provides a flexible framework to correct the presence–
absence data for observation errors in the absence of addi-

tional information collected during sampling events and may

be applied to both professional- and citizen-scientist-based

monitoring programmes.

Methods

FALSE-POSIT IVE MODEL

Existing Bayesian hierarchical occupancy models provide the basic

framework to model the probability of occurrence of events (McClin-

tock et al. 2010c).We extend this class of models by incorporating aux-

iliary sources of information to allow for inference on occupancy

probability [p(A|B)], while accounting for known sources of bias

(Fig. 1). In ourmodel, we assume that observation yij is a binomial ran-

dom variable that indicates if a species was detected (yij = 1) or not

detected (yij = 0) at sampling location i, during the jth repeated sam-

pling event within a season, for i = 1, . . ., n and j = 1, . . ., Ji. Similar

to standard occupancymodels, we use a mixture model specification to

describe the data generating mechanism in terms of probability distri-

butions as

yij �
Bernðp0Þ if zi ¼ 0

0 if uij � 0; zi ¼ 1
1 if uij [ 0; zi ¼ 1

8<
: eqn 2

where zi is an indicator of true occurrence of a species at sampling loca-

tion i and uij is a latent normal random variable.We assume that uij ≤ 0

when yij = 0 and zi = 1, and uij > 0 when yij = 1 and zi = 1. We note

that this model specification differs from those of more typical occu-

pancy models (e.g. Royle &Dorazio 2006) in that it uses a latent auxil-

iary variable (i.e. uij) to account for the false-positive or true detection

process, following previous developments described by Dorazio &

Rodriguez (2012) and Johnson et al. (2013). This modification to the

more conventional model structure maintains the original concept of

the detection process, but it can be computationally advantageous to

implement. This becomes increasingly important as the amount of data

increases – as is the case with large-scale citizen-sciencemonitoring pro-

grammes.

Ourmodel further differs in that when an event has not occurred (i.e.

zi = 0), we assume that the probability of observing the event (i.e.

yij = 1|zi = 0) is p0, or the false-positive probability. The current chal-

lenge is that information needed to estimate p0 cannot be derived from

the observational data (i.e. yij) without additional assumptions (Royle

& Link 2006). We address this issue by incorporating an auxiliary data

source to improve estimation of p0, therefore allowing us to differenti-

ate between the true occurrence of an event (zi = 1), and a false-positive

detection of the same (yij = 1|zi = 0). The auxiliary data are derived

from a series of tests or experiments where we know that an event has

not occurred, but it is reported as detected or determined as having

occurred during the experiment. For example, suppose that nc is the

total number of audio trials where observers are asked to identify calls

of individual species from a predefined candidate set of species. Under

this scenario, c01 is the total number of times the call of a specific species

was indicated as detected during an audio trial, when the call for that

species was not played. We model this auxiliary source of information

as

c01 �Binomðnc; p0Þ eqn 3

where c01 is the total count of positive detections of an event out of nc
independent test trials where the event is known to not have occurred.

We assume that c01 arises from a binomial distributionwith nc indepen-

dent trials and probability p0. This is a similar approach to defining a

strong prior on p0, but it differs in that an increase in the amount of

independent trials (i.e. nc) will directly improve the accuracy of p0; thus,

sample effort can be investigated to optimize the power of amonitoring

programme to provide unbiased estimates of occupancy rates.

To model false-negative probabilities, we allow detection to be a

function of covariates measured during the Ji sampling events, at all n

sampling locations, bymodelling uij as

uij �Normalðw0
ija; 1Þ eqn 4

where wij is a vector of q covariates for the ith sampling location and

the jth sampling visit, and a are coefficients associated with the covari-

ates for detection probability [p(B|A)]. Our specification implicitly

assumes a probit link U�1ðpijÞ ¼ w0
ija, where pij is the probability of

detecting an event (yij = 1) given that it has occurred (zi = 1), and Φ
indicates the standard normal cumulative distribution function. The

true occurrence of an event at sampling location i, denoted zi, was

defined as a latent variable (i.e. the true state is imperfectly observed)

andwemodel zi as

zi �BernðwÞ
w�Betaðaw;bwÞ

eqn 5

where w is the probability of a specific event occurring at i, after

accounting for both false-positive (i.e. p(B|Ac) or p0) and false-negative

(i.e. p(B|A) or pij) probabilities (Table 1).

EXAMPLE 1: S IMULATION STUDY

To assess the performance of the false-positive model, we simulated the

effect of different values of p0 under varying scenarios of occurrence,

detection, and quantity of auxiliary information used to estimate p0.

Our values of p0 were obtained from the literature, where they have

been found to range from p0 = 0�01 to p0 = 0�11 for avian (Simons

Table 1. A list of each probability defined in Bayes theorem, along

with their individual definitions, equivalent parameters in the false-

positivemodel, and interpretation

Probability Definition Parameter Interpretation

p(A) Prevalence w Probability of occurrence of

an event

1 � p(B|Ac) Specificity p0 False-positive probability

p(B|A) Sensitivity p False-negative probability
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et al. 2007) and anuran species surveys (McClintock et al. 2010b). For

simulations, we chose four values of p0: 0�01, 0�05, 0�10 and 0�20. For
each of these values, we explored four scenarios for the true probability

of occurrence of an event (very low = 0�2, low = 0�4, medium = 0�6,
high = 0�8). We modelled initial detection probability (pij) under two

scenarios (low ~0�4, high ~0�6) and included linear and squared effects

of sampling day to reflect changes in pij throughout the season.We also

predicted that precision and bias would both improve with an increase

in the total number of independent trials (nc) used to estimate p0 and

that scenarios with low probabilities of occurrence and detection, and

high probabilities of false positives, would require the most amount of

effort for the same gain in precision and reduction in bias. To examine

the effect of increasing the size of an auxiliary data set, we simulated the

following numbers of total independent trials nc: 500, 1000, 1500, 2000,

3000, 5000, 10 000, and 15 000. All simulations and analyses were

carried out using the R Statistical Computing Environment (R Core

Team, 2013).We carried out 100 simulations for each case scenario and

generated 15 000 MCMC samples using a burn-in period of 5000

iterations for each simulation. A more detailed description of the

model implementation can be found in Appendix S1 (Supporting

information).

Simulation results

The false-positive model performed without bias under simulated sce-

narios of probabilities of occurrence, false-positive and false-negative

errors and effort in auxiliary data. Bias in posterior mean estimates

never exceeded more than 2% across all values of p0. As predicted, an

increase in effort, or total number of independent trials (nc), resulted in

an increase in precision of posterior means of probability of occurrence

at around 5000 trials (Fig. 2). When false-positive probabilities are

around p0 = 0�1, the degree of precision does not improve after 5000

trials and in fact decreases with increasing probability of occurrence

(Fig. 2). Under conditions with high false-positive probabilities

(p0 = 0�2), we observed little improvement in precision with increasing

effort, independent of probabilities of occurrence (w), although credible
intervals were smaller at lower probabilities of detection (p = 0�04)
(Fig. 2).

EXAMPLE 2: ANURAN MONITORING PROGRAMME

To examine occurrence patterns of anurans in the north-easternUnited

States, we used North American Amphibian Monitoring Program

(NAAMP) records for 152 surveyed routes, for the following 10 spe-

cies: American toad (Anaxyrus americanus), Fowler’s toad (Anaxyrus

fowleri), northern cricket frog (Acris crepitans), grey treefrog complex

(Hyla versicolor/chrysocelis), green treefrog (Hyla cinerea), spring pee-

per (Pseudacris crucifer), American bullfrog (Lithobates catesbeianus),

green frog (Lithobates clamitans), pickerel frog (Lithobates palustris),

and wood frog (Lithobates sylvaticus). We used independent informa-

tion on false-positive rates from replicated field experiments using a

remote broadcasting system to simulate simple anuran call surveys for

details seeMcClintock et al. 2010a). To capture the variability in detec-

tion for the duration of the survey period across all surveyed states

(February–July), we modelled detection probabilities for each species

as U�1ðpijÞ ¼ w0
ija, where wij is a vector of the linear and quadratic

terms representing sampling day (e.g. February 24 was day 1) for route

i during the jth visit.

To evaluate the effects of false-positive errors on estimates of anuran

occurrence rates, we contrasted results obtained using our false-positive

model with those obtained using a standard model that only corrects

for false-negative errors (Fig. 3). For the standard occupancy model,

we modified the mixture specification of the false-positive model to

follow the commonly used notation for occupancy models (Dorazio &

Rodriguez 2012), such that

yij ¼
0 if zi ¼ 0
0 if uij � 0; zi ¼ 1
1 if uij [ 0; zi ¼ 1

8<
: eqn 6

where yij = 0 when zi = 0. We fit both types of models to each species’

data independently using the R statistical computing environment (R

Core Team, 2013). For each model fit, we generated 30 000 MCMC

samples and used a burn-in period of 10 000 iterations.

Anuran case study results

We obtained inference for occupancy probabilities for 10 anuran spe-

cies in the north-eastern United States using both the false-positive

and standard occupancy models. Two very commonly detected spe-

cies, spring peeper and green frog, had posterior means for w � 1�0;
therefore, false-positive rates did not bias occupancy estimates for

these species. For the remaining eight species, we found varying

degrees of influence of the auxiliary data on estimates of occurrence.

We did not find a pronounced effect of false-positive errors on occu-

pancy for American toad, grey treefrog complex and American bull-

frog. The former two species had posterior means for p0 that were

approximately 0�2, and all three species had high values for posterior

means of w > 0�68 (Table 2). Effects of false-positive errors were

found in the four species with posterior means with w < 0�3, with the

strongest effect in pickerel frog (Table 2). A relatively high posterior

mean for p0 equal to 0�19, combined with low posterior means for

occupancy and detection (w = 0�26 and p = 0�1), resulted in a dif-

ference of 0�1 in posterior means for occupancy between the false-

positive model and the standard model (Table 2). To gain a better

understanding of the bias associated with inference on the number of

occupied routes, we calculated the number of occupied routes, or

(N), as a derived quantity (N ¼ Pn
i¼1 zi). Results were more pro-

nounced in the four species with posterior means of w < 0�3, where
the standard model overestimated the number of occupied routes by

20–70%. The species with the largest discrepancy was northern

cricket frog, which has a posterior mean of N = 15 occupied routes

with the false-positive model, in contrast to N = 25 with the standard

model (Table 2).

Discussion

To understand the potential impacts of habitat and environ-

mental changes, we need precise and unbiased estimates of

population trends at large spatial and temporal scales. Citizen-

science monitoring programmes have the potential to fulfil this

role at scales not achievable by most conventional research,

but correcting for known sources of bias inherent to all types

of observational data is critical for reliable inference. The

model we present was successful at correcting for both false-

positive and false-negative errors by coupling auxiliary infor-

mation of the frequencies of false-positive observations with

detection-non-detection monitoring data to estimate occur-

rence patterns. This approach eliminates the need to assume

that false-positive errors are non-existent for certain types of

observations, invest effort in verifying observations or define

arbitrary criteria to determinewhat constitutes a reliable obser-
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vation a posteriori, all which are not likely to completely elimi-

nate false-positive errors (Miller et al. 2015). In addition, our

model performed well across a wide range of occupancy values

(w = 0�2–0�8) and false-positive rates (w = 0�2–0�8), although
careful consideration of survey design should be given to spe-

cies with high false-positive rates, given the low levels of preci-

sion that we obtained even with high volumes of auxiliary

information.

The application of our false-positive model requires auxil-

iary sources of data, and attention should be paid by biological

monitoring programmes on how to best collect this informa-

tion. The number of independent trials needed to increase

accuracy by correcting false-positive errors can be determined

prior to initiating a survey programme based on the desired

precision and best available estimates of probability of occur-

rence, false-negative rates, and false-positive rates. The range

of false-positive rates estimated for most frog and bird species

(p0 = 0�01–0�05) suggest that 5000 independent trials should be
sufficient to improve precision. When false-positive rates are

relatively high (p0 = 0�1–0�2), resources should be invested into
increasing the number of trials beyond 15 000, independent of

probabilities of detection and occurrence. In addition, consid-

eration should be given to the test trials themselves, and effort

should bemade to best represent conditions experienced by the

observers. For example, provide both audio and visual trials

for bird monitoring projects, or provide realistic combinations

of multiple calls of species commonly found together, when-

ever possible.

The cost associatedwith highnumbers of trials canbe reduced

by sharing information acrossmultiplemonitoring programmes,

or using online platforms or mobile phone technology to collect

information, instead of the field experiments as were used here.

For example, the North American BBS has an online quiz

(http://www.mbr-pwrc.usgs.gov/bbs/trend/birdquiz.html) using

both visual and audio test trials. Such platforms can poten-

tially generate large volumes of trials to inform false-positive

rates. These independent tests can be carried out after field

data collection. For example, camera trap photographs pre-

sented to observers to test their ability to identify individual

animals have been used to estimate false-positive error rates

in data collected from opportunistic observations by com-

munity-based monitoring programmes (Meek et al. 2014).

Specimens housed at museums, and other collections such

as sound and video archives, could also be used to conduct

in-person independent test trials. Ultimately, reducing uncer-

tainty in citizen-science data demands a shift in our current

data collection paradigm to define, identify and prioritize

the collection of external sources of information on false-

positive rates as part of an overall sampling programme.

This shift will likely increase the return on investment of
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Fig. 2. Simulated probabilities of occurrence and credible intervals for posterior means using the false-positive model. Data were simulated under

low (a: p = 0�4) and high (b: p = 0�6) detection probabilities, across a range of values for probability of occurrence (solid black line), false-negative

probability (p0) and total number of trials (Effort).
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any biological monitoring programme, along with well-

defined objectives and protocols (Tulloch et al. 2013).

In 2008 and 2010, the Amphibian Research and Monitor-

ing Initiative of the U.S. Geological Survey (ARMI) invested

in a series of replicated experiments to estimate and explore

the consequences of false-positive errors on anuran calling

surveys. This effort has provided much of the knowledge on

the effects of false-positive errors on occupancy and related

dynamics (McClintock et al. 2010a; Miller et al. 2015) and

provided a framework to examine these effects using calling

anuran surveys, although we note that the general guidelines

and model we present are applicable to other surveys where

auxiliary information can be collected (e.g. data collected by

Meek et al. 2014). Our analyses of these data indicate that

six of the 10 species appear to be widespread in the routes

surveyed by NAAMP in 2004, with posterior means for

occupancy probabilities ranging from 0�68 to 0�99. Other

species with low posterior means for occupancy probabilities

such as the pickerel frog (w = 0�26) are not of conservation

concern, but the bias in the expected number of occupied

routes does have some important implications for the esti-

mated range of this species. For example, the core of the dis-

tribution of H. cinerea is the south-eastern United States,

and it is not a surprise that this common species was esti-

mated to be present at only 9 of the 152 surveyed routes in

the north-eastern states. However, the standard occupancy

model overestimated the number of occupied routes by

50%, and these errors could potentially mask range expan-

sions into northern states driven by changes in climatic con-

ditions, for example. Similarly, the range for A. crepitans is

restricted to the south-east of the Appalachian Mountains,

and the posterior mean for occupancy was similarly esti-

mated to be low (w = 0�11) in our study. The species is esti-

mated to have suffered extreme range contractions, and

there is interest in identifying features of habitats that allow

successful persistence of this species (Beasley et al. 2005) and

could be used to develop conservation and management

strategies. Therefore, the use of our false-positive model is

(a)

(b)

Fig. 3. Comparison of the false-positive occupancy model (a) and the

standard occupancy model (b). The figure illustrates the relationship

between the data model (y), the covariates on detection probability (a),
the true state of occurrence of an event (z) and the probability of occur-

rence of an event (w). The uniqueness of the false-positive model is an

additional data source (c01) to inform the false-positive probability (p0).

Table 2. Table ofmodel results. For each species, scientific and, common names and are provided, as well as posteriormeans for false-positive prob-

ability (p0), detection probability (pfp), occupancy (wfp) and mean number of occupied sites (Nfp) using the false-positive model, and estimates of

detection probability (ps), occupancy (ws) and number of occupied sites (Ns) using the standard occupancymodel, including the percentage of bias in

the estimated number of sites between the standard and the false-positivemodels (%DN)

Scientific name Common name

False-positivemodel Standardmodel

Bias

p0 pfp wfp Nfp ps ws Ns %DN

Anaxyrus americanus American toad 0�025 0�2 0�68 104 0�2 0�7 108 4

Anaxyrus fowleri Fowler’s toad 0�01 0�09 0�29 44 0�09 0�35 53 20

Acris crepitans Northern cricket frog 0�02 0�05 0�105 15 0�05 0�17 25 67

Hyla versicolor Grey treefrog 0�018 0�25 0�72 109 0�25 0�74 112 3

Pseudocaris crucifer Spring peeper 0�023 0�6 0�99 152 0�6 0�99 152 0

Hyla cinerea Green treefrog 0�11 0�04 0�06 9 0�04 0�1 14 56

Lithobates catesbeianus American bullfrog 0�01 0�43 0�76 116 0�43 0�77 118 2

Lithobates clamitans Green frog 0�01 0�54 0�98 150 0�54 0�98 150 0

Lithobates palustris Pickerel frog 0�19 0�1 0�26 39 0�1 0�36 55 41

Lithobates sylvaticus Wood frog 0�023 0�23 0�73 112 0�23 0�79 120 7
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advised, considering that the standard model overestimated

the number of occupied routes by 67%. The distribution for

A. fowleri is not as restricted as the previous two species, but

it has a scattered distribution pattern and a low posterior

mean for occupancy rates (w = 0�29), likely driven by specific

habitat requirements preferred for breeding (Vogel & Pech-

mann 2010). The standard model overestimated occupancy

by 20%, and this bias could potentially mislead conservation

efforts aimed at protecting critical breeding areas.

Our inferences on occurrence of anurans in the north-east-

ern United States could have been influenced by the relatively

low sample size of external information on false-positive rates

(nc = 1960–2822 trials for all 10 species). We used information

collected during experimental field tests of volunteers who par-

ticipate in anuran survey programmes. Therefore, the total

number of trials was limited, but the trials were very realistic in

terms of condition experienced during sampling surveys. In

addition, posterior means for w < 0�3 and overall low poste-

rior means for detection rates were found in four species.

Because low occupancy and detection rates are more suscepti-

ble to the effects of false positives in the data, these species will

require a greater amount of auxiliary data in future analyses.

Field trails such as the ones we employed can be labour inten-

sive and costly; therefore, we suggest that information on false-

positive rates from the online NAAMP Frog Quiz also be

applied in the future.

FUTURE POTENTIAL EXTENSIONS

Our false-positive model can be adapted to incorporate factors

that have been found to influence p0. Covariates such as the

number of years a participant has collected data for a specific

survey or age are currently used to correct for potential obser-

ver errors in large data sets (e.g. Hochachka et al. 2012). In our

example, a categorical variable of calling intensity of vocaliza-

tions recorded in the NAAMP surveys could potentially be

included as a covariate in future analyses (Miller-Rushing, Pri-

mack & Bonney 2012), where higher intensity of calling would

be expected to reduce false-positive rates. To accomplish this,

we would denote yij as

yij ¼
Bernðp0ijÞ if zi ¼ 0
0 if uij� 0; zi ¼ 1;
1 if uij [ 0; zi ¼ 1

8<
: eqn 7

whereU�1ðp0ijÞ ¼ w0
0ija0, andw0ij is a vector of calling intensity

scores for the ith sampling location and the jth sampling visit,

and a0 are coefficients associated with the covariates for false-

positive probability. We would model this additional informa-

tion as cl � Bern(p0l).

The present model can also be applied to formally examine

disease prevalence rates for cases when information exists on

false-positive and/or negative rates. Often, post hoc approaches

are applied, such as defining thresholds on the number of posi-

tive detections to confirm the presence of a pathogen when

false-positive rates are considered to be low (Cheng et al.

2011). Our flexible approach can directly incorporate raw data

from clinical trials [e.g. number of positive tests (c01) and num-

ber of control trials (nc) known to be negative] to inform false-

positive probabilities. Published values from diagnostic tests

can also be incorporated, such as using estimates of sensitivity

as an informative prior for pij (Table 1).

Other potential extensions include the addition of site-speci-

fic covariates for w using the same approach we presented to

include covariates on detection. Incorporation of covariates

may additionally improve bias in the occupancy estimator

(Miller et al. 2015). Our approach for incorporating auxiliary

information can also be applied in models where the interest is

correcting for species misidentification errors. Conn et al.

(2013) contrasted the use of information from multiple obser-

vers with defining strong priors to inform themixture probabil-

ity of correctly assigning an observation to one of two

potential states (e.g. species 1 vs. species 2), to correct for spe-

cies misidentification errors (see also Hanks, Hooten & Baker

2011). Under this approach, auxiliary information on the

probability of correctly assigning a species to an observation

could be incorporated directly, in the same fashion we have

presented here.

Conclusions

The estimation approach we present is likely to increase the

overall accuracy of inferences based on observations col-

lected by biological monitoring programmes, specifically

those which rely heavily on citizen-science data. The ability

of the latter to aid in the monitoring of the state of a sys-

tem is key for efficient development and application of con-

servation and management actions, especially when other

sources of irreducible uncertainty are present, such as fac-

tors related to climate change (Nichols et al. 2011; Williams,

Eaton & Breininger 2011). The potential extensions of this

model also provide a flexible framework to characterize sim-

ple binary event scenarios, like the one we presented, or

provide estimates of the occurrence of a series of events and

their related dynamics. To take advantage of the full spec-

trum of potential applications, biological monitoring pro-

grammes must include both, the collection of information

useful for estimating false-positive error rates, and a system

for the estimation of false-negative errors. The improve-

ments in accuracy via our modelling approach should pro-

vide an opportunity to expand the scope, scale and

coverage of information on plant and animal populations

which can be informed by citizen scientists.
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