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Abstract

A common goal in ecology and wildlife management is to determine the causes of variation in population dynamics over
long periods of time and across large spatial scales. Many assumptions must nevertheless be overcome to make appropriate
inference about spatio-temporal variation in population dynamics, such as autocorrelation among data points, excess zeros,
and observation error in count data. To address these issues, many scientists and statisticians have recommended the use of
Bayesian hierarchical models. Unfortunately, hierarchical statistical models remain somewhat difficult to use because of the
necessary quantitative background needed to implement them, or because of the computational demands of using Markov
Chain Monte Carlo algorithms to estimate parameters. Fortunately, new tools have recently been developed that make it
more feasible for wildlife biologists to fit sophisticated hierarchical Bayesian models (i.e., Integrated Nested Laplace
Approximation, ‘INLA’). We present a case study using two important game species in North America, the lesser and greater
scaup, to demonstrate how INLA can be used to estimate the parameters in a hierarchical model that decouples observation
error from process variation, and accounts for unknown sources of excess zeros as well as spatial and temporal dependence
in the data. Ultimately, our goal was to make unbiased inference about spatial variation in population trends over time.
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Introduction

Monitoring and detecting changes in population abundance,

and determining why changes vary over space and time, are

concepts that are central to ecology, conservation, and manage-

ment [1,2]. Obtaining accurate estimates of trends and other

changes in population abundance is more difficult than it might

appear given complicating issues such as density-dependence and

stochasticity. Various sources of uncertainty in data and un-

derlying ecological processes (e.g., temporal or spatial autocorre-

lation and observation error) can confound inference about

changes in population abundance [3].

Statistical models that have been used to assess changes in

population abundance have ranged in complexity from linear

regression to generalized linear models (e.g., Poisson regression),

generalized additive models, and time-series models [4,5]. While

increasing complexity in these models helps meet assumptions,

none can simultaneously decouple process error from observation

error, and account for both temporal and spatial autocorrelation.

Hierarchical models may present the best statistical approach for

assessing changes in population abundance across large spatial

areas [6–8]. Hierarchical models are ideal for handling observa-

tional data because they allow for the explicit separation of

observation and process error [6,9,10]. This is a key distinction, as

hierarchical models do not require the assumption that either the

data are collected without error, or that the processes underlying

the data are known without error [3,11,12]. Ignoring observation

error can lead to inaccurate estimation of focal parameters, such as

vital rates and trends in abundance [3,13]. In addition, ignoring

uncertainty in ecological processes themselves can result in

spurious conclusions [10]. For example, if spatial autocorrelation

is present in the data, but not accounted for, the variance

associated with the parameter will be estimated to be smaller than

it should be, potentially causing the researcher to conclude that

a result is statistically significant when, in reality, it is not [14].

While extremely useful for ecological applications, a drawback

of the hierarchical modeling approach is the required background

in statistics and computer programming that is necessary to

implement sophisticated models incorporating spatio-temporal

dynamics. Markov Chain Monte Carlo (MCMC) is a powerful

method used to sample from the hierarchical Bayesian posterior

distributions of parameters, or determine Maximum Likelihood

Estimates via data cloning [15]. Unfortunately, MCMC involves

high computational time and the challenge of correctly interpret-

ing output (e.g., convergence diagnostics). Estimation of state

variables in hierarchical models with the Kalman Filter, a set of

recursive equations, is also limited by modeling assumptions [6].

Recently, a statistical algorithm has been developed for obtaining

posterior distributions from Bayesian hierarchical models that does

not involve the use of MCMC. Based on Laplace’s work with

integral transforms [16], this new method is referred to as
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integrated nested Laplace approximation (INLA), which uses

a three-step process involving Laplace approximations and

numerical integration to derive posterior distributions for the

parameters of interest [17]. Although INLA is only capable of

handling hierarchical specifications with generalized linear process

models and a latent Gaussian random field, it has the added

advantage of being more accurate than MCMC within reasonable

computation times [17]. Additionally, the development of a readily

available R package [18] makes INLA accessible to users with

a reasonable background in parametric statistics [17].

Hierarchical models have been used to assess trends in

abundance while accounting for process error and observation

error [19], incorporate mechanisms of density-dependence

[6,12,20], and estimate second-order spatial autocorrelation to

obtain unbiased estimates of precision in population dynamics

across a landscape [8]. However, fully spatio-temporal models of

population dynamics can still be difficult to visualize and

implement [21]. This is not altogether surprising, given the

statistical and computational requirements that have, until now,

been needed to estimate parameters in sophisticated hierarchical

models that account for first- and second-order autocorrelation

processes across both space and time.

Fortunately, INLA methodology and the associated R package

[18] developed by Rue et al. [17] make the implementation of

hierarchical spatio-temporal models relatively easy. This package

allows for researchers to easily incorporate various structures into

the process model that are relevant to modeling population

abundance. Latent models such as seasonal variations [22], spatial

effects [23], and autoregressive models (i.e., AR(1) [6]) can be

specified using INLA. Additionally, these process models can be

compared using deviance information criterion (DIC [24]) in

INLA, thus allowing the researcher to determine which models

best describe the given population. The same comparison using

DIC can be done when selecting among error models for the data.

In addition to latent (or unobservable) variables, covariates of

interest and temporal trends can be specified directly in the

process model to account for additional sources of variation in the

process. The ability to account for first- and second-order

processes in turn allows the researcher to make inference

pertaining to the covariates of interest while also learning about

the latent variables.

In this paper, we utilize a long-term, continental-scale dataset of

abundance counts of the lesser and greater scaup (Aythya affinis and

A. marila, respectively) to illustrate how INLA can be used to fit

models with underlying spatio-temporal mechanisms and auto-

correlation to better understand the processes governing popula-

tion dynamics. We then discuss how additional processes can easily

be incorporated into our case study to address an array of

ecological questions.

Case Study
Every year, the U.S. Fish and Wildlife Service and Canadian

Wildlife Service conduct the North American May Breeding Pair

Survey (BPS), which provides a rich source of demographic data

on 10 focal duck species (as well as others). The BPS includes areas

in the north-central United States, much of western Canada, and

Alaska; purposefully covering a large portion of each species’

breeding range [25]. This survey has been conducted every May

through June since 1955 using aerial transects [26]. Surveys are

flown at approximately 193 kilometers per hour at an altitude of

27–30 meters. Within each stratum, the largest sampling unit of

the survey, pilots fly multiple transects, each comprised of 28.8 km

strip-segments. The number of segments sampled in a transect

ranges from 1 to 35, and has changed over time. Strata units vary

in size, and are based on geographical and political boundaries.

Observers count duck species, and whether or not the ducks are

paired (with a mate), single drakes, or in mixed-sex groups.

Two particular species of interest that are surveyed during the

BPS are the lesser and greater scaup, which are counted

collectively as ‘scaup’ due to their similar appearance. Scaup are

the most abundant and widespread diving duck in North America,

and are important game species [27]. Since 1978, however, the

continental population of scaup has declined to levels that are 16%

below the 1955–2010 average and *34% below the North

American Waterfowl Management Plan goal [25]. This decline

has sparked concern amongst hunters, management agencies, and

conservation groups alike [28]. The greatest decline in abundance

of scaup appears to be occurring in the western boreal forest,

where populations may have depressed rates of reproductive

success, survival, or both [28–31]. However, the specific vital-rate

pathways responsible for the decline are not known [32]; nor is

there a consenus on the underlying mechanisms that may have

caused the population decline. Leading hypotheses include:

decreased food availablilty during spring migration, and conse-

quent arrival on the breeding grounds in poor body condition that

could inhibit reproductive success (i.e., the Spring Condition

Hypothesis [28,33–35]); and toxins (particularly selenium [36,37])

acquired on the Great Lakes and other migratory stopover

locations that could inhibit both reproduction and survival [38].

However, DeVink et al. [39] and others [36,37] concluded that

selenium and mercury levels are low in boreal scaup, and not likely

responsible for the population decline in this important breeding

region. Moreover, toxins do not seem to be inhibiting scaup vital

rates [40]. Studies examining the Spring Condition Hypothesis

have produced conflicting results across spatial regions [39]. Other

hypothesized drivers include anthropogenic development of the

boreal forest (e.g., hydropower dams, logging, oil and gas

extraction, and mining) and climate change. Recently, Drever

et al. [41] found that decreasing snow pack on the breeding

grounds in the boreal forest (and thus subsequent pond conditions)

is negatively correlated with regional population growth rates in

scaup.

To better understand the causes of the decline, a high level of

importance has been placed on retrospective analyses that

accurately identify the spatial and temporal changes in population

abundance [42]. A spatio-temporal analysis of population trends

would thus help identify the regions where scaup abundance has

declined most severely, where no change has occurred over the

long-term, and even identify areas where abundance may be

increasing. Such information is useful for directing management

and conservation actions toward the most important areas, and

would allow researchers to gain clearer insight into the mechan-

isms that might be causing declines in some regions and increases

in others.

Hierarchical Model

To account for process and observation error, we used Bayesian

hierarchical models to examine change in scaup abundance for

each stratum between 1957 and 2009 (scaup data were scarce in

1955–1956). Here, our focus is on the delineation of scaup

recorded in breeding pairs, rather than total scaup abundance, as

these pairs best represent the breeding potential of the population.

We did not utilize data regarding single drakes due to the skewed

sex ratio in scaup [28]. Further, counting methods for the mixed-

sex non-breeding groups changed in 1975 [26]; thus, use of these

data would confound long-term analysis from 1957 onward. Our

basal unit of data was the number of pairs, yi,j,t, observed on each

Hierarchical Models with Spatio-Temporal Data
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segment i, in stratum j, in year t. The hierarchical approach

allowed us to incorporate spatial autocorrelation among strata into

the process model while also gaining insight into the changes

within each stratum. We also incorporated terms in our process

model to account for temporal autocorrelation in the data, which

often occurs in temporally dynamic systems. We also selected

between data models to determine which models best fit the data.

Bayesian hierarchical models are usually comprised of three

‘submodels’: a data model describing the distribution of the data,

a process model specifying the underlying mechanisms that give

rise to the data, and the parameter model indicating the

distributions of the parameters in the process model [43]. Below,

we outline each of these model components for our case study.

Data Model
Based on preliminary analysis, the BPS scaup data appeared to

be overdispersed, containing a disproportionately high number of

zeros along with a high variance relative to the mean [44,45].

Thus, we considered two potential data models, a negative

binomial model where yi,j,t* NegBinom(mj,t,w), and a zero-

inflated negative binomial model where

yi,j,t*
0, with probability y

NegBinom(mj,t,w), with probability (1{y)

(
ð1Þ

where mj,t denotes the average abundance of counted pairs for

segments i=1,…,nj in stratum j=1,…,m during observation

period t=1,…,T (i.e., years 1957–2009). Models were then

compared using DIC. We considered the zero-inflated model

because it accounts for excess zeros, which can arise from more

zero counts in a dataset than would be well described by a typical

data model, and can occur from either ‘false’ or ‘true’ zeros. False

zeros may arise due to birds that were present during the survey,

but unobserved, or not present during the survey (e.g., temporary

emigration to a loafing pond). Unlike these false zeros, true zeros

could occur when scaup do not fully occupy their suitable habitat,

or when the habitat is simply not suitable [46]. One of the benefits

of hierarchical modeling is that one can specify a distribution that

properly supports the data (i.e., the range of values y can take on),

alleviating the need for direct data transformations (e.g., log or

arcsine) that are commonly used to specify linear process models.

This is a valuable property of generalized linear models, given that

models based on negative binomial distributions can perform

better at modeling count data than transformed data with

Gaussian model assumptions [47].

Process Model
We incorporated each data model into a simple log-linear

regression model with hierarchical terms (i.e., random effects) that

help account for spatial and temporal autocorrelation. This

allowed us to analyze the temporal trend for each stratum

separately, as well as determine the relative influence of both the

fixed (the b parameters) and random effects (e and g) on relative

scaup abundance. Using mj,t from the data model (1), the process

model was specified as

zj,t~log(mj,t)~b0,jzb1,j tzej,tzgj,t ð2Þ

where b0,j parameters are stratum-specific intercepts, while the b1,j
are trend parameters for each stratum that together model first-

order spatial and temporal variation in abundance. Spatially and

temporally correlated errors are represented by

et~(e1,t, . . . ,em,t)
0* N(0,

X
e), and

X
e:s2e (D{W){1 for

all time t=1,…,T representing spatially correlated errors and

gj~(gj,1, . . . ,gj,T )
0* N(0,Sg) for all strata j=1,…,m representing

temporally correlated errors. The e and g terms incorporated into

the model (2) are intended to account for variation in both the

spatial and temporal dimensions of the system, respectively, W is

a proximity matrix describing the neighborhood structure, and D
is a diagonal matrix with the row sums of W as diagonal elements

[48]. Again, if these sources of uncertainty are not accounted for,

erroneous inference could be made because model assumptions

would not be met [49].

Rather than standardize the survey area to some sort of grid as

past studies have done (e.g., Gardner et al. [50]), we instead used

the existing spatial structure present in the survey, and based our

spatial field on the strata units as areal regions. This provided the

basis for a conditional autoregressive structure (CAR [51,52]),

while also yielding results that were directly useful for management

of the species. The CAR model is a commonly used spatial model

for areal processes, and incorporates dependence among areal

locations through the neighborhood structure of the strata. In

constructing the proximity matrix, W, we calculated the Euclidean

distance between the center of each stratum, and then denoted all

pairs of strata as neighbors if they were within a threshold distance

of 7.75 decimal degrees of each other. This distance was chosen

for this case study because it was the shortest distance at which all

strata had at least one neighbor, and constructing the proximity

matrix in such a way accounted for the more spatially isolated

strata in the north and the highly connected strata in the south.

Thus, in our case, W was a 52 | 52 matrix (dimensions

determined by the number of strata) with elements Wx,y~1

indicating stratum x and stratum y were neighbors, andWx,y~0 if

otherwise.

In addition to spatial structure, we also accounted for latent

temporal dependence in the system. We let gj,t* N (agj,t{1,s
2
g),

where a is the autocorrelation parameter, which introduces

a temporal correlation structure on gj, the vectors of residuals

about the modeled log counts in stratum j over time, such that

gj* N (0,
P

g). Given these parameterizations, the entire latent

(i.e., random-effect) process is a Gaussian Markov random field,

which allows for the use of INLA to approximate posterior

distributions. Also, in a biologically meaningful context, the model

for gj,t implies latent Gompertz growth, since the population at

time t is dependent on the population at time t-1 on the log scale.

Parameter Model
The parameter model consists of all the prior distributions

assigned to the unknown parameters in the process model. The

overdispersion parameter for the negative binomial distribution

was specified as w~log(n), where n is the original negative

binomial size parameter, and then modeled as w* N(0,100). The
regression parameters were specified with conjugate Gaussian

priors so that b0,j ,b1,j* N(0,1000), for j=1,…,m. The variance

component was specified in terms of precision [17], and was given

a conjugate gamma prior, s{2
e * Gamma(1,1=20000). Lastly,

given the reparameterization of h1~(1{a2)=s2g and

h2~(1za)=(1{a), h1 was assigned the prior

h1* Gamma(1,1=20000) and h2 was assigned the prior

h2* N(0,5). These reparameterizations are suggested for im-

plementation of INLA for ease of processing [17].

Hierarchical Models with Spatio-Temporal Data
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Model Implementation Using INLA
Combining the data, process, and parameter distributions to

form a hierarchical model yielded the posterior distribution:

mt,w,bj,t,s
2
e ,h1,h2Dyi,j,t

h i
!P

i
P
j
P
t
yi,j,tDmj,t,w
� �

P
t
P
j

mi,tDbj,s2 ,s
2
g,a

h i ð3Þ

| w½ � b½ � s2e
� �

h1½ � h2½ �,

where we use square brackets ‘ :½ �’ to denote a probability

distribution. Typically, the above model would be fit using

MCMC, usually using a combined Gibbs sampler and Metropolis-

Hastings algorithm after solving for the full-conditional distribu-

tions where closed-form solutions exist [48]. Instead, we used

INLA to approximate the marginal posterior distributions of the

parameters of interest [17].

Many models used in ecological applications are based on latent

Gaussian random fields, ranging from linear regression models,

temporal models, or similar spatial and spatio-temporal models.

By making use of these latent Gaussian models, INLA is capable of

approximating the posterior distribution with high accuracy at

a much faster computational rate than MCMC [17]. Unlike

MCMC, INLA is not an iterative stochastic procedure, but rather

a multi-step mathematical process used to approximate posterior

distributions. According to Rue et al. [17], INLA performs

a sequence of approximations (i.e., first the posterior marginal of

the parameter of interest, then the posterior) and then combines

them using numerical integration. Additionally, INLA cannot

approximate posterior distributions of nonlinear transformations

of process model parameters, which may be a drawback for some

ecological studies, but does not interfere with research like that

presented in our example. We implemented INLA using the R

package [18] called ‘INLA’ [17], and provide annotated partial

code pertaining to our example in the supporting information

(Text S1).

Results

When comparing a negative binomial with the zero-inflated

negative binomial (ZINB) data model, the ZINB had the lowest

DIC (24,521 compared to 24,933 for the negative binomial).

Additionally, we compared models with no random effects, only

a spatial random effect, only a temporal random effect, and both

random effects. Of these, the model with only a temporal random

effect was the best (DIC of 24,427). Although this model was

ranked best by DIC, we chose to include the parameter for the

spatial random effect in order to avoid erroneous conclusions

about estimates of the fixed parameters (DIC of 24,521).

Mean point estimates from the ZINB model indicated that

several strata in the boreal forest habitat had negative slope

estimates, indicating a decrease in breeding pairs over time, while

some of the strata in the prairie parkland habitat had positive slope

estimates, indicating an increase in this region (Figs. 1 & 2).

However, the majority (*68%) of the strata did not have

significant increasing or decreasing trends in the abundance of

paired scaup (i.e., 95% credible intervals for the b1 parameters

overlapped zero; Fig. 2, Table S1). There were nevertheless

several strata that experienced significant changes in population

abundance across key areas of the scaup breeding range over the

temporal extent of our study. When viewing each of these strata

spatially, the northwest boreal forest of Canada and the

southeastern prairie parkland region (PPR) both experienced

significant changes in the abundance of paired scaup (when based

on 95% credible intervals; Fig. 3). Time series of population

abundance within each stratum can be examined individually to

observe the combined temporal and spatial effects on breeding

pairs. For example, apart from an abbreviated spike in the 1970s,

the estimated time trend for stratum 18 in Canada’s northwest

boreal forest indicated a steady decrease in the number of

breeding pairs since the 1950s (Fig. 4a). When looking at the trend

for stratum 45 in the prairies of North Dakota, the population

increased up to the mid-1980s, decreased from the mid-1980s to

the mid-1990s, and then increased dramatically since the mid-

1990s (Fig. 4b). The zero-probability parameter associated with

the ZINB model was estimated as 0.0204 (+0:0005). Parameter

estimates for the spatial (s2e ) and temporal s2g random effects were

81.41 (+2:82) and 12.74 (+0:18), respectively, while that for the

first-order autocorrelation in the temporal random effect was

a~0:801(+0:002).

Discussion

Scaup Decline
Our results provide further insight into the continental decline

in scaup abundance. Due to uncertainty associated with the slope

parameters, however, the majority of strata in the survey region

did not indicate evidence of either a decline or increased breeding

pair abundance (Fig. 2). This could imply that those strata in

which there is a statistically significant decline in abundance are

experiencing an intense decline, which appears to be the case for

the northwestern boreal forest (Fig. 3), especially Strata 18 and 20

(Fig. 1). There were only 10 strata for which 95% credible intervals

indicated significant population decline. It may be difficult to

detect changes in breeding pair abundance, given the amount of

sampling variation and autocorrelation present in the data (or the

power to detect a trend is high, but it does not exist; this latter

interpretation would be difficult to distinguish using the BPS data

alone). Additionally, an examination of the individual strata

indicates that the strata experiencing statistically significant

increases in breeding pairs are experiencing dramatic increases,

but initially had lower abundance (see Fig. 4).

Given these results, there are several possible processes un-

derlying the observed changes in the abundance of paired scaup.

Scaup may be choosing to forego migration up to the boreal forest,

and are instead utilizing the PPR, where we found scaup to be

increasing in abundance, at higher rates than in the past. Female

scaup are however philopatric with.67% returning to their

previous breeding site [53,54], and a wholesale change in use of

eco-regions does not seem likely. Rather, the birth-death balance

has likely been negative for quite some time in the northwestern

boreal forest, and positive in the southern PPR, perhaps due to the

Conservation Reserve Program and other landscape management

efforts that have increased nest success in this region [55]. While

our results and others seem to indicate an increase in scaup

numbers in the southern PPR [28], this increase is not large

enough to offset the large decrease in the boreal forest (Fig. 1).

While abundance in the southeastern PPR seems to have been

growing exponentially since the mid-1990s, it is worth noting that

the increments for the mean count of paired birds are quite small,

ranging from only 1 to 3 (Fig. 1). This small growth does not offset

the large decrease observed in the boreal forest (e.g., Stratum 18,

Fig. 4a). Recent studies indicate that current and future climate

change may negatively impact late-nesting ducks such as scaup in

the boreal forest and monitoring to assess these predicted declines

is critical [41]. While these strata are only an example from each of

Hierarchical Models with Spatio-Temporal Data
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the respective habitat types, there are only a few strata showing

statistically significant increases and decreases that should be of

most concern.

Our modeling approach differs substantially from the current

methods used to estimate continental abundance of duck species

[25,56](Fig. 4). Specifically, the USFWS does not base manage-

ment decisions on stratum-specific estimates and trends, but rather

looks at how aggregated population size is changing at the

continental scale. While the continental count can be related back

to changes occurring in each stratum, an approach focused on

trends in specific spatial regions may be more useful for guiding

future management actions on the ground. Understanding why

scaup are declining in certain areas of the boreal forest, and

increasing in areas of the PPR is likely critical to preservation of

scaup as a game species. It seems that the decrease in abundance

of paired scaup is occurring on a much more local scale than

Figure 1. Changes in counted breeding pair abundance since 1957 based on posterior distributions for the b1,j coefficients.
Negative numbers indicate pairs lost and positive numbers indicate pairs gained. Note that not all differences are estimated to be statistically
different from zero.
doi:10.1371/journal.pone.0049395.g001

Figure 2. Marginal posterior distributions for the b coefficients controlling for general trend using the zero-inflated
negative binomial data model.
doi:10.1371/journal.pone.0049395.g002

Hierarchical Models with Spatio-Temporal Data
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previously thought, and restricting inference to the continental

scale could inhibit identification of the mechanisms driving trends

in key areas [28]. Furthermore, intensive monitoring of individual

strata might be useful for management purposes, as detailed

information on a finer spatial scale could help elucidate the causes

and prevalence of population decline.

Our results may differ somewhat from similar studies [28]

because of the time period taken into consideration, the focus on

breeding-pair abundance, and the use of hierarchical models to

separate observation error from process variation. If a different

time period were used (e.g., from 1955 to 1997 or 1978 to 1997, as

in Afton and Anderson [28]), different conclusions may have been

reached. Methodological changes occurred in 1975 that made it

difficult to compare counts of grouped birds, and thus the total

number of birds, from time periods before and after 1975. Our

focus on breeding pairs alleviated this problem and allowed for

a cohesive analysis from 1957 onward to identify spatially-explicit

trends in abundance [57]. Additionally, our analysis was based on

raw data of the segment-level counts of breeding pairs, rather than

extrapolated estimates. The discrepancy between the counts and

estimated abundance is notable, with raw counts in a stratum

typically being less than 100 breeding pairs in a given year, and

extrapolated estimates ranging up to hundreds of thousands of

scaup (Fig. 4).

Integrated Nested Laplace Approximation
Using INLA, we were able to successfully implement and

compare several different models accounting for first- and second-

order variation in the data across space and time, making this

a more appropriate analysis of the BPS data. Although we could

have used traditional MCMC methods, the processing time using

INLA was considerably shorter, allowing us to fit models that

might have otherwise not been considered due to computing

limitations. For example, the processing time for the full negative

binomial model was approximately 27 minutes on a 2 |

2.93 GHz 6-Core Intel Xeon workstation, making it roughly an

order of magnitude faster than MCMC for this model and dataset

(53 years of data with over 2500 segments sampled each year).

While INLA does restrict the user to generalized linear models, it

could be quite useful as an initial step for determining variables of

importance to incorporate into a non-linear model using MCMC.

Conclusions
Overall, our results support previous work indicating a decline

in population abundance in the northern boreal forest of Canada,

and additionally indicate that the population of scaup has

increased rapidly in the southeastern PPR since 1957. Addition-

ally, it seems that the most important processes influencing

population dynamics were not related to second-order autocorre-

lation across strata or over time, but rather parameters in the

model explicitly accounting for the differences among the strata

(i.e., the fixed intercept and slope parameters). Much of the

variation in the data was explained by the fixed effects, and the

temporal trend in the model was of greater importance in

predicting dynamics than the random effects. This is not to say

that the random effects were not important in our model, as

properly accounting for autocorrelation can prevent erroneous

conclusions. Our example could easily be further developed to

accommodate covariates that might help explain underlying

drivers of observed spatio-temporal variation in the population

dynamics, such as information on environmental conditions (e.g.,

drought conditions), predation, intensity of hunting, and other

variables, ckxj,t,k, that could be used in place of the trend variable

in (2). Further, additional measurement-level covariates (e.g.,ob-

server) could be incorporated in (1) by letting the zero-inflation

probability, yi,j,t, vary according to these other covariates. For

example, if there were a single observation covariate, the model for

y could be written as logit(yi,j,t)~d0zd1wi,j,t (or more flexibly by

letting d vary with i,j,t as well). If covariates were used to replace

the trend parameters in the process model, the random effects

would likely account for a greater amount of variation in the data

relative to stratum-specific trends. Spatially-explicit effects of intra-

and inter-specific density dependence could also be included in the

INLA framework using the log-linear parameterizations of the

Gompertz or Ricker models [3,6]. These could simply be

implemented as linear covariates along with environmental

Figure 3. Increases and decreases in the abundance of breeding pairs since 1957 based on posterior distributions for the b1,j
coefficients. Highlighted areas show an 95% chance of the population increasing (red) or decreasing (blue) in the area since 1957.
doi:10.1371/journal.pone.0049395.g003
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covariates [12]. Additionally, results from the INLA analysis can

be used to better inform the way in which the BPS is conducted,

using an optimal sampling scheme to maximize the amount of

information gathered during the survey while minimizing associ-

ated error [58].
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