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ABSTRACT
Understanding patterns and mechanisms underlying local adaptation is becoming increasingly important for species conser-
vation amid anthropogenically driven environmental change. Alpine systems are experiencing particularly intense pressure 
from environmental change resulting from increased rates of warming and corresponding loss of snow and ice. We integrate 
morphological and genetic analyses to identify traits important for local adaptation in one of the highest elevation breeding birds 
in North America, the Sierra Nevada Gray-crowned Rosy-Finch. We performed an in-depth analysis of how traits with known 
links to thermoregulation in birds such as wing length, bill size, and feather microstructure vary between two populations at 
sites with contrasting climate and environmental conditions. We identified loci underlying these traits using a genome-wide 
association study and further examined regions of the genome related to altitude adaptation and cold tolerance using FST outlier 
tests. Together, these results indicate that temperature, food availability, and alpine landscape features may impose multifaceted 
and potentially conflicting selective pressures on morphological traits important to adaptation in alpine birds. Overall, this work 
represents one of the first in-depth analyses of the genetic basis of adaptation in an alpine specialist songbird.

1   |   Introduction

Local adaptation occurs when natural selection favors traits 
that confer fitness advantages in specific habitats (Endler 1977; 
Kawecki and Ebert 2004; Savolainen et al. 2013). A species' adap-
tive capacity determines the extent to which it will be able to re-
spond to rapid environmental change (Forester et al. 2022, 2023; 
Lande and Shannon 1996; Meek et al. 2023). As a result, identify-
ing genetic and morphological traits involved in local adaptation 
is a key component of effective species conservation planning 
(Hoban et al. 2016; Meek et al. 2023). Historically, assessments 
of the capacity for local adaptation relied on reciprocal trans-
plant experiments that allowed researchers to link variation in 
putatively ecologically important traits to differences in fitness 
across environmental gradients (Blanquart et al. 2013; Clausen 
et  al.  1941; Kawecki and Ebert  2004; Savolainen et  al.  2013). 

However, recent advances in genomic methods have made it 
possible to detect signatures of selection across the genome and 
to associate these with environmental variation and ecologi-
cally important morphological variation (Capblancq et al. 2020; 
Hoban et al. 2016; Lotterhos and Whitlock 2015). We leveraged 
recent advances in genomic methods to identify morphological 
and genetic traits important to local adaptation in an understud-
ied alpine bird system.

Many montane species undergo upward range shifts with cli-
mate change (Mamantov et  al.  2021). However, for those spe-
cies already living near the top of a mountain system, there 
are constraints that may limit the ability to track their niche, 
a phenomenon termed the “escalator to extinction” (Freeman 
et al. 2018; Urban 2018). Alternatively, local adaptation can im-
pact adaptive responses to the environment and allow species 
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to persist despite a restricted capacity for range shifts (Aitken 
et al. 2008; Capblancq et al. 2020). A first step toward improv-
ing our understanding of how high-altitude species will respond 
to climate change is to identify morphological traits and corre-
sponding regions of the genome involved in adaptation to ex-
treme alpine environments (Blanquart et al. 2013; Pritchard and 
Di Rienzo 2010).

Birds living in alpine regions are exposed to extreme en-
vironments throughout the year, including variable snow 
cover, hypoxic conditions, and dramatic temperature changes 
(Grabherr et  al.  2010; Körner  2003). As a result, traits that 
contribute directly to thermoregulation are expected to be 
under strong selective pressure in alpine species. Previous 
work has shown climate-linked traits often follow ecogeo-
graphical rules such as Bergmann's and Allen's rule. Allen's 
rule posits that animals adapted to colder environments will 
have shorter appendages than animals adapted to warm cli-
mates (Allen  1877). In birds, this rule predicts that beaks 
and wings will be longer in warmer environments to facili-
tate greater heat dissipation across a larger surface area, and 
shorter in colder environments to facilitate heat conserva-
tion (Greenberg et al. 2012; Lewden et al. 2023; Symonds and 
Tattersall 2010; Tattersall et al. 2017; Ward et al. 1999; Weeks 
et al. 2020, 2025). Bergmann's rule, which states that body size 
tends to decrease as temperature increases, has also been sup-
ported in birds (Ashton 2002; He et al. 2023). Following these 
rules, we predicted that birds will have shorter beaks and 
smaller wings as well as larger overall body sizes in higher, 
colder environments.

An additional aspect of beak morphology that should be in-
vestigated in the context of thermoregulation is nare length. 
Nares are the nostrils of the bird and are located at the top of 
the beak. Grinnell (1913) documented subspecific divergence in 
Leucosticte tephrocotis dawsoni, including differences in beak 
length and bill depth from the nostril. While nare size per se 
was not the focus, these measurements provide a morphological 
basis for interpreting variation in nasal exposure and potential 
heat exchange, particularly in the context of ecological differ-
ences between alpine sites. While there has not, to our knowl-
edge, been work directly linking nare size to thermoregulatory 
function, this may be an important and understudied aspect 
of beak morphology as it relates to thermoregulation in birds. 
Following the logic for broader beak morphology, we can expect 
to see larger nares in the warmer environments to facilitate the 
dumping of excess heat.

Although less studied in the context of local adaptation, feather 
microstructure may also be important to avian species' adapta-
tion to environmental variation in temperature. While substan-
tial evidence suggests feather microstructure plays a key role in 
determining the thermoregulatory capacity of a bird's plumage 
(Barve et  al.  2021; Stettenheim  2000; Stoutjesdijk  2003; Wolf 
and Walsberg 2000), there is some confusion over how environ-
mental variation may drive feather microstructure differences 
(D'alba et al. 2017; Koskenpato et al. 2016; Lei et al. 2002; Pap 
et al. 2017, 2020). In one of the few studies that have been con-
ducted at the population level, Koskenpato et  al.  (2016) found 
that tawny owls living in colder environments have signifi-
cantly denser plumulaceous contour feathers than those living 

in warmer environments. This suggests that feather density may 
facilitate heat retention. In contrast, however, Pap et al. (2017) 
found that European bird species wintering in colder areas 
had less dense feathers than those wintering in warmer places. 
Thus, there is a clear need for studies specifically linking envi-
ronmental variation with population-level differences in feather 
microstructure.

Recent advances in population genomics have enabled the de-
tection of loci involved in local adaptation, even in nonmodel 
and wild species (Faria et  al.  2014). Among these, FST outlier 
tests are commonly used to identify genomic regions that exhibit 
elevated population differentiation, which may signal divergent 
selection (Hoban et  al.  2016). However, many adaptive traits 
are likely polygenic, involving small effects at numerous loci 
(Pritchard and Di Rienzo 2010; Yeaman 2015), and such loci will 
not be picked up by FST outlier tests. To address this, genome-
wide association studies (GWAS) can be used to link more 
subtle genetic variation to phenotypic variation in ecologically 
important traits suspected to be under selection (Stinchcombe 
and Hoekstra 2008). Taken together, combining approaches that 
detect both population-level divergence and polygenic trait ar-
chitecture offers a powerful framework for investigating local 
adaptation.

We investigated the potential for local adaptation in the Sierra 
Nevada Gray-crowned Rosy-Finch (Leucosticte tephrocotis daw-
soni), one of the highest-breeding songbirds in North America. 
Of the roughly four groups of rosy-finch found in North America, 
this subspecies is more localized, found only in California's 
alpine, and is a short-distance migrant. In comparison, the 
broader Gray-crowned Rosy-Finch species range extends along 
the entire western edge of North America from California to 
Alaska. Despite long-standing interest (Grinnell  1913, 1917; 
Twining 1940), research on this subspecies has been limited due 
to the difficulty of accessing its extreme nesting sites located on 
the rocky cliff faces of the Sierra Nevada and White Mountains 
of California, more than 3000 m above sea level. Additionally, 
this subspecies may act as a strong model of local adaptation due 
to the variation in habitat experienced within a restricted range. 
To help fill this knowledge gap, we conducted morphological 
and genomic analysis of two populations breeding at distinct 
places in the elevational and thermal range. Piute Pass, located 
in the Sierra Nevada, is lower in elevation and warmer than the 
White Mountains (Figure 1A). To identify traits potentially in-
volved in local adaptation, we quantified variation in beak and 
feather morphology between the two populations. Based on 
Allen's rule, we predicted that birds in the warmer Piute Pass 
population would have longer wings and larger beaks. Following 
Bergmann's rule, we predicted that birds in Piute Pass would also 
have smaller overall body size. Further, we predicted that birds 
in the colder White Mountains location would exhibit feather 
traits associated with increased insulation, specifically, longer 
barbules and higher node density. Lastly, we used genome-wide 
association studies (GWAS) to identify genes linked to feather 
and bill morphology and FST outlier tests to identify other po-
tentially important sources of genetic variation (Figure  1B,C). 
Overall, our findings provide new insights into the process of 
local adaptation in an extreme alpine specialist bird and provide 
key baseline information on the capacity for adaptation in the 
face of global environmental change.
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2   |   Methods

2.1   |   Site Selection

Our study compares Rosy-Finch populations from two sites: one 
in the Sierra Nevada and one in the White Mountains. Sierra 
Gray-crowned Rosy-Finches occupy alpine habitats from ap-
proximately 2750–4000 m across California (Brown et  al. in 
prep), and our study sites span a substantial portion of this range. 
The Piute Pass location is in the Sierra Nevada at 3470–3625 m 
in elevation and has a warmer average temperature during the 
breeding season of 8°C (with a range of 3.8°C–13.0°C). The 
White Mountain location, near White Mountain Peak, is higher 
in elevation at 4285–4344 m and colder with a mean average 

temperature during the breeding season of 6°C (with a range 
of 1.5°C–10.7°C) (extracted from AdaptWest Project  2022, see 
methods in Data S1 and Figure S1). Because it lies in the Sierra 
Nevada rain shadow, the White Mountain site receives roughly 
one-third the precipitation of areas at comparable elevations in 
the Sierras (Rundel et al. 2008). Between the two sites, Piute Pass 
receives more precipitation as snow and has a more persistent 
snowpack than the White Mountain location. Additionally, 
aquatic environments such as streams, lakes and ephemeral 
pools are more abundant in the Sierra Nevada than the White 
Mountains (Rundel et al. 2008). The alpine ecosystems of these 
mountains can be delineated as communities occurring above 
tree line (Rundel and Millar  2016). Environmental stressors 
such as extreme winter temperatures, short growing seasons, 

FIGURE 1    |    (A) Map of California highlighting the sampling location and design for two populations of Gray-crowned Rosy-Finch, Piute Pass and 
White Mountain. Elevation is noted for each site along with an elevation transect. (B) Overview of methods for GWAS analysis. Morphological mea-
surements were corrected for the effects of sex, age, and body size before being input into BSLMM and LMM models. (C) Overview of the methods 
for the FST analysis. The output of both analyses were analyzed to identify significant SNPs and related genes.
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high winds, low partial pressures of O2, and limited water avail-
ability are characteristic of these alpine environments (Grabherr 
et  al.  2010; Rundel and Millar  2016). Separating the western 
Sierra Nevada Mountains and the eastern White Mountains is 
the Owens Valley, a subregion of the Great Basin Desert (Belnap 
et al. 2016).

2.2   |   Sample Collection

A total of 171 Sierra Nevada Gray-crowned Rosy-Finches were 
captured using potter traps at White Mountain (n = 98) and Piute 
Pass (n = 73) in June and July, the peak of the species' breeding 
season (MacDougall-Shackleton et  al.  2000). Captures within 
each mountain range occurred across multiple locations within 
approximately 1 km2 at each site (White Mountain or Piute 
Pass) to maximize sample sizes while maintaining site-specific 
environmental characteristics. The sampling thus, in total, rep-
resents only these two sites. Not all morphology was able to be 
collected for every bird, resulting in slight variation in the types 
of data collected for each individual (see details in supplemen-
tal methods, see sample sizes for each trait in Table S1). Blood 
samples were collected from 150 of the captured birds using the 
brachial wing vein and stored in Queen's lysis buffer at room 
temperature (Owen 2011; Seutin et al. 1991). At the same time, 
morphological measurements—tarsus length, wing chord, beak 
width, beak length, beak depth, nare length, and mass—were 
also collected from 154 of the birds using an electronic caliper 
and 5–10 body feathers were collected from the breast of all in-
dividuals. Additionally, birds were aged and sexed following the 
guidelines established in Pyle  (2022) (see supplemental meth-
odology). Birds were banded to allow for identification of the 
individuals and recognize recaptures, then released. All han-
dling and banding of birds was done following the guidelines 
and protocols of the US Geological Survey (USGS) Bird Banding 
Laboratory (BBL) and complied with permits and permissions 
from federal and state agencies. All measurements were taken 
by two researchers (T.B.M. and E.S.Z.), with one (T.B.M.) col-
lecting approximately 80% of the data. Because the majority of 
measurements were taken by a single observer, and all followed 
the same standardized protocol, observer identity was not in-
cluded as a covariate in subsequent analyses.

2.3   |   Feather Microstructure Measurements

We measured the microstructure of three feathers for each in-
dividual. For each feather, three photographs were taken using 
an Olympus BX51 Microscope: One photo each of an unbroken 
pennaceous and plumulaceous barb from the center of each re-
gion was taken at 4× objective, and one photo of a plumulaceous 
barbule was taken at 10× objective (Figure 3A). Structures were 
then measured from the photos using the segmented line tool in 
ImageJ. For the pennaceous and plumulaceous barbule length, 
we measured one barbule from each region starting from the 
distal tip to where the barbule meets the barb. For the penna-
ceous and plumulaceous barbule density, we drew a 0.5 mm line 
along the middle of a barb, counting the number of barbules 
along that line. And finally, for plumulaceous node density, we 
drew a 0.2 mm line along the center of a barbule, counting the 
number of nodes along that line. Each replicate measure for a 

feather trait was averaged per individual prior to downstream 
analysis. Approximately 95% of feathers were measured by one 
researcher (SD), and the observer was not included as a covari-
ate in subsequent analyses.

2.4   |   Statistical Analysis for Local Adaptation

Body size and sex can confound morphological comparisons 
among individual birds (D. C. Adams et al. 2020). To account 
for these effects in our investigation of Allen's rule, we included 
sex and tarsus length as predictor variables in our models. We 
used tarsus length as an index of body size because it correlates 
strongly with mass but is less affected by short-term fluctuations 
in condition; this approach has been used in recent large-scale 
morphological studies (Demery et al. 2021; Weeks et al. 2020; 
Zimova et al. 2023). As additional validation of tarsus as a proxy 
size for body size, we generated a PC axis that incorporated mul-
tiple allometric traits and found that this was highly correlated 
(0.7) with tarsus (see supplement for additional details). We 
proceeded with tarsus as our proxy for body size in all further 
analyses. To assess trait variation between sites, we used both 
univariate and multivariate approaches (see Tables  S2 and S3 
for a summary of trait values). We began by constructing linear 
models with tarsus length, sex, age, and site code as predictors 
and used AIC weights to identify the combination of variables 
that best explained trait variation. Traits for which site code was 
a significant predictor were considered significantly different 
between the two populations. We opted not to use a Bonferroni 
correction for the univariate models as each model had a specific 
hypothesis associated with it. We used emmeans (Lenth 2025) 
to calculate average trait values while controlling for predictors 
other than site code, and these adjusted means were overlaid 
on the raw data in a violin plot (Figures 2 and 3B). To test our 
hypotheses derived from Bergmann's rule, we compared both 
tarsus length and a principal component axis representing over-
all body size using linear models. Each model included age and 
sex as covariates to account for potential confounding effects 
on trait variation. We then assessed whether body size differed 
significantly between the two populations by including site as a 
predictor.

We also conducted a multivariate analysis to account for poten-
tial correlations among traits in our investigation of Allen's rule. 
For our multivariate approach, we incorporated all body mor-
phology traits (wing chord, nare length, beak depth, beak width, 
beak length) into a MANOVA model with site, age, sex, and tar-
sus as predictors. The same analysis was performed with all of 
the feather traits (pennaceous barbule density and length, plu-
mulaceous barbule density, length, and node density) together.

2.5   |   Sequencing and Genotyping

DNA was extracted from blood samples of 150 individuals using 
Qiagen's DNeasy Blood and Tissue Extraction Kit protocol and 
quantified with the Qubit dsDNA HS Assay Kit. We used a mod-
ified version of Illumina's Nextera Library Preparation protocol 
to prepare WGS libraries and pooled the libraries by equal mass 
before sequencing. The resulting libraries were sequenced on 2 
lanes of an Illumina NovaSeq 6000 at Novogene Corporation.
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To process the raw sequence reads and detect variants, we uti-
lized Snakemake (Mölder et al. 2025), a workflow management 
system that provides efficiency, adaptability, and reproducibil-
ity. The pipeline we adapted to our species can be found on 
Github (https://​github.​com/​eriqa​nde/​mega-​non-​model​-​wgs-​
snake​flow/​). To summarize the workflow, sequence data were 
trimmed using fastp (S. Chen et al. 2018) to remove adaptor se-
quences and polyG tails using a sliding window, and then aligned 
to a Brown-capped Rosy-Finch (Leucosticte australis) reference 
genome (GenBank: GCA_025504685.1) using Burrows-Wheeler 
Aligner software (H. Li and Durbin 2009). We marked PCR du-
plicates using SAMtools (Danecek et al. 2021) and read groups 
(sample, lane, library) were added using Picard (http://​broad​
insti​tute.​githut.​io/​picard). Individual coverage was estimated 
using SAMtools, and, given the range of coverage (7.4–19X), 
we downsampled bam files to 10× using the SAMtools subsa-
mple function (Danecek et al. 2021). Individual gvcf files were 
created using the GATK HaplotypeCaller (Poplin et  al.  2018) 
with high base quality score filters (--min-base-quality-score 
33 --minimum-mapping-quality 20) to remove batch effects 
(Lou and Therkildsen  2022). We then parallelized the calling 
of genotypes across 3 million bp regions across the genome 
using the GenomicsDBImport and GenotypeGVCFs functions 

(der Auwera and O'Connor 2020; McKenna et al. 2010). GATK 
versions above 4.0 call missing data as homozygous reference, 
which can bias downstream analysis. To avoid this, all loci with 
a depth of zero were manually marked as missing. To remove 
systematic errors according to GATK variant quality score recal-
ibration (VQSR) best practices, we hard filtered variants with the 
following parameters: StrandOddsRatio (> 3.0), FisherStrand 
(> 60.0), MappingQuality (> 40.0), and Quality by Depth (> 2.0). 
We further filtered for single nucleotide polymorphisms (SNPs), 
removing indels, filtering for missingness (< 80%), allele fre-
quencies (> 0.05 and < 0.95), depth (> 4×), quality (> 30.0) using 
BCFtools (Danecek et  al.  2021). After filtering, the resulting 
high-quality SNPs were passed through BEAGLE 4.1 (Browning 
and Browning 2016) to impute missing genotypes.

2.6   |   Population Genetic Structure Analysis

Population structure was assessed using a Principal Component 
Analysis (PCA) followed by ADMIXTURE (Alexander 
et al. 2009). SNPs identified from sequence data were pruned for 
linkage disequilibrium in PLINK (Purcell et al. 2007) using a 
50 kb window, 10 SNP window step size, and an R2 threshold of 

FIGURE 2    |    Violin plots of beak morphology raw measurement: (A) beak width, (B) nare length, and (C) beak depth. Overlaid are the corrected 
mean trait measurements shown with a crossbar. Significance of the effect of site on the morphological trait is shown for each comparison. Piute 
Pass is the warm site and White Mountain is the cold site. We found that nares were longer while beak widths and depths were smaller in the warmer 
environment.
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0.2. Eigenvalues for the PCA were then generated based on the 
pruned SNPs using PLINK, and the first two principal compo-
nents (PC) were plotted in R. To further confirm a lack of pop-
ulation structure, ADMIXTURE was used to test k = 1–3. The 
results were plotted using R, and the cv values were evaluated.

2.7   |   Genome-Wide Association Study

Two GWAS models were implemented on all traits using 
GEMMA (Zhou et  al.  2013): a Bayesian sparse linear model, 
BSLMM, and a univariate linear model, ULMM. These GWAS 

approaches allow us to detect SNPs associated with a given 
trait while explicitly accounting for population structure and 
relatedness through the incorporation of random effects whose 
correlation structure is characterized by a relatedness matrix. 
Input files were generated with PLINK (Purcell et al. 2007). We 
implemented a Bayesian sparse linear mixed model (BSLMM) 
using 500,000 MCMC burn-in iterations that were discarded 
and 5 million MCMC iterations that were saved. We then filtered 
for SNPs that had a mean posterior inclusion probability (PIP) 
above 0.01. A univariate linear mixed model (ULMM) employ-
ing the Wald test was also conducted (see Table S7 for λGC val-
ues for each model and Figure S6 for PP plots for each trait). The 
Wald test assesses the significance of the SNP genotypes in a lin-
ear regression model and is used to test the null hypothesis that 
the effect size of a genetic variant on the phenotypic trait is zero 
(i.e., there is no association between the variant and the trait). 
SNPs were then filtered based on a p value threshold of 5 × 10−8, 
a threshold widely used in GWAS studies (e.g., Chen et al. 2021).

2.8   |   Genome Wide FST

To estimate per site FST, we used OutFLANK (Whitlock and 
Lotterhos 2015). OutFLANK identifies outlier FST SNPs by mod-
eling the distribution of FST values across loci using a trimmed 
likelihood approach to exclude loci under strong selection. It 
then fits a chi-squared distribution to the neutral FST values and 
identifies SNPs with unusually high or low FST as potential out-
liers, suggesting loci under selection. We used a false discovery 
rate threshold of 0.005 to determine outlier SNPs. We took the 
90th quantile of these FST values to narrow down the top SNPs 
for literature review and plotted these on a Manhattan plot. This 
allowed for isolation of the most divergent loci as well as easier 
visualization. We then determined the FST values for the SNPs 
previously identified in the GWAS analyses based on the values 
calculated by OutFLANK.

2.9   |   Identification of Associated Genes, 
Enrichment Analysis, and Literature Review

To identify genes associated with significant SNPs from our 
GWAS and FST analysis, we implemented BEDTools (Quinlan 
and Hall 2010) closest function with a previously created Brown-
capped Rosy-Finch gene annotation (Funk et al. 2023) to iden-
tify genes close to the SNP positions. The output from this tool 
was filtered to find only protein coding genes within 25 kb of the 
given SNP. For plotting purposes, we used the NUCmer function 
in MUMmer4.x (Marçais et al. 2018) to align the Brown-capped 
Rosy-Finch genome assembly to the Zebra Finch (Taeniopygia 
guttata) genome assembly (GenBank: GCF_003957565.2). We 
then filtered the delta alignment output of NUCmer to keep only 
matches that were greater than 400 bps and used show-coords 
to display the coordinates. We then used custom R scripts to 
convert our scaffold and positions to Zebra Finch chromosome 
positions for plotting SNPs in Manhattan plots.

Enrichment in gene ontology (GO) terms was performed with 
Panther 19.0 (Thomas et al. 2022). For this analysis, Gallus gal-
lus was used as the background gene set. Enrichment thresholds 
were set to p < 0.05 after Bonferroni correction. Gene network 

FIGURE 3    |    (A) Photograph showing a body feather from a Sierra 
Nevada Gray-crowned Rosy-Finch captured at White Mountain. 
Highlighted is a microscopic image of the pennaceous and plumula-
ceous barbule structure. (B) Violin plots of node density raw measure-
ments, with illustrations above of the structure of plumulaceous barbule 
nodes. Overlaid on the plots are the corrected mean trait measurements 
shown with a crossbar. Significance of the effect of site on the morpho-
logical trait is shown for each comparison.
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analysis was conducted using STRING (Szklarczyk et al. 2023) 
with zebra finch as the organismal reference for background 
genes. STRING (Search Tool for the Retrieval of Interacting 
Genes/Proteins) is a database that predicts and visualizes pro-
tein–protein interactions based on known and predicted associ-
ations from experiments, literature, and computational methods 
(Szklarczyk et al. 2023). For FST genes, all genes associated with 
the OutFLANK outliers were input into enrichment analyses. 
Genes resulting from the GWAS analysis were grouped with all 
beak morphology trait genes run as a single analysis, all feather 
trait genes run together, and wing chord genes run in another 
analysis.

We performed a literature search for all of the candidate genes 
using google scholar and the search terms gene name followed 
by, bird, trait specific term (when applicable), environmental ad-
aptation, local adaptation (e.g., “‘XIAP’ gene beak” or “‘DSCAM’ 
gene environmental adaptation”). For FST SNPs, only those 
genes associated with the 90th quantile of SNPs were evaluated 
in the literature. Genes were grouped by their key functions or 
associations as described in the literature.

3   |   Results

3.1   |   Local Adaptation of Body and Feather 
Morphology

For the univariate approach, AIC model selection indicated 
five traits for which site was a significant predictor. For wing 
chord, the best model included tarsus length, age, sex, and 
site. The model showed high explanatory power (adjusted 
R2 = 0.673, p < 0.001) and showed that birds at the White 
Mountain location had shorter wing chords compared to 
Piute Pass (PIPA) (p = 0.003). The best model for nare length 
included tarsus, sex, and site and had lower explanatory 
power (adjusted R2 = 0.197) but was still highly significant 
(p < 0.001). This model found that nare length was shorter in 
the White Mountain population (p < 0.001). Similarly, beak 
width had tarsus, age and site as significant predictors (ad-
justed R2 = 0.135, p < 0.001) with White Mountain having 
beaks that are wider than those in Piute Pass (p < 0.001). Beak 
depth had tarsus, age and site as the best predictors (adjusted 
R2 = 0.250) and found that White Mountain has significantly 
deeper beaks than Piute Pass (p = 0.003). Beak length was not 
significantly different between the two locations and was best 
predicted by sex (adjusted R2 = 0.516, p < 0.001). For feather 
microstructure, the only trait that had site as a significant pre-
dictor was plumulaceous node density. This model included 
tarsus and age as well as site but had low explanatory power 
(adjusted R2 = 0.076, p < 0.001). It showed that plumulaceous 
node density was higher in the White Mountain populations 
(p < 0.001). The best model for plumulaceous barbule length 
based on AIC weights included site as a predictor; however, 
the effect size was uncertain, and the effect of site was not 
statistically significant (adjusted R2 = 0.142, p = 0.078). 
Pennaceous barbule density had tarsus and age as the best 
predictors (adjusted R2 = 0.365, p < 0.001), pennaceous bar-
bule length had sex as the best predictor (adjusted R2 = 0.307, 
p < 0.001), and plumulaceous barbule density had tarsus and 
age as the best predictors (adjusted R2 = 0.076, p = 0.004). We 

found that body size did not vary between sites. In our model 
using tarsus (adjusted R2 = 0.165, p < 0.001) both age and sex 
were significant predictors (p < 0.001 and p < 0.05); however, 
site was not significant (p = 0.417). Our comparison using the 
PC axis representing size (adjusted R2 = 0.4639, p < 0.001) had 
similar results with age and sex as significant and site as not 
(p = 0.53).

When looking at the results of the multivariate analysis, we 
see that for body morphology traits site was a highly signifi-
cant explanatory variable (p = 1.327e-11). Tarsus, age, and sex 
were also highly significant (p < 2.2e-16). The MANOVA on 
feather traits also had site as a significant predictor, although 
the p value was less significant (p = 0.036). Age was also sig-
nificant (p = 1.5e-14), but tarsus and sex were not (p > 0.05). 
For details on the models tested, models chosen, and full 
model results, see Tables S4–S6.

3.2   |   Evaluation of Population Structure

Whole-genome sequencing was performed on 150 individuals 
and 146 were included in downstream analysis. Four indi-
viduals were removed because their collection location could 
not be validated. Variant filtering resulted in 7,739,836 SNPs 
for subsequent genetic analysis. Linkage pruning removed 
5,526,104 SNPs. Visualizing PLINK PCA results revealed lit-
tle population structure with most individuals clustering to-
gether (Figure S2). ADMIXTURE results confirmed that there 
is no population structure in these samples because k = 1 had 
the lowest cv error (0.599) compared to k = 2 or 3 (0.612 and 
0.627).

3.3   |   Genes Identified With Genome-Wide 
Association Approach

The univariate linear mixed model identified a total of 64 SNPs 
for wing chord, beak length, beak width, pennaceous barbule 
length, and pennaceous barbule density. Using a Brown-capped 
Rosy-Finch gene annotation, we identified a total of 26 unique 
genes corresponding to these SNPs (Table  1). We filtered out 
genes that were not fully characterized (e.g., “LOC100221041”), 
leaving 14 genes. The Bayesian sparse linear mixed model 
identified 266 SNPs for wing chord, nare length, beak length, 
depth and width, pennaceous barbule length and density, and 
plumulaceous barbule length and node density. We identified 
146 genes associated with these SNPs (Table  1), 110 of which 
had been fully characterized. For each trait, the global view of 
p values for all SNPs and associated genes across both models 
are represented by Manhattan plots (Figure 4A–C, Figures S3–
S5). Given the sample size (n = 146), this GWAS is best viewed 
as conservative, detecting only loci with relatively strong effects 
on morphology.

GO term analysis using Panther produced significant results 
for beak depth and a combined set of all feather traits. For beak 
depth, the top terms were presynaptic membrane assembly 
(p = 1.44 × 10−5), synaptic membrane adhesion (specifically cell 
adhesion) (p = 1.01 × 10−5), and heterophilic cell–cell adhesion 
via plasma membrane cell adhesion molecules (p = 1.13 × 10−5). 
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For the feather traits (plumulaceous barbule and node density 
combined with pennaceous barbule length), fructosamine cat-
abolic process was a significant term (p = 1.12 × 10−6). Wing 
chord had no significant GO terms. STRING analysis for beak 
and feather traits, as well as wing chord, did not find signifi-
cantly more interactions than expected.

3.4   |   Genes Identified Through High Fixation 
Index (FST) Between the Two Populations

Using OutFLANK, 831 loci were identified as having signifi-
cantly high FST when comparing the White Mountain and Piute 
Pass populations, corresponding to 265 genes (Figure  4D). No 

FIGURE 4    |    Manhattan plot depicting the results of the LMM analysis on beak depth (A), wing chord (B), and pennaceous barbule length (C) with 
–log10(p-value) on the y-axis and the mapped Zebra Finch chromosome location on the x-axis. Significant SNPs from the BSLMM analysis are over-
laid onto the LMM results, plotted with their corresponding p values, and corresponding genes are noted. Also plotted are the results of the per-site 
FST results (D), using the 90th quantile threshold of 0.235. Corresponding genes are also shown, and functional categories are highlighted by color 
category. See Table 1 for more functional details.
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GWAS SNPs were flagged as having significant FST values. The 
minimum FST to be considered an outlier was 0.17513. The mean 
FST of SNPs not considered outliers was 0.0045. Using a 90th 
quantile, we determined FST = 0.235 to be the threshold, narrow-
ing down the SNPs to 105 loci. For the smaller set of loci, bedtools 
identified 61 related genes (Table  2). We ran STRING and GO 
term enrichments on both the larger and smaller set of genes. 
The smaller set did not have a significant number of connections 
over all or any significantly enriched GO terms. The larger set of 
264 genes, however, had an overall significant number of connec-
tions (p < 0.05) and had multiple significant annotated keywords 
(sourced from UniProt). The most significant was the keyword 
repeat (FDR < 0.001); the next was ubl conjugation pathways 
(FDR < 0.05).

4   |   Discussion

Understanding the genetic and morphological basis of local adapta-
tion is critical for predicting how species respond to environmental 
change. Alpine species face unique conservation challenges due to 
their extreme environments and thus are a high priority for studies 
of adaptive capacity. In this study, we investigated morphological 
and genetic differences between two populations of an alpine spe-
cialist songbird located in distinct parts of its environmental range. 
Consistent with our predictions, we found wings were shorter and 
feathers were denser in the colder environment. However, in con-
trast to our prediction, beak depth and width were larger in the 
colder environment, suggesting other factors like diet may place 
contrasting selective pressures on this ecologically important trait. 
We also identified numerous genes with known links to limb, fa-
cial, and feather development that potentially underlie variation 
in wing, bill, and feather microstructure. Further FST outlier anal-
yses revealed numerous significant differences between cold and 
warm populations at SNPs located within genes with clear links 
to altitudinal adaptation. Together, our results provide important 
insights into the morphological traits and associated genomic re-
gions associated with microgeographic variation in a high-altitude 
songbird species.

4.1   |   Trait Differences Between Warm and Cold 
Habitats

Ecogeographic rules, such as Allen's and Bergmann's rules, are 
useful for predicting broad geographic trends in morphology in 
response to environmental conditions, but observed patterns 
do not always align with expectations. In our study, we found 
that wing chord was smaller in the colder environment, sug-
gesting that this morphological trait may play a role in thermo-
regulation, consistent with Allen's rule. Heat dissipation from 
the wings occurs across the vascularized brachial regions, pri-
marily during flight when these areas are exposed to air flow 
(Lewden et al. 2023; Ward et al. 1999). Wing bone length reflects 
the extent of vascularized areas on the wings and has been 
shown to be longer in warmer environments across a broad sam-
ple of passerine species (Weeks et al. 2025). However, studies of 
other alpine bird species have found the opposite pattern: That 
birds from high-elevation sites have longer wings than those 
from low-elevation sites (Bears et al. 2008; Ceresa et al. 2024). 
In these cases, researchers have suggested that the demand for 
more energetically efficient flight at high elevations may out-
weigh thermoregulatory selective pressures, demonstrating the 
often contrasting selective pressures on ecologically import-
ant traits. Although outside of the scope of the current work, 
additional wing measurements could be collected that would 
allow for a more thorough investigation into the components 
of flight morphology. It is possible that migratory behavior is 
influencing wing length as previous work has shown that both 
within (Egbert and Belthoff 2003; Grilli et al. 2017) and between 
(Lockwood et al. 1998) species those who migrate further have 
longer wings. To date, no formal study has been conducted on 
the migratory patterns of the Sierra Nevada Gray-crowned sub-
species and so future work could investigate the links between 
wing morphology and movement patterns. Overall, our mor-
phological analyses support the idea that thermoregulatory de-
mands may play an important role in shaping wing morphology 

TABLE 2    |    Summary of FST outlier results. Shown are the genes for 
which functional information was available, from the narrower (90th 
quantile) FST results.

Gene Function References

GDPD5 Lipid metabolism Feng et al. (2023)

NOX4 Heat stress, altitude 
adaptation

Goel et al. (2021), 
Diebold et al. (2010)

MAML2 Altitude adaptation Schweizer 
et al. (2021)

SUPT20H Altitude adaptation Schweizer 
et al. (2021)

PPP1R1C Cold adaptation Fedorova et al. (2022)

SOX14 Feather 
development

Chen et al. (2024)

MEGF11 Feather 
development

Twumasi et al. (2024)

MSRA Altitude adaptation Jeong et al. (2018), 
Gheyas et al. (2021)

AKT3 Altitude adaptation Buroker et al. (2012), 
Qi et al. (2019)

DOCK11 Feather 
development

Crates et al. (2024)

SMARCA1 Craniofacial 
development

Boer et al. (2021)

GAB3 Craniofacial 
development

Boer et al. (2021)

ADGRD1 Altitude adaptation Nan et al. (2023)

NPHP4 Vision Borges et al. (2019)

ALDH7A1 Beak development Bai et al. (2014)

ADAMTS19 Metabolism Zhang et al. (2022)

VLDLR Lipid protein Wang et al. (2011)

ERCC8 Altitude adaptation Yan et al. (2022)

CTIF Beak development Lawson and 
Petren (2017)
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in the Sierra Nevada Gray-crowned Rosy-Finch, potentially out-
weighing the benefits of flight efficiency in this high-elevation, 
cold-adapted species but not excluding the potentially parallel 
pressure of migratory distance.

Contrary to our predictions based on Allen's rule, beak depth 
and width were larger in the colder environment. Although tem-
perature is often a key environmental variable exerting selective 
pressure on alpine taxa, variation in beak morphology between 
our populations may instead reflect divergent selective pressures 
associated with foraging ecology, a well-documented driver 
of beak divergence in birds (Grant et  al.  1976; Lamichhaney 
et al. 2018). In our study system, the Piute Pass population likely 
has access to more aquatic insects due to the higher availability 
of aquatic habitats proximate to Rosy-Finch breeding sites in the 
Sierra Nevada (Epanchin et al. 2010; Rundel and Millar 2016). 
For example, Epanchin et al. (2010) found that, when abundant, 
mayflies can comprise up to 38% of the Sierra Nevada Gray-
Crowned Rosy-Finch diet. In contrast, the White Mountain 
population may rely more heavily on insects deposited in snow-
fields, a behavior that could favor a more robust, conical bill 
for extracting frozen prey from the snow surface. Work is cur-
rently underway to investigate the dietary differences between 
these two populations of Rosy-Finch (Tim Brown, personal 
correspondence), and future work should explore the selective 
pressures experienced by this species. The other aspect of beak 
morphology assessed, nare length, was significantly larger in 
the warmer environment. If nare is playing a role in thermo-
regulation, these results would be consistent with larger nares 
allowing for more heat to be lost. Additionally, smaller nares in 
the colder environment would potentially prevent snow from en-
tering the nasal passages while foraging on snow. Overall, our 
results on beak morphology emphasize the complexity of iden-
tifying drivers of local adaptation, especially in alpine systems 
where extreme environments, food scarcity, and variation in 
migration strategies can create conflicting selection pressures.

Our comparison of body size did not have significant results, 
suggesting that Bergmann's rule is not contributing to morpho-
logical differences in this subspecies. He et al. (2023) found that 
there was significant variation in both strength and direction of 
correlation between latitude and body size within and between 
taxa. With our results, this could imply that Sierra Nevada Gray-
crowned Rosy-Finch are an exception to the rule. In another 
meta-analysis, it was found that sedentary bird species were 
more likely to conform to Bergmann's rule than migratory ones 
and suggest that winter temperatures may exert a higher pres-
sure than breeding temperatures (Meiri and Dayan 2003). The 
Sierra Nevada Gray-crowned Rosy-Finch is a short-distance, al-
titudinal migrant. It is possible that both White Mountain and 
Piute Pass populations move to similar areas or climates during 
the winter season, thus decreasing the divergent selection pres-
sure that would drive differences in Bermann's rule.

Of our feather comparisons, we identified significant differ-
ences between cold and warm sites for only one trait: plumula-
ceous node density. In line with our predictions, plumulaceous 
node density was higher in the colder, high elevation White 
Mountain population. Higher node density is known to improve 
air trapping ability, thus trapping warmth against the body sur-
face (King and McLelland 1984). Consistent with our results, a 

study on sparrows found that higher elevation alpine forms had 
higher node density relative to lowland forms (Lei et al. 2002). 
A further multispecies comparison found that species wintering 
in cold and windy conditions had downy feathers with higher 
node densities (D'alba et al. 2017). These interspecific trends are 
mirrored in our results, suggesting that the White Mountain 
population has feather adaptations consistent with an increased 
need for heat retention. The lack of significant results for other 
feather traits may be explained by the amount of variation in the 
measurements as well as the sample sizes being small, resulting 
in an underpowered comparison. An alternative cause for the 
non-significant results is that alternative selection pressures not 
considered in the present work are driving morphology of these 
traits. This is somewhat supported by the overall low explana-
tory power of our models used in this study. Additional work on 
this aspect of local adaptation would benefit from investigating 
the influences of alternative environmental traits and utilizing a 
more controlled setting to evaluate the functionality of intraspe-
cific differences in feather morphology.

4.2   |   Genome-Wide Analysis

We used GWAS to identify SNPs within genes involved in traits 
that differ between warm- and cold-adapted populations de-
scribed previously: beak width and depth, nare length, wing 
cord length, and pennaceous barbule density. Because ours is 
one of the first studies to investigate the genetic basis of feather 
microstructure variation, we also report on the genes associ-
ated with other measured feather traits, even though high vari-
ance in these traits prevented our ability to robustly investigate 
differences between populations occupying cold and warm 
environments.

Our literature review of GWAS results identified genes with di-
verse associations. For wing chord, we identified limb and bone 
development, heat response, and vascularization. Notably, the 
genes GUCA1C and NIPBL have been linked to limb develop-
ment in ducks and zebrafish https://​www.​zotero.​org/​googl​
e-​docs/?​2z2bux (G. Li et  al.  2020; Mohammadi  2024; Muto 
et al. 2014) and may play a similar developmental role in song-
birds. We also detected the genes PGLYRP2 and PACRG, which 
have been shown to be upregulated in chickens experiencing 
heat stress (Kim et al. 2021; Tian et al. 2020). Together, the limb 
development and heat response genes we identified as important 
further support the potential connection between wing length 
and thermoregulation suggested by our morphological finding 
of shorter wings in the colder environment. Although GWAS 
results do not establish a direct functional link to specific traits 
(Tam et  al.  2019), our findings suggest that future research 
should investigate the potential role of thermoregulatory selec-
tive pressures on genes involved in wing development.

When focusing on genes associated with beak morphology, 
BSLMM found more SNPs than LMM and identified several 
genes potentially associated with facial structure development 
and climate adaptation. One gene associated with beak depth 
was XIAP. Duplications of this gene have been found to result in 
facial dysmorphism in humans, including the underdevelopment 
of cheekbones and protruding jaws (Di Benedetto et al. 2014). 
Although a link with beak development in birds has not yet been 
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formally established, this could be an area for further research. 
Another gene identified for beak width was MINDY2, which be-
longs to a group of deubiquitinating enzymes. These genes are 
related to the regulation of the Wnt pathway (Park et al. 2020), a 
pathway that is well established as important for beak develop-
ment (Geetha-Loganathan et al. 2009). Additional genes such as 
RASL11A, TINAG, and PLPP3 have been directly linked to beak 
development in avian species (Abernathy 2021; Bai et al. 2018). 
Two genes associated with beak depth in our study (LRP1B and 
UTRN) were shown to be associated with breeding temperature 
in a study that used a GWAS approach to identify loci associated 
with climate variables related to morphology in hermit thrush 
(N. Adams et al. 2025). Although the beak morphology of our 
species did not entirely fall in line with predictions based around 
their thermoregulatory role, the elucidation of genes indicating 
a relationship between thermoregulation and beak morphology 
suggests that beaks still play a thermoregulatory role in this 
species.

Our GWAS on feather traits was, to the best of our knowledge, 
the first genome-wide association study of feather microstruc-
tural traits. Identifying the genetic basis of these fine-scale traits 
opens new avenues for studying how feather structure evolves in 
response to environmental pressures and functional demands. 
One of the genes associated with pennaceous barbule length 
in our study, HBE1, has also been identified in previous re-
search on feather development. Using RNA sequencing, Limber 
et  al.  (2024) found that HBE1, a hemoglobin gene (Mao et  al. 
2023), was highly expressed in feather pulp, the central tissue of 
the developing feather germ. Additional genes associated with 
feather traits in our study have been identified as being related 
to plumage coloration in birds, including EFNA2, NRXN1, and 
HERC4 (Shakya 2020; L. Sun et al. 2020; X. Zhang et al. 2023). 
Many other genes identified as being associated with feather 
traits in our work have not been shown to be associated with 
feather development or morphology in the literature. Feather 
morphology remains understudied in the context of local ad-
aptation, and the genetic architecture of these microstructural 
traits is still poorly understood. Our study offers a foundation for 
deeper investigation. Expanding this work to include compar-
ative genomic studies across populations or species with more 
strongly differentiated feather morphology could also help link 
genotype to phenotype and provide insight into the adaptive sig-
nificance of feather microstructure.

It is important to note that, in this system, we are limited in our 
ability to assess the role of phenotypic plasticity in driving trait 
differences. Bringing individuals together from both popula-
tions into a common aviary, as was done in Bears et al. (2008), 
would allow for better examination of these effects. It could also 
be argued that showing relatively high FST values for GWAS loci 
might suggest that the morphological differentiation is due to 
divergence rather than phenotypic plasticity. Our original intent 
with the FST outlier tests was to determine if any of the genes 
identified in the GWAS had variants that diverged significantly 
between the cold and warm environment populations. However, 
when comparing our FST results with SNPs identified in the 
GWAS, we found no overlap between the two sets. Although 
this could suggest that phenotypic plasticity is primarily driv-
ing the trait divergence, one must also consider that this result 
is consistent with known limitations of FST-based outlier scans, 

which are biased toward detecting loci under strong divergent 
selection and with large effect sizes (Hoban et  al.  2016). FST 
measures allele frequency differences between populations, and 
loci with large phenotypic effects are more likely to experience 
strong selection and exhibit pronounced divergence. In contrast, 
highly polygenic traits are shaped by small-effect variants that 
shift subtly in frequency—patterns that often fall below the 
detection threshold of FST scans. Our findings underscore the 
value of combining FST outlier analyses with GWAS approaches: 
while the former is designed to pinpoint loci under strong selec-
tion, the latter is better suited for uncovering the complex ge-
netic architecture of polygenic traits. Together, these methods 
can generate a more complete understanding of the genetic basis 
for local adaptation.

While we did not find overlap between the FST and the GWAS 
results, our FST analysis highlighted numerous genes involved 
in hypoxia response, altitude adaptation, and cold adaptation. 
These results are consistent with our hypothesis that elevation 
and associated climatic variables are applying divergent selection 
pressures in this species. Of these genes, NOX4 was found to be 
involved in mediating hypoxia-inducible transcription factors, 
a key component of the cellular response to hypoxia (Diebold 
et  al.  2010). Similarly, MAML2 and SUPT20H were found to 
be associated with altitude adaptation in deer mice (Schweizer 
et al. 2021), and ADGRD1 was associated with altitude adapta-
tion in Tibetan chickens (Nan et al. 2023). Multiple studies iden-
tified PPP1R1C as being related to cold adaptation in chickens 
(Fedorova et al. 2022; Romanov et al. 2023). These are all traits 
that would lend themselves to survival in alpine environments, 
and divergent selection is likely a product of varying selection 
pressures between the higher and colder White Mountain loca-
tion and the warmer and lower Piute Pass location.

Our FST analysis also identified several genes that might be in-
volved with plumage color differences in Rosy-Finches. Another 
gene that showed divergence between these two populations of 
finch was PHIP, which has been shown to be related to differentia-
tion in plumage coloration in House Finch (Balenger et al. 2015). 
Interestingly, when comparing candidate outlier genes from this 
work with studies identifying genes involved with the notable 
plumage coloration differences across the broader rosy-finch 
species complex, there were some overlapping genes. In a GWAS 
on crown coloration, Funk et al. (2023) identified NDUFAF2, a 
gene that was also significant in this work. For body plumage 
coloration, our results overlap with those of Funk et al. (2023) 
for the genes KCNV2, PUM3, and VLDLR. Although it was not 
a component of the current work, other studies have shown that 
plumage coloration is involved in avian thermoregulation, with 
darker plumage putatively facilitating heat absorption (Medina 
et al. 2018; Rogalla et al. 2022), and can show adaptation to local 
environment (Romano et al. 2019; Sandoval and Barrantes 2019; 
Sirkiä et al. 2010). This provides an important avenue for future 
work with this species investigating the differences in plumage 
coloration between populations.

An additional result of our FST analysis was the identification 
of a gene, CTIF, that has been previously identified as being 
a climate-adapted gene in a landscape genomic study on the 
closely related Brown-capped Rosy-Finch (DeSaix et al. 2022). 
Interestingly, this gene was also identified through a contrasting 
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approach using a mixed linear model on beak shape for two 
species of Darwin's finches, Geospiza fortis and G. scandens 
(Lawson and Petren  2017). The authors of this paper summa-
rize their results as indicating that inter and intraspecies beak 
shape variation is a result of a small suite of traits evolving in 
concert, corresponding to many genes. It is possible that we did 
not identify CTIF genes in our GWAS method because of low 
power due to smaller variation in the beak traits measured, a 
result of using continuous measurements between two popula-
tions versus categorical comparisons between different species 
as in Lawson and Petren (2017). Because of the large number of 
SNPs obtained for our two populations, our FST analysis likely 
had higher power and thus detected this gene, in addition to the 
fact that it had a high FST of 0.263 (averaged across the 5 SNPs 
associated with this trait). The overlap of these genes in the two 
studies described, as well as ours, makes it a strong candidate as 
a genetic component of adaptation to environment, potentially 
through the mechanism of beak morphology.

An important outcome of local adaptation is the maintenance of 
ecologically important genetic variation (Savolainen et al. 2013). 
Conserving genetic variation prevents loss of adaptive potential 
and can underlie rapid adaptive responses to environmental 
change (Forester et  al.  2023). We integrated phenotypic mea-
surements, genome-wide association studies, and FST analy-
ses to understand the morphological and genetic basis of local 
adaptation of an alpine bird species, the Sierra Gray-crowned 
Rosy-Finch. When comparing traits suspected to be involved in 
thermoregulation for this species, we found that morphological 
variation across populations only partially aligned with eco-
geographic expectations. Wing chord was shorter in the colder 
environment, consistent with Allen's rule and likely reflecting 
thermoregulatory adaptation. However, beak depth and width 
were larger in colder environments, contrary to predictions, sug-
gesting additional selective pressures such as diet specialization 
may be playing a role. Comparisons of feather microstructure 
further showed thermoregulatory adaptation, with higher plu-
mulaceous node density in the high-elevation population likely 
enhancing insulation. When coupled with the results of our 
GWAS and FST outlier scans, we gained a clearer picture of traits 
and genes important to adaptation in alpine birds. Importantly, 
we found that many of the genes underlying wing length, beak 
depth, and feather microstructure had links to both development 
of similar traits in other organisms as well as thermoregulation. 
Our genomic and morphological results provide evidence that 
this alpine species is locally adapted to temperature variation.

For those traits that are involved in thermoregulation, we can 
hypothesize about the implication of the intraspecific differ-
ences in light of future climate change. Recent work has shown 
that, for populations whose morphology and genetics misalign 
with the environment as it changes due to anthropogenic pres-
sures, there is a decrease in fitness (Pelletier and Coltman 2018; 
Rodriguez et al. 2025). As climate change drives increasing vari-
ability in temperature, understanding both simple and complex 
genetic architectures underlying local adaptation is essential 
for predicting species' responses to global change. Although we 
cannot directly assess fitness consequences in this species, this 
work enhances our understanding of the morphological traits 
and genetic mechanisms underlying local adaptation in an al-
pine species and lays a groundwork for future investigation. 

The resulting insights will be used to inform the delineation of 
conservation units and support management strategies that seek 
to preserve the evolutionary processes essential for long-term 
persistence of alpine organisms in a changing world (Allendorf 
et al. 2010; Flanagan et al. 2018; Shafer et al. 2015).
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