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ABSTRACT

Understanding patterns and mechanisms underlying local adaptation is becoming increasingly important for species conser-

vation amid anthropogenically driven environmental change. Alpine systems are experiencing particularly intense pressure
from environmental change resulting from increased rates of warming and corresponding loss of snow and ice. We integrate
morphological and genetic analyses to identify traits important for local adaptation in one of the highest elevation breeding birds
in North America, the Sierra Nevada Gray-crowned Rosy-Finch. We performed an in-depth analysis of how traits with known

links to thermoregulation in birds such as wing length, bill size, and feather microstructure vary between two populations at

sites with contrasting climate and environmental conditions. We identified loci underlying these traits using a genome-wide

association study and further examined regions of the genome related to altitude adaptation and cold tolerance using Fy; outlier
tests. Together, these results indicate that temperature, food availability, and alpine landscape features may impose multifaceted
and potentially conflicting selective pressures on morphological traits important to adaptation in alpine birds. Overall, this work
represents one of the first in-depth analyses of the genetic basis of adaptation in an alpine specialist songbird.

1 | Introduction

Local adaptation occurs when natural selection favors traits
that confer fitness advantages in specific habitats (Endler 1977;
Kawecki and Ebert 2004; Savolainen et al. 2013). A species' adap-
tive capacity determines the extent to which it will be able to re-
spond to rapid environmental change (Forester et al. 2022, 2023;
Lande and Shannon 1996; Meek et al. 2023). As a result, identify-
ing genetic and morphological traits involved in local adaptation
is a key component of effective species conservation planning
(Hoban et al. 2016; Meek et al. 2023). Historically, assessments
of the capacity for local adaptation relied on reciprocal trans-
plant experiments that allowed researchers to link variation in
putatively ecologically important traits to differences in fitness
across environmental gradients (Blanquart et al. 2013; Clausen
et al. 1941; Kawecki and Ebert 2004; Savolainen et al. 2013).

However, recent advances in genomic methods have made it
possible to detect signatures of selection across the genome and
to associate these with environmental variation and ecologi-
cally important morphological variation (Capblancq et al. 2020;
Hoban et al. 2016; Lotterhos and Whitlock 2015). We leveraged
recent advances in genomic methods to identify morphological
and genetic traits important to local adaptation in an understud-
ied alpine bird system.

Many montane species undergo upward range shifts with cli-
mate change (Mamantov et al. 2021). However, for those spe-
cies already living near the top of a mountain system, there
are constraints that may limit the ability to track their niche,
a phenomenon termed the “escalator to extinction” (Freeman
et al. 2018; Urban 2018). Alternatively, local adaptation can im-
pact adaptive responses to the environment and allow species
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to persist despite a restricted capacity for range shifts (Aitken
et al. 2008; Capblancq et al. 2020). A first step toward improv-
ing our understanding of how high-altitude species will respond
to climate change is to identify morphological traits and corre-
sponding regions of the genome involved in adaptation to ex-
treme alpine environments (Blanquart et al. 2013; Pritchard and
Di Rienzo 2010).

Birds living in alpine regions are exposed to extreme en-
vironments throughout the year, including variable snow
cover, hypoxic conditions, and dramatic temperature changes
(Grabherr et al. 2010; Korner 2003). As a result, traits that
contribute directly to thermoregulation are expected to be
under strong selective pressure in alpine species. Previous
work has shown climate-linked traits often follow ecogeo-
graphical rules such as Bergmann's and Allen's rule. Allen's
rule posits that animals adapted to colder environments will
have shorter appendages than animals adapted to warm cli-
mates (Allen 1877). In birds, this rule predicts that beaks
and wings will be longer in warmer environments to facili-
tate greater heat dissipation across a larger surface area, and
shorter in colder environments to facilitate heat conserva-
tion (Greenberg et al. 2012; Lewden et al. 2023; Symonds and
Tattersall 2010; Tattersall et al. 2017; Ward et al. 1999; Weeks
et al. 2020, 2025). Bergmann's rule, which states that body size
tends to decrease as temperature increases, has also been sup-
ported in birds (Ashton 2002; He et al. 2023). Following these
rules, we predicted that birds will have shorter beaks and
smaller wings as well as larger overall body sizes in higher,
colder environments.

An additional aspect of beak morphology that should be in-
vestigated in the context of thermoregulation is nare length.
Nares are the nostrils of the bird and are located at the top of
the beak. Grinnell (1913) documented subspecific divergence in
Leucosticte tephrocotis dawsoni, including differences in beak
length and bill depth from the nostril. While nare size per se
was not the focus, these measurements provide a morphological
basis for interpreting variation in nasal exposure and potential
heat exchange, particularly in the context of ecological differ-
ences between alpine sites. While there has not, to our knowl-
edge, been work directly linking nare size to thermoregulatory
function, this may be an important and understudied aspect
of beak morphology as it relates to thermoregulation in birds.
Following the logic for broader beak morphology, we can expect
to see larger nares in the warmer environments to facilitate the
dumping of excess heat.

Although less studied in the context of local adaptation, feather
microstructure may also be important to avian species’ adapta-
tion to environmental variation in temperature. While substan-
tial evidence suggests feather microstructure plays a key role in
determining the thermoregulatory capacity of a bird's plumage
(Barve et al. 2021; Stettenheim 2000; Stoutjesdijk 2003; Wolf
and Walsberg 2000), there is some confusion over how environ-
mental variation may drive feather microstructure differences
(D'alba et al. 2017; Koskenpato et al. 2016; Lei et al. 2002; Pap
et al. 2017, 2020). In one of the few studies that have been con-
ducted at the population level, Koskenpato et al. (2016) found
that tawny owls living in colder environments have signifi-
cantly denser plumulaceous contour feathers than those living

in warmer environments. This suggests that feather density may
facilitate heat retention. In contrast, however, Pap et al. (2017)
found that European bird species wintering in colder areas
had less dense feathers than those wintering in warmer places.
Thus, there is a clear need for studies specifically linking envi-
ronmental variation with population-level differences in feather
microstructure.

Recent advances in population genomics have enabled the de-
tection of loci involved in local adaptation, even in nonmodel
and wild species (Faria et al. 2014). Among these, F; outlier
tests are commonly used to identify genomic regions that exhibit
elevated population differentiation, which may signal divergent
selection (Hoban et al. 2016). However, many adaptive traits
are likely polygenic, involving small effects at numerous loci
(Pritchard and Di Rienzo 2010; Yeaman 2015), and such loci will
not be picked up by Fg; outlier tests. To address this, genome-
wide association studies (GWAS) can be used to link more
subtle genetic variation to phenotypic variation in ecologically
important traits suspected to be under selection (Stinchcombe
and Hoekstra 2008). Taken together, combining approaches that
detect both population-level divergence and polygenic trait ar-
chitecture offers a powerful framework for investigating local
adaptation.

We investigated the potential for local adaptation in the Sierra
Nevada Gray-crowned Rosy-Finch (Leucosticte tephrocotis daw-
soni), one of the highest-breeding songbirds in North America.
Of the roughly four groups of rosy-finch found in North America,
this subspecies is more localized, found only in California’s
alpine, and is a short-distance migrant. In comparison, the
broader Gray-crowned Rosy-Finch species range extends along
the entire western edge of North America from California to
Alaska. Despite long-standing interest (Grinnell 1913, 1917;
Twining 1940), research on this subspecies has been limited due
to the difficulty of accessing its extreme nesting sites located on
the rocky cliff faces of the Sierra Nevada and White Mountains
of California, more than 3000m above sea level. Additionally,
this subspecies may act as a strong model of local adaptation due
to the variation in habitat experienced within a restricted range.
To help fill this knowledge gap, we conducted morphological
and genomic analysis of two populations breeding at distinct
places in the elevational and thermal range. Piute Pass, located
in the Sierra Nevada, is lower in elevation and warmer than the
White Mountains (Figure 1A). To identify traits potentially in-
volved in local adaptation, we quantified variation in beak and
feather morphology between the two populations. Based on
Allen's rule, we predicted that birds in the warmer Piute Pass
population would have longer wings and larger beaks. Following
Bergmann's rule, we predicted that birds in Piute Pass would also
have smaller overall body size. Further, we predicted that birds
in the colder White Mountains location would exhibit feather
traits associated with increased insulation, specifically, longer
barbules and higher node density. Lastly, we used genome-wide
association studies (GWAS) to identify genes linked to feather
and bill morphology and Fg,; outlier tests to identify other po-
tentially important sources of genetic variation (Figure 1B,C).
Overall, our findings provide new insights into the process of
local adaptation in an extreme alpine specialist bird and provide
key baseline information on the capacity for adaptation in the
face of global environmental change.
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FIGURE1 | (A)Map of California highlighting the sampling location and design for two populations of Gray-crowned Rosy-Finch, Piute Pass and
White Mountain. Elevation is noted for each site along with an elevation transect. (B) Overview of methods for GWAS analysis. Morphological mea-
surements were corrected for the effects of sex, age, and body size before being input into BSLMM and LMM models. (C) Overview of the methods
for the F. analysis. The output of both analyses were analyzed to identify significant SNPs and related genes.

2 | Methods
2.1 | Site Selection

Our study compares Rosy-Finch populations from two sites: one
in the Sierra Nevada and one in the White Mountains. Sierra
Gray-crowned Rosy-Finches occupy alpine habitats from ap-
proximately 2750-4000m across California (Brown et al. in
prep), and our study sites span a substantial portion of this range.
The Piute Pass location is in the Sierra Nevada at 3470-3625m
in elevation and has a warmer average temperature during the
breeding season of 8°C (with a range of 3.8°C-13.0°C). The
White Mountain location, near White Mountain Peak, is higher
in elevation at 4285-4344m and colder with a mean average

temperature during the breeding season of 6°C (with a range
of 1.5°C-10.7°C) (extracted from AdaptWest Project 2022, see
methods in Data S1 and Figure S1). Because it lies in the Sierra
Nevada rain shadow, the White Mountain site receives roughly
one-third the precipitation of areas at comparable elevations in
the Sierras (Rundel et al. 2008). Between the two sites, Piute Pass
receives more precipitation as snow and has a more persistent
snowpack than the White Mountain location. Additionally,
aquatic environments such as streams, lakes and ephemeral
pools are more abundant in the Sierra Nevada than the White
Mountains (Rundel et al. 2008). The alpine ecosystems of these
mountains can be delineated as communities occurring above
tree line (Rundel and Millar 2016). Environmental stressors
such as extreme winter temperatures, short growing seasons,
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high winds, low partial pressures of O,, and limited water avail-
ability are characteristic of these alpine environments (Grabherr
et al. 2010; Rundel and Millar 2016). Separating the western
Sierra Nevada Mountains and the eastern White Mountains is
the Owens Valley, a subregion of the Great Basin Desert (Belnap
et al. 2016).

2.2 | Sample Collection

A total of 171 Sierra Nevada Gray-crowned Rosy-Finches were
captured using potter traps at White Mountain (n =98) and Piute
Pass (n="73) in June and July, the peak of the species’ breeding
season (MacDougall-Shackleton et al. 2000). Captures within
each mountain range occurred across multiple locations within
approximately 1km? at each site (White Mountain or Piute
Pass) to maximize sample sizes while maintaining site-specific
environmental characteristics. The sampling thus, in total, rep-
resents only these two sites. Not all morphology was able to be
collected for every bird, resulting in slight variation in the types
of data collected for each individual (see details in supplemen-
tal methods, see sample sizes for each trait in Table S1). Blood
samples were collected from 150 of the captured birds using the
brachial wing vein and stored in Queen's lysis buffer at room
temperature (Owen 2011; Seutin et al. 1991). At the same time,
morphological measurements—tarsus length, wing chord, beak
width, beak length, beak depth, nare length, and mass—were
also collected from 154 of the birds using an electronic caliper
and 5-10 body feathers were collected from the breast of all in-
dividuals. Additionally, birds were aged and sexed following the
guidelines established in Pyle (2022) (see supplemental meth-
odology). Birds were banded to allow for identification of the
individuals and recognize recaptures, then released. All han-
dling and banding of birds was done following the guidelines
and protocols of the US Geological Survey (USGS) Bird Banding
Laboratory (BBL) and complied with permits and permissions
from federal and state agencies. All measurements were taken
by two researchers (T.B.M. and E.S.Z.), with one (T.B.M.) col-
lecting approximately 80% of the data. Because the majority of
measurements were taken by a single observer, and all followed
the same standardized protocol, observer identity was not in-
cluded as a covariate in subsequent analyses.

2.3 | Feather Microstructure Measurements

We measured the microstructure of three feathers for each in-
dividual. For each feather, three photographs were taken using
an Olympus BX51 Microscope: One photo each of an unbroken
pennaceous and plumulaceous barb from the center of each re-
gion was taken at 4x objective, and one photo of a plumulaceous
barbule was taken at 10X objective (Figure 3A). Structures were
then measured from the photos using the segmented line tool in
ImagelJ. For the pennaceous and plumulaceous barbule length,
we measured one barbule from each region starting from the
distal tip to where the barbule meets the barb. For the penna-
ceous and plumulaceous barbule density, we drew a 0.5mm line
along the middle of a barb, counting the number of barbules
along that line. And finally, for plumulaceous node density, we
drew a 0.2mm line along the center of a barbule, counting the
number of nodes along that line. Each replicate measure for a

feather trait was averaged per individual prior to downstream
analysis. Approximately 95% of feathers were measured by one
researcher (SD), and the observer was not included as a covari-
ate in subsequent analyses.

2.4 | Statistical Analysis for Local Adaptation

Body size and sex can confound morphological comparisons
among individual birds (D. C. Adams et al. 2020). To account
for these effects in our investigation of Allen's rule, we included
sex and tarsus length as predictor variables in our models. We
used tarsus length as an index of body size because it correlates
strongly with mass but is less affected by short-term fluctuations
in condition; this approach has been used in recent large-scale
morphological studies (Demery et al. 2021; Weeks et al. 2020;
Zimova et al. 2023). As additional validation of tarsus as a proxy
size for body size, we generated a PC axis that incorporated mul-
tiple allometric traits and found that this was highly correlated
(0.7) with tarsus (see supplement for additional details). We
proceeded with tarsus as our proxy for body size in all further
analyses. To assess trait variation between sites, we used both
univariate and multivariate approaches (see Tables S2 and S3
for a summary of trait values). We began by constructing linear
models with tarsus length, sex, age, and site code as predictors
and used AIC weights to identify the combination of variables
that best explained trait variation. Traits for which site code was
a significant predictor were considered significantly different
between the two populations. We opted not to use a Bonferroni
correction for the univariate models as each model had a specific
hypothesis associated with it. We used emmeans (Lenth 2025)
to calculate average trait values while controlling for predictors
other than site code, and these adjusted means were overlaid
on the raw data in a violin plot (Figures 2 and 3B). To test our
hypotheses derived from Bergmann's rule, we compared both
tarsus length and a principal component axis representing over-
all body size using linear models. Each model included age and
sex as covariates to account for potential confounding effects
on trait variation. We then assessed whether body size differed
significantly between the two populations by including site as a
predictor.

We also conducted a multivariate analysis to account for poten-
tial correlations among traits in our investigation of Allen's rule.
For our multivariate approach, we incorporated all body mor-
phology traits (wing chord, nare length, beak depth, beak width,
beak length) into a MANOVA model with site, age, sex, and tar-
sus as predictors. The same analysis was performed with all of
the feather traits (pennaceous barbule density and length, plu-
mulaceous barbule density, length, and node density) together.

2.5 | Sequencing and Genotyping

DNA was extracted from blood samples of 150 individuals using
Qiagen's DNeasy Blood and Tissue Extraction Kit protocol and
quantified with the Qubit dSDNA HS Assay Kit. We used a mod-
ified version of Illumina’s Nextera Library Preparation protocol
to prepare WGS libraries and pooled the libraries by equal mass
before sequencing. The resulting libraries were sequenced on 2
lanes of an Illumina NovaSeq 6000 at Novogene Corporation.
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Body Morphology Results
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FIGURE 2 | Violin plots of beak morphology raw measurement: (A) beak width, (B) nare length, and (C) beak depth. Overlaid are the corrected
mean trait measurements shown with a crossbar. Significance of the effect of site on the morphological trait is shown for each comparison. Piute

Pass is the warm site and White Mountain is the cold site. We found that nares were longer while beak widths and depths were smaller in the warmer

environment.

To process the raw sequence reads and detect variants, we uti-
lized Snakemake (Molder et al. 2025), a workflow management
system that provides efficiency, adaptability, and reproducibil-
ity. The pipeline we adapted to our species can be found on
Github (https://github.com/erigande/mega-non-model-wgs-
snakeflow/). To summarize the workflow, sequence data were
trimmed using fastp (S. Chen et al. 2018) to remove adaptor se-
quences and polyG tails using a sliding window, and then aligned
to a Brown-capped Rosy-Finch (Leucosticte australis) reference
genome (GenBank: GCA_025504685.1) using Burrows-Wheeler
Aligner software (H. Li and Durbin 2009). We marked PCR du-
plicates using SAMtools (Danecek et al. 2021) and read groups
(sample, lane, library) were added using Picard (http://broad
institute.githut.io/picard). Individual coverage was estimated
using SAMtools, and, given the range of coverage (7.4-19X),
we downsampled bam files to 10X using the SAMtools subsa-
mple function (Danecek et al. 2021). Individual gvcf files were
created using the GATK HaplotypeCaller (Poplin et al. 2018)
with high base quality score filters (--min-base-quality-score
33 --minimum-mapping-quality 20) to remove batch effects
(Lou and Therkildsen 2022). We then parallelized the calling
of genotypes across 3 million bp regions across the genome
using the GenomicsDBImport and GenotypeGVCFs functions

(der Auwera and O'Connor 2020; McKenna et al. 2010). GATK
versions above 4.0 call missing data as homozygous reference,
which can bias downstream analysis. To avoid this, all loci with
a depth of zero were manually marked as missing. To remove
systematic errors according to GATK variant quality score recal-
ibration (VQSR) best practices, we hard filtered variants with the
following parameters: StrandOddsRatio (>3.0), FisherStrand
(>60.0), MappingQuality (>40.0), and Quality by Depth (> 2.0).
We further filtered for single nucleotide polymorphisms (SNPs),
removing indels, filtering for missingness (<80%), allele fre-
quencies (>0.05 and <0.95), depth (> 4x), quality (> 30.0) using
BCFtools (Danecek et al. 2021). After filtering, the resulting
high-quality SNPs were passed through BEAGLE 4.1 (Browning
and Browning 2016) to impute missing genotypes.

2.6 | Population Genetic Structure Analysis

Population structure was assessed using a Principal Component
Analysis (PCA) followed by ADMIXTURE (Alexander
et al. 2009). SNPs identified from sequence data were pruned for
linkage disequilibrium in PLINK (Purcell et al. 2007) using a
50kb window, 10 SNP window step size, and an R? threshold of
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Highlighted is a microscopic image of the pennaceous and plumula-
ceous barbule structure. (B) Violin plots of node density raw measure-
ments, with illustrations above of the structure of plumulaceous barbule
nodes. Overlaid on the plots are the corrected mean trait measurements
shown with a crossbar. Significance of the effect of site on the morpho-
logical trait is shown for each comparison.

0.2. Eigenvalues for the PCA were then generated based on the
pruned SNPs using PLINK, and the first two principal compo-
nents (PC) were plotted in R. To further confirm a lack of pop-
ulation structure, ADMIXTURE was used to test k=1-3. The
results were plotted using R, and the cv values were evaluated.

2.7 | Genome-Wide Association Study
Two GWAS models were implemented on all traits using

GEMMA (Zhou et al. 2013): a Bayesian sparse linear model,
BSLMM, and a univariate linear model, ULMM. These GWAS

approaches allow us to detect SNPs associated with a given
trait while explicitly accounting for population structure and
relatedness through the incorporation of random effects whose
correlation structure is characterized by a relatedness matrix.
Input files were generated with PLINK (Purcell et al. 2007). We
implemented a Bayesian sparse linear mixed model (BSLMM)
using 500,000 MCMC burn-in iterations that were discarded
and 5 million MCMC iterations that were saved. We then filtered
for SNPs that had a mean posterior inclusion probability (PIP)
above 0.01. A univariate linear mixed model (ULMM) employ-
ing the Wald test was also conducted (see Table S7 for AGC val-
ues for each model and Figure S6 for PP plots for each trait). The
Wald test assesses the significance of the SNP genotypes in a lin-
ear regression model and is used to test the null hypothesis that
the effect size of a genetic variant on the phenotypic trait is zero
(i.e., there is no association between the variant and the trait).
SNPs were then filtered based on a p value threshold of 5x 1078,
a threshold widely used in GWAS studies (e.g., Chen et al. 2021).

2.8 | Genome Wide Fg,

To estimate per site Fy;, we used OutFLANK (Whitlock and
Lotterhos 2015). OutFLANK identifies outlier Fy;, SNPs by mod-
eling the distribution of Fg; values across loci using a trimmed
likelihood approach to exclude loci under strong selection. It
then fits a chi-squared distribution to the neutral Fy; values and
identifies SNPs with unusually high or low F, as potential out-
liers, suggesting loci under selection. We used a false discovery
rate threshold of 0.005 to determine outlier SNPs. We took the
90th quantile of these F; values to narrow down the top SNPs
for literature review and plotted these on a Manhattan plot. This
allowed for isolation of the most divergent loci as well as easier
visualization. We then determined the F values for the SNPs
previously identified in the GWAS analyses based on the values
calculated by OutFLANK.

2.9 | Identification of Associated Genes,
Enrichment Analysis, and Literature Review

To identify genes associated with significant SNPs from our
GWAS and Fg analysis, we implemented BEDTools (Quinlan
and Hall 2010) closest function with a previously created Brown-
capped Rosy-Finch gene annotation (Funk et al. 2023) to iden-
tify genes close to the SNP positions. The output from this tool
was filtered to find only protein coding genes within 25kb of the
given SNP. For plotting purposes, we used the NUCmer function
in MUMmer4.x (Margais et al. 2018) to align the Brown-capped
Rosy-Finch genome assembly to the Zebra Finch (Taeniopygia
guttata) genome assembly (GenBank: GCF_003957565.2). We
then filtered the delta alignment output of NUCmer to keep only
matches that were greater than 400bps and used show-coords
to display the coordinates. We then used custom R scripts to
convert our scaffold and positions to Zebra Finch chromosome
positions for plotting SNPs in Manhattan plots.

Enrichment in gene ontology (GO) terms was performed with
Panther 19.0 (Thomas et al. 2022). For this analysis, Gallus gal-
lus was used as the background gene set. Enrichment thresholds
were set to p<0.05 after Bonferroni correction. Gene network
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analysis was conducted using STRING (Szklarczyk et al. 2023)
with zebra finch as the organismal reference for background
genes. STRING (Search Tool for the Retrieval of Interacting
Genes/Proteins) is a database that predicts and visualizes pro-
tein—protein interactions based on known and predicted associ-
ations from experiments, literature, and computational methods
(Szklarczyk et al. 2023). For Fg; genes, all genes associated with
the OutFLANK outliers were input into enrichment analyses.
Genes resulting from the GWAS analysis were grouped with all
beak morphology trait genes run as a single analysis, all feather
trait genes run together, and wing chord genes run in another
analysis.

We performed a literature search for all of the candidate genes
using google scholar and the search terms gene name followed
by, bird, trait specific term (when applicable), environmental ad-
aptation, local adaptation (e.g., “XIAP’ gene beak” or ““DSCAM’
gene environmental adaptation”). For Fg. SNPs, only those
genes associated with the 90th quantile of SNPs were evaluated
in the literature. Genes were grouped by their key functions or
associations as described in the literature.

3 | Results

3.1 | Local Adaptation of Body and Feather
Morphology

For the univariate approach, AIC model selection indicated
five traits for which site was a significant predictor. For wing
chord, the best model included tarsus length, age, sex, and
site. The model showed high explanatory power (adjusted
R?=0.673, p<0.001) and showed that birds at the White
Mountain location had shorter wing chords compared to
Piute Pass (PIPA) (p=0.003). The best model for nare length
included tarsus, sex, and site and had lower explanatory
power (adjusted R?=0.197) but was still highly significant
(p<0.001). This model found that nare length was shorter in
the White Mountain population (p <0.001). Similarly, beak
width had tarsus, age and site as significant predictors (ad-
justed R?=0.135, p<0.001) with White Mountain having
beaks that are wider than those in Piute Pass (p <0.001). Beak
depth had tarsus, age and site as the best predictors (adjusted
R2=0.250) and found that White Mountain has significantly
deeper beaks than Piute Pass (p=0.003). Beak length was not
significantly different between the two locations and was best
predicted by sex (adjusted R?=0.516, p<0.001). For feather
microstructure, the only trait that had site as a significant pre-
dictor was plumulaceous node density. This model included
tarsus and age as well as site but had low explanatory power
(adjusted R?=0.076, p<0.001). It showed that plumulaceous
node density was higher in the White Mountain populations
(p<0.001). The best model for plumulaceous barbule length
based on AIC weights included site as a predictor; however,
the effect size was uncertain, and the effect of site was not
statistically significant (adjusted R?=0.142, p=0.078).
Pennaceous barbule density had tarsus and age as the best
predictors (adjusted R?>=0.365, p<0.001), pennaceous bar-
bule length had sex as the best predictor (adjusted R?=0.307,
p<0.001), and plumulaceous barbule density had tarsus and
age as the best predictors (adjusted R?=0.076, p=0.004). We

found that body size did not vary between sites. In our model
using tarsus (adjusted R?=0.165, p<0.001) both age and sex
were significant predictors (p <0.001 and p <0.05); however,
site was not significant (p =0.417). Our comparison using the
PC axis representing size (adjusted R>=0.4639, p <0.001) had
similar results with age and sex as significant and site as not
(p=0.53).

When looking at the results of the multivariate analysis, we
see that for body morphology traits site was a highly signifi-
cant explanatory variable (p =1.327e-11). Tarsus, age, and sex
were also highly significant (p <2.2e-16). The MANOVA on
feather traits also had site as a significant predictor, although
the p value was less significant (p =0.036). Age was also sig-
nificant (p=1.5e-14), but tarsus and sex were not (p > 0.05).
For details on the models tested, models chosen, and full
model results, see Tables S4-S6.

3.2 | Evaluation of Population Structure

Whole-genome sequencing was performed on 150 individuals
and 146 were included in downstream analysis. Four indi-
viduals were removed because their collection location could
not be validated. Variant filtering resulted in 7,739,836 SNPs
for subsequent genetic analysis. Linkage pruning removed
5,526,104 SNPs. Visualizing PLINK PCA results revealed lit-
tle population structure with most individuals clustering to-
gether (Figure S2). ADMIXTURE results confirmed that there
is no population structure in these samples because k=1 had
the lowest cv error (0.599) compared to k=2 or 3 (0.612 and
0.627).

3.3 | Genes Identified With Genome-Wide
Association Approach

The univariate linear mixed model identified a total of 64 SNPs
for wing chord, beak length, beak width, pennaceous barbule
length, and pennaceous barbule density. Using a Brown-capped
Rosy-Finch gene annotation, we identified a total of 26 unique
genes corresponding to these SNPs (Table 1). We filtered out
genes that were not fully characterized (e.g., “LOC100221041”),
leaving 14 genes. The Bayesian sparse linear mixed model
identified 266 SNPs for wing chord, nare length, beak length,
depth and width, pennaceous barbule length and density, and
plumulaceous barbule length and node density. We identified
146 genes associated with these SNPs (Table 1), 110 of which
had been fully characterized. For each trait, the global view of
p values for all SNPs and associated genes across both models
are represented by Manhattan plots (Figure 4A-C, Figures S3-
S5). Given the sample size (n=146), this GWAS is best viewed
as conservative, detecting only loci with relatively strong effects
on morphology.

GO term analysis using Panther produced significant results
for beak depth and a combined set of all feather traits. For beak
depth, the top terms were presynaptic membrane assembly
(p=1.44x107%), synaptic membrane adhesion (specifically cell
adhesion) (p=1.01x107°), and heterophilic cell-cell adhesion
via plasma membrane cell adhesion molecules (p =1.13 X 1075).
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Fg, results (D), using the 90th quantile threshold of 0.235. Corresponding genes are also shown, and functional categories are highlighted by color

category. See Table 1 for more functional details.

For the feather traits (plumulaceous barbule and node density
combined with pennaceous barbule length), fructosamine cat-
abolic process was a significant term (p=1.12x107°%). Wing
chord had no significant GO terms. STRING analysis for beak
and feather traits, as well as wing chord, did not find signifi-
cantly more interactions than expected.

3.4 | Genes Identified Through High Fixation
Index (Fg;) Between the Two Populations

Using OutFLANK, 831 loci were identified as having signifi-
cantly high Fg; when comparing the White Mountain and Piute
Pass populations, corresponding to 265 genes (Figure 4D). No
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GWAS SNPs were flagged as having significant Fq values. The
minimum Fg. to be considered an outlier was 0.17513. The mean
Fg; of SNPs not considered outliers was 0.0045. Using a 90th
quantile, we determined Fg; =0.235 to be the threshold, narrow-
ing down the SNPs to 105 loci. For the smaller set of loci, bedtools
identified 61 related genes (Table 2). We ran STRING and GO
term enrichments on both the larger and smaller set of genes.
The smaller set did not have a significant number of connections
over all or any significantly enriched GO terms. The larger set of
264 genes, however, had an overall significant number of connec-
tions (p <0.05) and had multiple significant annotated keywords
(sourced from UniProt). The most significant was the keyword
repeat (FDR <0.001); the next was ubl conjugation pathways
(FDR <0.05).

TABLE 2 | Summary of Fy; outlier results. Shown are the genes for
which functional information was available, from the narrower (90th
quantile) Fg; results.

4 | Discussion

Understanding the genetic and morphological basis of local adapta-
tion is critical for predicting how species respond to environmental
change. Alpine species face unique conservation challenges due to
their extreme environments and thus are a high priority for studies
of adaptive capacity. In this study, we investigated morphological
and genetic differences between two populations of an alpine spe-
cialist songbird located in distinct parts of its environmental range.
Consistent with our predictions, we found wings were shorter and
feathers were denser in the colder environment. However, in con-
trast to our prediction, beak depth and width were larger in the
colder environment, suggesting other factors like diet may place
contrasting selective pressures on this ecologically important trait.
We also identified numerous genes with known links to limb, fa-
cial, and feather development that potentially underlie variation
in wing, bill, and feather microstructure. Further F outlier anal-
yses revealed numerous significant differences between cold and
warm populations at SNPs located within genes with clear links
to altitudinal adaptation. Together, our results provide important
insights into the morphological traits and associated genomic re-
gions associated with microgeographic variation in a high-altitude
songbird species.

4.1 | Trait Differences Between Warm and Cold
Habitats

Ecogeographic rules, such as Allen's and Bergmann's rules, are
useful for predicting broad geographic trends in morphology in
response to environmental conditions, but observed patterns
do not always align with expectations. In our study, we found
that wing chord was smaller in the colder environment, sug-
gesting that this morphological trait may play a role in thermo-
regulation, consistent with Allen's rule. Heat dissipation from
the wings occurs across the vascularized brachial regions, pri-
marily during flight when these areas are exposed to air flow
(Lewden et al. 2023; Ward et al. 1999). Wing bone length reflects
the extent of vascularized areas on the wings and has been
shown to be longer in warmer environments across a broad sam-
ple of passerine species (Weeks et al. 2025). However, studies of
other alpine bird species have found the opposite pattern: That
birds from high-elevation sites have longer wings than those
from low-elevation sites (Bears et al. 2008; Ceresa et al. 2024).
In these cases, researchers have suggested that the demand for
more energetically efficient flight at high elevations may out-
weigh thermoregulatory selective pressures, demonstrating the
often contrasting selective pressures on ecologically import-
ant traits. Although outside of the scope of the current work,
additional wing measurements could be collected that would
allow for a more thorough investigation into the components
of flight morphology. It is possible that migratory behavior is
influencing wing length as previous work has shown that both
within (Egbert and Belthoff 2003; Grilli et al. 2017) and between
(Lockwood et al. 1998) species those who migrate further have
longer wings. To date, no formal study has been conducted on
the migratory patterns of the Sierra Nevada Gray-crowned sub-
species and so future work could investigate the links between
wing morphology and movement patterns. Overall, our mor-
phological analyses support the idea that thermoregulatory de-
mands may play an important role in shaping wing morphology

Gene Function References
GDPD5 Lipid metabolism Feng et al. (2023)
NOX4 Heat stress, altitude Goel et al. (2021),
adaptation Diebold et al. (2010)
MAML2 Altitude adaptation Schweizer
et al. (2021)
SUPT20H Altitude adaptation Schweizer
et al. (2021)
PPP1R1C Cold adaptation Fedorova et al. (2022)
SOX14 Feather Chen et al. (2024)
development
MEGF11 Feather Twumasi et al. (2024)
development
MSRA Altitude adaptation Jeong et al. (2018),
Gheyas et al. (2021)
AKT3 Altitude adaptation ~ Buroker et al. (2012),
Qi et al. (2019)
DOCK11 Feather Crates et al. (2024)
development
SMARCA1 Craniofacial Boer et al. (2021)
development
GAB3 Craniofacial Boer et al. (2021)
development
ADGRD1 Altitude adaptation Nan et al. (2023)
NPHP4 Vision Borges et al. (2019)
ALDH7A1 Beak development Bai et al. (2014)
ADAMTS19 Metabolism Zhang et al. (2022)
VLDLR Lipid protein Wang et al. (2011)
ERCCS8 Altitude adaptation Yan et al. (2022)
CTIF Beak development Lawson and
Petren (2017)
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in the Sierra Nevada Gray-crowned Rosy-Finch, potentially out-
weighing the benefits of flight efficiency in this high-elevation,
cold-adapted species but not excluding the potentially parallel
pressure of migratory distance.

Contrary to our predictions based on Allen's rule, beak depth
and width were larger in the colder environment. Although tem-
perature is often a key environmental variable exerting selective
pressure on alpine taxa, variation in beak morphology between
our populations may instead reflect divergent selective pressures
associated with foraging ecology, a well-documented driver
of beak divergence in birds (Grant et al. 1976; Lamichhaney
et al. 2018). In our study system, the Piute Pass population likely
has access to more aquatic insects due to the higher availability
of aquatic habitats proximate to Rosy-Finch breeding sites in the
Sierra Nevada (Epanchin et al. 2010; Rundel and Millar 2016).
For example, Epanchin et al. (2010) found that, when abundant,
mayflies can comprise up to 38% of the Sierra Nevada Gray-
Crowned Rosy-Finch diet. In contrast, the White Mountain
population may rely more heavily on insects deposited in snow-
fields, a behavior that could favor a more robust, conical bill
for extracting frozen prey from the snow surface. Work is cur-
rently underway to investigate the dietary differences between
these two populations of Rosy-Finch (Tim Brown, personal
correspondence), and future work should explore the selective
pressures experienced by this species. The other aspect of beak
morphology assessed, nare length, was significantly larger in
the warmer environment. If nare is playing a role in thermo-
regulation, these results would be consistent with larger nares
allowing for more heat to be lost. Additionally, smaller nares in
the colder environment would potentially prevent snow from en-
tering the nasal passages while foraging on snow. Overall, our
results on beak morphology emphasize the complexity of iden-
tifying drivers of local adaptation, especially in alpine systems
where extreme environments, food scarcity, and variation in
migration strategies can create conflicting selection pressures.

Our comparison of body size did not have significant results,
suggesting that Bergmann's rule is not contributing to morpho-
logical differences in this subspecies. He et al. (2023) found that
there was significant variation in both strength and direction of
correlation between latitude and body size within and between
taxa. With our results, this could imply that Sierra Nevada Gray-
crowned Rosy-Finch are an exception to the rule. In another
meta-analysis, it was found that sedentary bird species were
more likely to conform to Bergmann's rule than migratory ones
and suggest that winter temperatures may exert a higher pres-
sure than breeding temperatures (Meiri and Dayan 2003). The
Sierra Nevada Gray-crowned Rosy-Finch is a short-distance, al-
titudinal migrant. It is possible that both White Mountain and
Piute Pass populations move to similar areas or climates during
the winter season, thus decreasing the divergent selection pres-
sure that would drive differences in Bermann's rule.

Of our feather comparisons, we identified significant differ-
ences between cold and warm sites for only one trait: plumula-
ceous node density. In line with our predictions, plumulaceous
node density was higher in the colder, high elevation White
Mountain population. Higher node density is known to improve
air trapping ability, thus trapping warmth against the body sur-
face (King and McLelland 1984). Consistent with our results, a

study on sparrows found that higher elevation alpine forms had
higher node density relative to lowland forms (Lei et al. 2002).
A further multispecies comparison found that species wintering
in cold and windy conditions had downy feathers with higher
node densities (D'alba et al. 2017). These interspecific trends are
mirrored in our results, suggesting that the White Mountain
population has feather adaptations consistent with an increased
need for heat retention. The lack of significant results for other
feather traits may be explained by the amount of variation in the
measurements as well as the sample sizes being small, resulting
in an underpowered comparison. An alternative cause for the
non-significant results is that alternative selection pressures not
considered in the present work are driving morphology of these
traits. This is somewhat supported by the overall low explana-
tory power of our models used in this study. Additional work on
this aspect of local adaptation would benefit from investigating
the influences of alternative environmental traits and utilizing a
more controlled setting to evaluate the functionality of intraspe-
cific differences in feather morphology.

4.2 | Genome-Wide Analysis

We used GWAS to identify SNPs within genes involved in traits
that differ between warm- and cold-adapted populations de-
scribed previously: beak width and depth, nare length, wing
cord length, and pennaceous barbule density. Because ours is
one of the first studies to investigate the genetic basis of feather
microstructure variation, we also report on the genes associ-
ated with other measured feather traits, even though high vari-
ance in these traits prevented our ability to robustly investigate
differences between populations occupying cold and warm
environments.

Our literature review of GWAS results identified genes with di-
verse associations. For wing chord, we identified limb and bone
development, heat response, and vascularization. Notably, the
genes GUCAIC and NIPBL have been linked to limb develop-
ment in ducks and zebrafish https://www.zotero.org/googl
e-docs/?2z2bux (G. Li et al. 2020; Mohammadi 2024; Muto
et al. 2014) and may play a similar developmental role in song-
birds. We also detected the genes PGLYRP2 and PACRG, which
have been shown to be upregulated in chickens experiencing
heat stress (Kim et al. 2021; Tian et al. 2020). Together, the limb
development and heat response genes we identified as important
further support the potential connection between wing length
and thermoregulation suggested by our morphological finding
of shorter wings in the colder environment. Although GWAS
results do not establish a direct functional link to specific traits
(Tam et al. 2019), our findings suggest that future research
should investigate the potential role of thermoregulatory selec-
tive pressures on genes involved in wing development.

When focusing on genes associated with beak morphology,
BSLMM found more SNPs than LMM and identified several
genes potentially associated with facial structure development
and climate adaptation. One gene associated with beak depth
was XIAP. Duplications of this gene have been found to result in
facial dysmorphism in humans, including the underdevelopment
of cheekbones and protruding jaws (Di Benedetto et al. 2014).
Although a link with beak development in birds has not yet been
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formally established, this could be an area for further research.
Another gene identified for beak width was MINDY2, which be-
longs to a group of deubiquitinating enzymes. These genes are
related to the regulation of the Wnt pathway (Park et al. 2020), a
pathway that is well established as important for beak develop-
ment (Geetha-Loganathan et al. 2009). Additional genes such as
RASLI11A, TINAG, and PLPP3 have been directly linked to beak
development in avian species (Abernathy 2021; Bai et al. 2018).
Two genes associated with beak depth in our study (LRP1B and
UTRN) were shown to be associated with breeding temperature
in a study that used a GWAS approach to identify loci associated
with climate variables related to morphology in hermit thrush
(N. Adams et al. 2025). Although the beak morphology of our
species did not entirely fall in line with predictions based around
their thermoregulatory role, the elucidation of genes indicating
a relationship between thermoregulation and beak morphology
suggests that beaks still play a thermoregulatory role in this
species.

Our GWAS on feather traits was, to the best of our knowledge,
the first genome-wide association study of feather microstruc-
tural traits. Identifying the genetic basis of these fine-scale traits
opens new avenues for studying how feather structure evolves in
response to environmental pressures and functional demands.
One of the genes associated with pennaceous barbule length
in our study, HBEI, has also been identified in previous re-
search on feather development. Using RNA sequencing, Limber
et al. (2024) found that HBEI, a hemoglobin gene (Mao et al.
2023), was highly expressed in feather pulp, the central tissue of
the developing feather germ. Additional genes associated with
feather traits in our study have been identified as being related
to plumage coloration in birds, including EFNA2, NRXNI, and
HERC4 (Shakya 2020; L. Sun et al. 2020; X. Zhang et al. 2023).
Many other genes identified as being associated with feather
traits in our work have not been shown to be associated with
feather development or morphology in the literature. Feather
morphology remains understudied in the context of local ad-
aptation, and the genetic architecture of these microstructural
traits is still poorly understood. Our study offers a foundation for
deeper investigation. Expanding this work to include compar-
ative genomic studies across populations or species with more
strongly differentiated feather morphology could also help link
genotype to phenotype and provide insight into the adaptive sig-
nificance of feather microstructure.

It is important to note that, in this system, we are limited in our
ability to assess the role of phenotypic plasticity in driving trait
differences. Bringing individuals together from both popula-
tions into a common aviary, as was done in Bears et al. (2008),
would allow for better examination of these effects. It could also
be argued that showing relatively high F; values for GWAS loci
might suggest that the morphological differentiation is due to
divergence rather than phenotypic plasticity. Our original intent
with the Fg, outlier tests was to determine if any of the genes
identified in the GWAS had variants that diverged significantly
between the cold and warm environment populations. However,
when comparing our Fg, results with SNPs identified in the
GWAS, we found no overlap between the two sets. Although
this could suggest that phenotypic plasticity is primarily driv-
ing the trait divergence, one must also consider that this result
is consistent with known limitations of F-based outlier scans,

which are biased toward detecting loci under strong divergent
selection and with large effect sizes (Hoban et al. 2016). Fq;
measures allele frequency differences between populations, and
loci with large phenotypic effects are more likely to experience
strong selection and exhibit pronounced divergence. In contrast,
highly polygenic traits are shaped by small-effect variants that
shift subtly in frequency—patterns that often fall below the
detection threshold of Fg; scans. Our findings underscore the
value of combining F; outlier analyses with GWAS approaches:
while the former is designed to pinpoint loci under strong selec-
tion, the latter is better suited for uncovering the complex ge-
netic architecture of polygenic traits. Together, these methods
can generate a more complete understanding of the genetic basis
for local adaptation.

While we did not find overlap between the Fq, and the GWAS
results, our Fg, analysis highlighted numerous genes involved
in hypoxia response, altitude adaptation, and cold adaptation.
These results are consistent with our hypothesis that elevation
and associated climatic variables are applying divergent selection
pressures in this species. Of these genes, NOX4 was found to be
involved in mediating hypoxia-inducible transcription factors,
a key component of the cellular response to hypoxia (Diebold
et al. 2010). Similarly, MAML2 and SUPT20H were found to
be associated with altitude adaptation in deer mice (Schweizer
et al. 2021), and ADGRDI was associated with altitude adapta-
tion in Tibetan chickens (Nan et al. 2023). Multiple studies iden-
tified PPPIRIC as being related to cold adaptation in chickens
(Fedorova et al. 2022; Romanov et al. 2023). These are all traits
that would lend themselves to survival in alpine environments,
and divergent selection is likely a product of varying selection
pressures between the higher and colder White Mountain loca-
tion and the warmer and lower Piute Pass location.

Our Fg analysis also identified several genes that might be in-
volved with plumage color differences in Rosy-Finches. Another
gene that showed divergence between these two populations of
finchwas PHIP, which hasbeen shown toberelated to differentia-
tion in plumage coloration in House Finch (Balenger et al. 2015).
Interestingly, when comparing candidate outlier genes from this
work with studies identifying genes involved with the notable
plumage coloration differences across the broader rosy-finch
species complex, there were some overlapping genes. In a GWAS
on crown coloration, Funk et al. (2023) identified NDUFAF2, a
gene that was also significant in this work. For body plumage
coloration, our results overlap with those of Funk et al. (2023)
for the genes KCNV2, PUM3, and VLDLR. Although it was not
a component of the current work, other studies have shown that
plumage coloration is involved in avian thermoregulation, with
darker plumage putatively facilitating heat absorption (Medina
et al. 2018; Rogalla et al. 2022), and can show adaptation to local
environment (Romano et al. 2019; Sandoval and Barrantes 2019;
Sirkid et al. 2010). This provides an important avenue for future
work with this species investigating the differences in plumage
coloration between populations.

An additional result of our Fg, analysis was the identification
of a gene, CTIF, that has been previously identified as being
a climate-adapted gene in a landscape genomic study on the
closely related Brown-capped Rosy-Finch (DeSaix et al. 2022).
Interestingly, this gene was also identified through a contrasting
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approach using a mixed linear model on beak shape for two
species of Darwin's finches, Geospiza fortis and G. scandens
(Lawson and Petren 2017). The authors of this paper summa-
rize their results as indicating that inter and intraspecies beak
shape variation is a result of a small suite of traits evolving in
concert, corresponding to many genes. It is possible that we did
not identify CTIF genes in our GWAS method because of low
power due to smaller variation in the beak traits measured, a
result of using continuous measurements between two popula-
tions versus categorical comparisons between different species
as in Lawson and Petren (2017). Because of the large number of
SNPs obtained for our two populations, our Fy; analysis likely
had higher power and thus detected this gene, in addition to the
fact that it had a high Fq; of 0.263 (averaged across the 5 SNPs
associated with this trait). The overlap of these genes in the two
studies described, as well as ours, makes it a strong candidate as
a genetic component of adaptation to environment, potentially
through the mechanism of beak morphology.

An important outcome of local adaptation is the maintenance of
ecologically important genetic variation (Savolainen et al. 2013).
Conserving genetic variation prevents loss of adaptive potential
and can underlie rapid adaptive responses to environmental
change (Forester et al. 2023). We integrated phenotypic mea-
surements, genome-wide association studies, and Fq, analy-
ses to understand the morphological and genetic basis of local
adaptation of an alpine bird species, the Sierra Gray-crowned
Rosy-Finch. When comparing traits suspected to be involved in
thermoregulation for this species, we found that morphological
variation across populations only partially aligned with eco-
geographic expectations. Wing chord was shorter in the colder
environment, consistent with Allen's rule and likely reflecting
thermoregulatory adaptation. However, beak depth and width
were larger in colder environments, contrary to predictions, sug-
gesting additional selective pressures such as diet specialization
may be playing a role. Comparisons of feather microstructure
further showed thermoregulatory adaptation, with higher plu-
mulaceous node density in the high-elevation population likely
enhancing insulation. When coupled with the results of our
GWAS and Fg outlier scans, we gained a clearer picture of traits
and genes important to adaptation in alpine birds. Importantly,
we found that many of the genes underlying wing length, beak
depth, and feather microstructure had links to both development
of similar traits in other organisms as well as thermoregulation.
Our genomic and morphological results provide evidence that
this alpine species is locally adapted to temperature variation.

For those traits that are involved in thermoregulation, we can
hypothesize about the implication of the intraspecific differ-
ences in light of future climate change. Recent work has shown
that, for populations whose morphology and genetics misalign
with the environment as it changes due to anthropogenic pres-
sures, there is a decrease in fitness (Pelletier and Coltman 2018;
Rodriguez et al. 2025). As climate change drives increasing vari-
ability in temperature, understanding both simple and complex
genetic architectures underlying local adaptation is essential
for predicting species’' responses to global change. Although we
cannot directly assess fitness consequences in this species, this
work enhances our understanding of the morphological traits
and genetic mechanisms underlying local adaptation in an al-
pine species and lays a groundwork for future investigation.

The resulting insights will be used to inform the delineation of
conservation units and support management strategies that seek
to preserve the evolutionary processes essential for long-term
persistence of alpine organisms in a changing world (Allendorf
et al. 2010; Flanagan et al. 2018; Shafer et al. 2015).
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