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Abstract. A basic understanding of how the landscape impedes, or creates resistance to,
the dispersal of organisms and hence gene flow is paramount for successful conservation
science and management. Spatially structured ecological networks are often used to represent
spatial landscape-genetic relationships, where nodes represent individuals or populations and
resistance to movement is represented using non-binary edge weights. Weights are typically
assigned or estimated by the user, rather than observed, and validating such weights is chal-
lenging. We provide a synthesis of current methods used to estimate edge weights and an over-
view of common model types, stressing the advantages and disadvantages of each approach
and their ability to model landscape-genetic data. We further explore a set of spatial-statistical
methods that provide ecologists with alternative approaches for modeling spatially explicit pro-
cesses that may affect genetic structure. This includes an overview of spatial autoregressive
models, with a particular focus on how correlation and partial correlation are used to represent
neighborhood structure with the inverse of the covariance matrix (i.e., precision matrix). We
then demonstrate how to model resistance by specifying an appropriate statistical model on
the nodes, conditioned on the edge weights, through the precision matrix. This integration of
network ecology and spatial statistics provides a practical analytical framework for landscape-
genetic studies. The results can be used to make statistical inferences about the relative
importance of individual landscape characteristics, such as the vegetative cover, hillslope, or
the presence of roads or rivers, on gene flow. In addition, the R code we include allows readers
to explore landscape-genetic structure in their own datasets, which will potentially provide new
insights into the evolutionary processes that generated ecological networks, as well as valuable
information about the optimal characteristics of conservation corridors.

Key words: connectivity; edge weights; gene flow; landscape genetics; movement corridors; resistance
values; spatial statistics; spatially structured ecological network.

INTRODUCTION

Landscape genetics focuses on the effects of landscape
pattern, structure, composition, and quality on spatial-
genetic variation and gene flow (Storfer et al. 2007). It is
a relatively new field of research (Manel et al. 2003) that
draws on concepts from landscape ecology, population

genetics, mathematics, and statistics. However, truly inte-
grative research is challenging in this rapidly advancing
field, where useful developments are occurring simulta-
neously in multiple disciplines (Balkenhol et al. 2016a).
This is especially true of methods used to quantitatively
describe genetic-landscape structure to gain inferences
about causal evolutionary and ecological processes.
In landscape genetics, microsatellite allele and multi-

ple single nucleotide polymorphism (SNP) data collected
from individuals or populations at multiple locations are
often used to generate genetic distance or dissimilarity
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matrices, which are subsequently used to infer rates of
gene flow. Many different distance metrics can be used
to calculate genetic distances between individuals (e.g.,
Euclidean distance) or populations (e.g., Nei’s genetic
distance; Nei 1972), with each relying on different geo-
metric and/or evolutionary assumptions (Dyer 2017).
These genetic distance matrics are then used to investi-
gate how resistance to movement facilitates/prevents the
dispersal of organisms and gene flow (Holderegger and
Wagner 2008). Within this context, landscape resistance
represents the effects of landscape characteristics such as
vegetation or roads, on movement between them
(Holderegger and Wagner 2008). Evolutionary processes
influencing resistance typically fall into three categories:
(1) isolation by distance (IBD), where distances between
locations are greater than the organisms’s dispersal abil-
ity (Wright 1943); (2) isolation-by-resistance (IBR),
which occurs when landscape characteristics lead to
inhomogeneous migration rates across space (McRae
2006); and (3) isolation by barrier (IBB), where land-
scape features such as waterbodies form nonpermeable
or semipermeable barriers to movement (Smouse et al.
1986). These relationships can be represented as a spa-
tially structured ecological network (SSEN; Dale and
Fortin 2010), where nodes have a location and size, and
edges have a physical location and length in geographic
space. Thus, the SSEN provides a natural, spatially
explicit framework used to explore patterns of land-
scape-genetic structure.
Although inference about the relationship between

resistance and genetic structure is the focus of many
studies, it is rare for resistance values to be measured
directly using empirical data (Fletcher et al. 2011).
When movement is measured, it is typically based on
detection (i.e., sightings), relocation (i.e., mark–recap-
ture) or pathway (i.e., global positioning system teleme-
try) data (Zeller et al. 2012). However, resistance is more
often based on a priori experimental evidence (e.g., spe-
cies dispersal ability based on telemetry data) or expert
opinion (Beier et al. 2008, Zeller et al. 2012). A causal-
modeling approach is sometimes used to compare how
well the hypothesized resistance values, which are based
on conceptual models of evolutionary processes, fit the
data (Legendre and Troussellier 1988, Cushman et al.
2006). Resistance estimates are crucial because they
define the structure of the system and underpin infer-
ences related to dispersal, population definition, and
gene flow. Yet, there are significant challenges associated
with validating landscape-connectivity values, given that
independent data are often lacking and many combina-
tions of biotic and abiotic processes could produce simi-
lar connectivity values (Whitlock and McCauley 1999,
Dyer and Nason 2004).
Spatial statistical methods are specifically designed to

model spatially dependent data and may be particularly
suited to landscape-genetic studies. In the field of statis-
tics, a spatial statistical model uses the spatial location
of data in the probabilistic model component (i.e.,

spatial dependence in the residual errors is modeled as a
function of space). These models are sometimes referred
to as “spatial error” models in ecology (Keitt et al.
2002). Spatial autoregressive (SA) models (Lichstein
et al. 2002, Ver Hoef et al. 2018) represent a broad class
of spatial statistical models implemented as an SSEN.
Hence, there are obvious conceptual similarities between
landscape genetics and SA models. In landscape genet-
ics, connectivity among individuals or populations can
be represented using non-binary weights (i.e., resistance
distance or cost-weighted distance) that may or may not
incorporate a physical distance; while in SA models,
relationships among measurements are represented in
the precision matrix, which is often modeled as a func-
tion of Euclidean distance (i.e., relative weight) between
locations.
Our goal is to describe how a spatial statistical

approach can be used to model resistance in landscape-
genetic studies. Specifically, we (1) provide an overview
of landscape-genetic data and their representation as
SSENs, (2) provide a brief summary of methods cur-
rently used to validate models of resistance, including a
synthesis of their strengths and weaknesses, and (3)
demonstrate how resistance distances can be estimated
using SA models.

MODELING SPATIALLY STRUCTURED

ECOLOGICAL NETWORKS

Calculating edge weights

A SSEN can be used to represent landscape-genetic
relationships, where nodes represent the location of indi-
viduals or sub-populations, and edges describe the func-
tional relationship (e.g., animal movement or gene flow)
between nodes. Thus, the resistance distance between
nodes may differ depending on their proximity to one
another, as well as the landscape characteristics and fea-
tures that lie between them. Such edge weights are usu-
ally estimated and then validated using genetic
dissimilarity between nodes because data describing an
organism’s movement are rarely available in sufficient
quantities to describe the SSEN structure (Fletcher et al.
2011).
Contiguous nodes share a boundary, thus there is no

physical distance between them; therefore, covariates
(i.e., predictors) representing resistance (i.e., resistance
covariates) can be based on node characteristics, or the
distance between node centroids (Hanks and Hooten
2013), that have been selected to represent an underlying
conceptual model of evolutionary processes (e.g., IBD,
IBR, and/or IBB; Fig. 1). Resistance covariates for non-
contiguous nodes can also be based on node characteris-
tics (e.g., Botta et al. 2015), characteristics of the edges
that join node pairs (e.g., Petkova et al. 2016), or both.
Regardless of which method is used, a priori assump-
tions must be made about the neighborhood structure,
the edge location, and/or the resistance values. These
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assumptions affect how resistance is represented in the
model and the inference that can be made (Fig. 1).
Estimating edge weights for non-contiguous nodes is

more complicated than for contiguous nodes because
the uncertainty associated with the physical edge loca-
tion in geographic space increases as the distance
between nodes increases (i.e., multiple potential path-
ways exist). Two approaches are commonly used to
address this issue (Fig. 1): (1) an a priori decision about
edge location is made, which defines the area over which
resistance covariates are calculated (e.g., Rioux Paquette
et al. 2014); or (2) an a priori decision about resistance
values is made and edges are delineated based on those
values (e.g., Beier et al. 2009, Petkova et al. 2016). Many
methods are used to parameterize resistance values and
a full review is beyond the scope of this paper (see Spear
et al. 2010 and Zeller et al. 2012 for in-depth reviews).
However, the commonality among these methods is that
a priori decisions must be made about the relative
importance of individual covariates of resistance and/or
the physical location of the edge before the edge weights
are generated (Fig. 1). Assigning resistance values is
challenging because scientific knowledge about dispersal
and habitat preferences is often lacking. Habitat and dis-
persal data may be unavailable or collected at an inap-
propriate spatiotemporal resolution (Zeller et al. 2012).
Resistance values may be assigned based on expert opin-
ion, a literature review, and/or empirical data such as
species occurrence, individual animal movement, rates
of interpatch movement, or genetic distance (Beier et al.
2008, Minor and Urban 2008, Zeller et al. 2012).

However, there are obvious consequences in assuming
that the drivers of resistance and gene flow are known
(Cushman et al. 2006); if this assumption is incorrect,
the conclusions of the study may be misleading and sub-
sequent management actions may not have the desired
outcome (Shirk et al. 2010, Spear et al. 2010).

Common models

A number of approaches are used to analyze land-
scape genetic-data, but the most common methods gen-
erally fall into four categories: computer simulation,
matrix correlation, ordination, and regression (Fig. 2).
These methods tend to be borrowed from other disci-
plines (Balkenhol et al. 2016a) and, as such, often do
not meet basic modeling needs for landscape genetic
studies (Fig. 2). We are not the first to point this out;
there have been widespread calls from landscape-genetic
researchers for more robust methods of exploring rela-
tionships between genetic diversity and drivers of resis-
tance (Storfer et al. 2007, Balkenhol et al. 2009, 2016b,
Cushman and Landguth 2010, Manel and Holderegger
2013). Some of the most common criticisms include the
(1) lack of statistical power, especially for small sample
sizes (Legendre and Fortin 2010); (2) parameter bias and
low statistical power when tests are performed on spa-
tially dependent data (Legendre and Fortin 2010, Wag-
ner and Fortin 2013); (3) inability to assess individual
components of resistance (e.g., vegetation cover), rather
than matrices of dissimilarity, and their interactions
(Storfer et al. 2007, Beier et al. 2008); and (4) need

Data 
format

Resistance
covariates

A priori 
assumptions

Assumption-
based 
outcomes

Resistance
aggregation Model

Contiguous Node-based
Size, habitat 
quality, vegetation 
cover, distance 
between centroids

First-order
neighborhood
structure
Rook, queen, 
percentage of 
boundary shared

Resistance 
Covariates

None

Model-based
Estimates for 
individual 
resistance 
covariates

Non-
contiguous Node- or/and 

Edge-based
Habitat quality, 
vegetation cover, 
distance between    
node boundaries         
or centroids 

Edge location
Euclidean 
distance, 
buffered 
Euclidean 
distance

Resistance 
Covariates

Resistance 
values
Expert opinion, 
literature review, 
empirical data, 
animal 
movement rates

Edge location
Least-cost path, 
buffered least-
cost path,  
multiple-least-
cost path, 
Circuit-scape

Sum, difference, 
weighted 
product, mean, 
geometric 
mean, median of 
resistance 
values

Model-based
Estimate for 
overall 
resistance 
values

FIG. 1. The data format of the spatially structured ecological network affects the way that edge weights are generated. Resistance
covariates for contiguous nodes are based on node characteristics, but can be node and/or edge based for non-contiguous nodes. Regard-
less of the data format, a priori assumptions about the neighborhood structure, edge location, and/or resistance values are required and
these assumptions influence how resistance is calculated and represented in the model. When a priori assumptions are made about the
importance of resistance values, they must be aggregated to produce an overall resistance value before model-based assessment takes
place. This is not the case for resistance covariates, where importance is assessed for each covariate within a model-based framework.

May 2019 ESTIMATING RESISTANCE PARAMETERS Article e01355; page 3

C
O
N
C
E
P
TS

&
S
YN

TH
E
S
IS



for a priori decisions about resistance values, which
constrains the parameter space (Beier et al. 2008),
regardless of how many resistance models are pro-
posed (e.g., Cushman and Landguth 2010, Shirk et al.
2010). Despite the widespread criticisms, these meth-
ods continue to be used to gain insight into evolution-
ary and ecological processes because there are few
alternatives in this emerging field of research. At the
same time, there is a critical need for (1) suitable
methods for model selection (Cushman and Landguth
2010, Wagner and Fortin 2013) and validation (Dyer
and Nason 2004, Balkenhol et al. 2009); (2) statistical
methods that can be used to predict when the network
is not fully observed (i.e., missing data; Hanks and
Hooten 2013) or under future land-use or climate sce-
narios (McRae 2006, Storfer et al. 2007, Beier et al.
2008); and (3) methods that describe uncertainty in
resistance parameter estimates (Beier et al. 2008, Zeller
et al. 2012, Hanks and Hooten 2013). Thus, clear
methodological gaps exist and new quantitative meth-
ods are needed to make inference about the suitability
of these mechanistic models of connectivity and their
uncertainty, as well as the underlying processes that
generated the network structure.

Spatial autoregressive models

Spatial autocorrelation underpins numerous hypothe-
ses in ecological studies (Legendre and Fortin 2010); if
genetic data do not exhibit a spatial structure, then evo-
lutionary-process hypotheses related to IBD, IBR, and
IBB are irrelevant. Thus, an approach that makes use of
spatial autocorrelation (Fig. 2), rather than attempting
to avoid it, is likely to provide a better understanding of
landscape-genetic relationships when the data are spa-
tially dependent (Balkenhol et al. 2009).
SA models are spatial statistical models that have been

specifically designed to model areal or network data. The
general form of an SA model is fyðsiÞ : si 2 D;
i ¼ 1; . . .;Mg, where y is an observed (or unobserved)
random variable at node i, at location si, that belongs to
the spatial domain of interest, D. For example, the ran-
dom variable could represent allele counts, while the
domain-of-interest could be a management unit. An SA
model differs from other spatial statistical models (e.g.,
geostatistical or spatial point process models) because (1)
D is a fixed and finite set of nodes, rather than continuous
space and (2) spatial dependence is modeled as a function
of network structure, rather than Euclidean distance.

Type Method Probabilis�c
Distribu�on

No a priori
Resistance 
Assump�ons

Es�mated 
Resistance 
Component 
Parameters

Spa�ally 
Correlated 
Residuals 
Permi�ed

Model 
Selec�on 

Missing 
Data

Predic�on Sources and Applica�ons

Simula�on Computer 
simula�on

Epperson et al. (2010)
Cushman & Landguth (2010)

Matrix 
Correla�on

Mantel/Par�al 
Mantel tests

1PT

Mantel (1967), Smouse et al. 
(1986), Cushman et al. 
(2006), Legendre & For�n 
(2010)

Ordina�on Mul�-dimensional 
scaling

1PT Legendre & Legendre (2012), 
Legendre & For�n (2010)

Spa�al principle 
components 
analysis

1PT Jombart et al. (2008)

Correspondence 
analysis, 
Redundancy 
analysis, Canonical 
correla�on analysis

1PT

ter Braak (1986), Balkenhol 
et al. (2009), Jombart et al. 
(2009), Legendre & For�n 
(2010), For�n & Dale (2014)

Regression
Mul�ple regression 
on distance 
matrices

1PT Legendre et al. (1994), 
Legendre et al. (2015)

Gravity model: 
Unconstrained & 
Singly Constrained

2DA, ITC,    
CV 

Fotheringham & O’Kelly 
(1989), Murphy et al. (2010), 
Murphy et al. (2016)

Spa�al 
Autoregressive 
model

2DA, ITC, 
CV 

Hanks and Hooten (2013), 
Ver Hoef et al. (2017)

1Permuta�on test (PT), 2Distribu�onal assump�ons, Informa�on theore�c criteria, cross-valida�on (DA, ITC, CV)

FIG. 2. A summary of common model types and their ability to meet modeling needs for a typical landscape genetics study.
Sources: Epperson et al. (2010); Cushman and Landguth (2010); Mantel (1967); Smouse et al. (1986); Cushman et al. (2006);
Legendre and Fortin (2010); Legendre and Legendre (2012); Jombart et al. (2008); Ter Braak (1986); Balkenhol et al. (2009);
Jombart et al. (2009); Fortin and Dale (2014); Legendre et al. (1994); Legendre and Fortin (2015); Fotheringham and O’Kelly
(1989); Murphy et al. (2010); Murphy et al. (2016); Hanks and Hooten (2013); Ver Hoef et al. (2018). [Correction added 11 March
2019 after online publication. The caption for Figure 2 has been edited to accurately reflect previous changes to the figure.]
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Matrix representations of network structure

An SSEN is defined by its graphical structure (e.g.,
nodes and edges connecting nodes) and, in a weighted
network, by the weights assigned to edges (Fig. 3a). To

define this formally, let G � ðV;WÞ be an SSEN with M
nodes, V � fV1;V2; . . .;VMg, and the edges or edge
weights, W � fwijg, between them. Note that the edge
weights could potentially be directed (i.e., asymmetric)
to account for processes such as source-sink dynamics

W =

w12= 1

w14= 4

w34= 2

w13= 3

V2

V3 V4

V1

DW =

a) Network and matrix representation

b) Precision matrix
Q = (DW – ρW), ρ = 0.90

c) Covariance matrix
Σ = Q-1

ΣCAR =QCAR =

d) Partial correlation matrix

i,j |. = corr |., |. = − , / , ,

CorrCAR =

e) Correlation matrix

Corri,j =Σi,j/ Σ , Σ ,

kCAR =

FIG. 3. (a) Spatially structured ecological networks contain nodes and edge weights represented in network or matrix format.
The matrix W represents edge weights between node pairs, while DW is a diagonal matrix containing the sum of the edge weights for
each node’s first-order neighbors (e.g., ðDwÞ1;1 ¼ 1þ 4þ 3 ¼ 8). (b) These two matrices contain information about the conditional
structure implied by the edges and is used to generate the precision matrix, Q, in a conditional autoregressive (CAR) model. Two
nodes that are conditionally independent in the precision matrix (e.g., Q3;2 ¼ 0) may still be spatially dependent (i.e., correlated)
through intervening nodes (e.g., R3;2 6¼ 0) in the (c) covariance matrix, R ¼ Q�1 (c) and the correlation matrix (e). (d) The precision
matrix defines the partial correlation among measurements on nodes (d) after accounting for the influence of intervening nodes.
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or dispersal preferences (Dale and Fortin 2010). The
edges of the SSEN can also be represented as an M �M
matrix (Fig. 3a). The element wij in the ith row and jth
column of the matrix W is the directed or undirected
edge weight connecting nodes i and j in the network. In
an unweighted graph, connectivity is simply represented
using a binary adjacency matrix, where wij ¼ 1 and
wij ¼ 0 imply that an edge exists or does not exist
between nodes i and j, respectively. By definition, edges
do not connect nodes to themselves in SA models and
therefore diagonal elements are also defined as wii ¼ 0.
These same rules apply in a weighted network, except
that wij [ 0 indicates that there is an edge between two
nodes and the strength of connectivity between node
pairs is allowed to vary (Fig. 3a). If the SSEN is undi-
rected, then W is a symmetric matrix and wij ¼ wji.

Correlation and partial correlation

A key component of an SSEN is the conditional
dependence (i.e., structure) implied by the edges. When
an edge exists between nodes, wij [ 0, then nodes i and j
are first-order neighbors and are considered connected
(e.g., V1 and V2, Fig. 3a). If two nodes are not directly
connected by an edge, wij ¼ 0, a path between the nodes
may still exist through intervening nodes (e.g., V2 and
V4, Fig. 3a). Thus, observations at nodes that are not
first-order neighbors are conditionally independent in
the precision matrix (e.g., Q3;2 ¼ 0 in Fig. 3b).
A statistical concept strongly related to the network

structure defined by edges is partial correlation. Consider
the situation where a process such as genetic variation in
individuals or populations, y, is measured on nodes. The
topological structure implied by the edges helps define
the correlation structure on the process y. This correla-
tion structure is represented by R, which is the M �M
covariance matrix of y (Fig. 3c). Thus, the i; jth element
of R is the covariance between yi and yj :

Rij ¼ covðyi; yjÞ ¼ E ðyi � EðyiÞÞðyj � EðyjÞÞ
� �

:

The inverse covariance matrix, or precision matrix,
Q ¼ R�1, defines the partial correlation of y after
accounting for the influence of intervening nodes
(Fig. 3b). For example, let fy1; y2; . . .; yng be Gaussian
observations on an M-node network. The partial corre-
lation between yi and yj is defined as jijj� ¼ corrðeij�; ejj�Þ,
where eij� are the residuals from a regression with the
response yi and fyk; k 6¼ i; jg as covariates (e.g., node
size or habitat quality) (Fig. 3d). If jijj� ¼ 0, then nodes i
and j are not first-order neighbors and any dependence
between yi and yj is captured by intervening nodes
fyk; k 6¼ i; jg. For any precision matrix, Qij ¼ 0 if and
only if jijj� ¼ 0. Thus, information about local connec-
tivity and dependence can be encoded in the precision
matrix of a multivariate random variable. Note that
two nodes may still be correlated through intervening
nodes and this dependence is captured by the

covariance matrix, R ¼ Q�1 (R3;2 ¼ 0:42, Fig. 3c),
which is obtained by inverting Q. This idea is conceptu-
ally similar to the role of stepping stones, which pro-
mote connectivity and facilitate organism movement or
gene flow between isolated habitat patches (Saura et al.
2014).
Partial correlation is not a new concept in ecology; the

partial-correlation structure accommodated by the pre-
cision matrix is increasingly being used to estimate net-
work topology, which is subsequently used to
understand the influence of network structure on evolu-
tionary processes (i.e., Population Graphs; Dyer and
Nason 2004). However, partial correlation and condi-
tional independence in a SSEN can also be modeled as
elements of the precision matrix in a SA model. In the
next section, we provide background information about
SA models for estimating edge weights using a data-
driven approach.

CAR AND ICAR MODELS

If the SA model has a Gaussian error distribution, it
can be written as

y ¼ Xaþ gþ e (1)

where the “error” models are e�Nð0; r2e IÞ and
g�Nð0;RÞ: The mean structure describes the condi-
tional mean of the response given a set of covariates, if
they are present. In Eq. 1, the mean (or first moment)
structure is modeled using a regression that includes
covariates, X, as well as a latent spatial-random process,
g. The covariates are used to account for influential pro-
cesses or conditions that have been measured, while the
latent spatial-random process is used to describe residual
spatial dependence. Thus, spatial dependence may result
from a lack of understanding about the ecological pro-
cess, an inability to measure influential covariates, or
inherent spatial dependence in the response variable
(Keitt et al. 2002). The term g is not directly measured
and instead must be inferred using a statistical model.
This model formulation is fundamentally different

from most models built to explore associations
between allele prevalence and landscape features (selec-
tion), where there is often no mean structure, because
typical data come from neutral regions of the genome.
In contrast, it might be important to include covariates
in the model mean structure in a landscape genomics
study, where allele frequencies from non-neutral
regions are affected by natural selection. In addition,
spatial autocorrelation is not a nuisance in landscape-
genetic studies, but rather the main focus of the analy-
sis. Thus, we often assume that y ¼ g�Nð0;RÞ. We
will later consider other data models more appropriate
for non-Gaussian genetic data, but the Gaussian
model serves as a canonical model for spatial depen-
dence in SSENs.
The precision matrix, Q � R�1, is used to describe the

spatial dependence in the residual errors and, in the case
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of the conditional autoregressive (CAR) model, we
assume

Q ¼ D� qW: (2)

here, W is a binary or non-binary edge weights matrix, D
is a diagonal matrix with elements Dii ¼

P
k
Wik, and

q 2 ð0; 1Þ is a parameter affecting correlation. Other
equivalent forms for the CAR precision matrix have
been used in the literature (e.g., Q ¼ s2M�1ðI� CÞ for
matrices M and C; Banerjee et al. 2004). However, the
formulation in Eq. 2 highlights the direct link between
the edge weights in an SSEN and the precision matrix of
a spatial CAR model (Fig. 3a, b).
The term “conditional” in the conditional autregres-

sive (CAR) model is used because each element of the
random process is specified as conditional on those
found on all first-order neighboring nodes, rather than
all of the nodes (Fig. 3):

gijgjj j 6¼i �N
X
j

qWijgjP
j 6¼i Wij

;
r2P
j 6¼i Wij

 !
: (3)

This conditional representation shows that the condi-
tional mean of gi is a weighted average of its neighbors
(gj : j 2 NðiÞ, where NðiÞ is the set of first-order neigh-
bors of node i), scaled by q. If q ¼ 0, then each gi is inde-
pendent of all other gi, and there is no spatial
autocorrelation, while larger values of q yield stronger
correlation. If Wij [Wik, then the mean of gi is more
strongly influenced by gj than by gk. Thus, proportion-
ally larger edge weights imply that there is a stronger
functional relationship between nodes. Finally, the con-
ditional variance of gi is the conditional variance param-
eter, r2, over the sum of the edge weights connected to
node i. Thus, the mean and variance of the spatial ran-
dom process are both nonstationary, varying with node
i. The conditional representation also makes it clear how
to model spatial correlation in SSENs using edge
weights and CAR models; increasing all edge weights
decreases the marginal variance, while proportionaly lar-
ger edge weights imply stronger connectivity and corre-
lation between nodes.
Correlation (Fig. 3e) is a scaled version of covariance,

which also contains information about connectivity and
dependence within the SSEN. However, the covariance
and correlation implied by a CAR model are sometimes
counter-intuitive (Wall 2004). For example, in Fig. 3c,
the highest covariance is found between V1 and V2, but
Fig. 3e shows that the highest correlation is found
between V1 and V4. This discrepancy is due to the non-
stationary nature of the model; in a CAR model, the
least connected nodes have high conditional variances
(Eq. 3), and often have high marginal variances, which
inflates the covariance. Nevertheless, a CAR model pro-
vides some intuition on the correlation and covariance

implied by a SSEN. In this case, V2 is the least connected
of all nodes in the network (Fig. 3a), and thus it makes
sense that the correlation with other nodes would be rel-
atively small.
An intrinsic conditional autoregressive model (ICAR;

Besag and Kooperberg 1995) is a limiting case of a CAR
model, where q ¼ 1. In this case, Q ¼ ðD�WÞ is not
invertible, but the ICAR can still be used as a prior in a
Bayesian spatial model (e.g., Cressie 2015). The covari-
ance matrix of the ICAR can also be defined as the gen-
eralized inverse, Q�, under the constraint that the
spatial-random effects sum to a constant (e.g.,Pn

i¼1 gi ¼ 0) (Rue and Held 2005).

Missing data

In previous sections, we assumed that all nodes in the
network were fully observed and that one observation,
yi, was obtained for each node, but this is unusual in
practice. Consider the general case where there are nobs
total observations at mnodes nodes. When multiple obser-
vations are collected on nodes (e.g., multiple individuals
are genetically sampled within a population), a nugget
effect, s, can be introduced into the covariance structure
(Besag et al. 1991) to account for within-node variation.
Let y � ðy1; y2; . . .; ynobsÞ0 be the vector of nobs observa-
tions from the network and let Rnodes be the
mnodes �mnodes covariance matrix of the entire network.
When there are multiple observations on a node or miss-
ing data on other nodes, there is not a one-to-one rela-
tionship between nodes and observations. To account for
this mismatch, an nobs �mnodes matrix K is created to
“map” observations to nodes; Kij ¼ 1 if the ith observa-
tion (yi) is taken at the jth node, and Kij ¼ 0 otherwise.
The matrix K can then be used in the nobs � nobs covari-
ance matrixW of the observations y, where

W ¼ KRK0 þ s2I:

Estimation of the edge weights, which define R, can
then be carried out by substituting W for R in a CAR or
ICAR model.
The ability to use the entire network in the modeling

process has numerous advantages, even if it is partially
unobserved. Nodes with missing data are usually
removed from the analysis, which equates to a loss of
information (Nakagawa and Freckleton 2008). If data
are not missing at random, it alters the topology of the
network (Kossinets 2006, Fletcher et al. 2011), results in
loss of statistical power, and produces biased parameter
estimates for processes on the network (Nakagawa and
Freckleton 2008). A covariance matrix that represents
all of the network nodes can also be used within a SA
model to make predictions, with estimates of uncer-
tainty, at unobserved nodes. These predictions provide
estimates of processes on, and the topology of a network
that has not been fully observed based on the observed
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data. However, they can also be used for model valida-
tion in a k-fold cross-validation procedure. Another
important advantage is the ability to incorporate nodes
with missing data into the statistical model, which
means that a contiguous data model can be used to esti-
mate resistance; thus, removing the need to make a pri-
ori and potentially incorrect assumptions about the
spatial location of edges between non-contiguous nodes
(Fig. 1). Although there may not be a partial correla-
tion between two observed nodes separated by nodes
with missing values, spatial dependence may still exist
because of the intervening nodes in the path between
them (Fig. 3c).

EDGE WEIGHT ESTIMATION USING SPATIAL

AUTOREGRESSIVE MODELS

Although SA models are often used in spatial statis-
tics, the specification of weights has received little atten-
tion. In most cases, weights are arbitrarily described
using representations of adjacency with little thought
devoted to the processes that drive connectivity. When
weights are specified in this manner, they are considered
fixed and known, which implies that the topology of the
SSEN is known exactly; however, this is almost never
the case in ecology. In fact, ecological questions often
focus on understanding the drivers of landscape connec-
tivity. We reconcile these statistical and ecological per-
spectives, with the goal of gaining a better ecological
understanding of resistance in SSENs.
Characteristics on the nodes (e.g., habitat quality, size,

or population size) or along the edges (e.g., length, vege-
tation cover, or barriers to movement) may describe
increases/decreases in landscape connectivity between
node pairs. Thus, the resistance distance between nodes
may, or may not, be solely dependent on the physical dis-
tance between them. Here we define resistance distance
as the cumulative resistance between observations based
on circuit theory (McRae 2006, Zeller et al. 2012). For
example, if the nodes are irregularly spaced or irregular
in size, it would make sense to model connectivity (i.e.,
edge weights) as a function of distance between nodes.
The most natural approach is to treat the centroid of
each node as the location, and include the distance, or
log-distance (Hanks and Hooten 2013) beween nodes as
a resistance covariate in Eq. 5, with or without other
resistance covariates.
An SA model may include a multivariate response, yi,

such as microsatellites or multiple SNPs for individuals
or populations. The CAR or ICAR model can be con-
nected to more ecologically relevant network-based
approaches when the weights matrix is constructed.
Instead of defining edge weights based on conceptual
models of evolutionary processes, Hanks and Hooten
(2013) showed that they may be estimated by specifying
an appropriate statistical model for y, conditioned on
the edge weights through the precision matrix. For
example, edge weights, wij , could be modeled as

wij ¼ 0 if i and j are not first-order neighbors,
f ðxij ;bÞ if i and j are first-order neighbors,

�
(4)

where xij is a vector of covariates used to model the edge
weight between i and j (e.g., slope or vegetation cover),
and b is a vector of estimated parameters. Edge weights
are usually greater than zero, thus one potential model
relating xij and wij is a log-linear model:

f ðxij ; bÞ ¼ expfx0ijbg: (5)

For the IBD model, f ðxij ; bÞ � 1 so we obtain an esti-
mated distance-only decay function, with no other
effects, that depends conditionally on first-order neigh-
bors; although autocorrelation decays with distance
throughout the study area (e.g., Ver Hoef et al. 2018).
Many other model formulations are also possible. For
example, in Ver Hoef et al. (2018), b was estimated as a
function of categorical variables representing differences
in harbor seal sub-population membership. Similarly,
the matrix xij could contain extra resistance covariates
for models representing the IBR (e.g., vegetation cover)
and IBB (e.g., rivers) evolutionary-process hypotheses,
in addition to an intercept.
As mentioned previously, models are often fit to

genetic distance or diversity matrices in landscape-
genetic studies and these matrices can be generated
based on a variety of distance metrics. For example,
Wright’s FST (Wright 1931) and Nei’s D (Nei 1972) can
be used to describe population-based genetic diversity,
while the Bray-Curtis (Legendre and Legendre 2012)
and other measures of relatedness (Queller and Good-
night 1989) are typically used to measure individual-level
genetic diversity. However, the advantages of modeling
genetic distance using an SA model as described here are
only realized if there is an appropriate statistical distri-
bution for an observed distance matrix and the covari-
ance matrix. The generalized Wishart distribution has
been used in recent landscape-genetic studies to visualise
patterns of population structure (Bradburd et al. 2016)
and to estimate ancestry proportions from multiple pop-
ulations (Bradburd et al. 2018). McCullagh (2009)
showed that a generalized Wishart distribution is the
appropriate statistical model if the genetic distance
matrix, D, is based on squared-Euclidean distance of a
normally distributed random variable (Appendix S1).
Under these assumptions, �D�GWmð1; 2RÞ, where
R ¼ Q�1. However, there is no guarantee that the gener-
alized Wishart distribution will be appropriate for all
dissimilarity matrices and future research is needed to
develop diagnostic tools to check the validity of these
distributional assumptions. The advantage of this
approach is that it provides a formal statistical likeli-
hood for pairwise distance data. This makes the whole
range of likelihood-based tools such as maximum likeli-
hood estimation, asymptotic confidence intervals on
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parameters, and model selection using Akaike’s infor-
mation criterion (AIC; Akaike 1974) and other informa-
tion criteria applicable to genetic analyses. Another
major benefit is that the parameter estimates, b (Eq. 5),
are comparable between different populations and stud-
ies. As a result, it is possible to fit similar models to mul-
tiple disparate populations and assess how consistent
the landscape-genetic relationships are.
Under a CAR model, the edge weights W and the

parameter q completely define Q and R (Fig. 3b, c), and
the likelihood of the data under the generalized Wishart
model. Multiple conceptual models of connectivity could
be specified using different formulations of W or R and
compared using AIC. This provides a flexible modeling
framework, where genetic data on the nodes are con-
verted to genetic data on the edges (e.g., genetic-distance
matrices), and modeled as a function of covariates on the
nodes (e.g., node or neighborhood level) and/or edges of
the SSEN. This method does not fit neatly into the four
levels of analysis proposed by Wagner and Fortin (2013)
to relate genetic data to landscape data (e.g., node, link,
neighborhood, and boundary). Instead, we refer to it as
a network-based method because it can be used to repre-
sent all four levels of analysis, depending on how the
model is parameterized and the research question of
interest.

Simulated example

Observed genetic patterns may be produced by the
combined influence of geographic distance, resistance,
and barriers, rather than a single evolutionary process
(Landguth and Cushman 2010). The SA model can be
used to account for proximity in terms of variables on
nodes and/or edges, physical distance (e.g., Euclidean
or least-cost path), and unobserved drivers of landscape
connectivity. Next, we provide an example demonstrat-
ing how edge weights can be estimated within an ICAR
model by incorporating resistance covariates into the
off-diagonal elements of the precision matrix. We pro-
vide data (Data S1 and Data S2) and R statistical soft-
ware (R Core Team 2016) code (Data S1 and
Appendix S2) so that readers can recreate the example.

We simulated resistance surfaces for the IBD, IBR,
and the IBB scenarios (Fig. 4, Appendix S2). The loca-
tions for 30 subpopulations were randomly generated
and the pairwise resistance distance was calculated based
on the IBD, IBR, and IBB models (Appendix S2). This
distance is equivalent to the cumulative resistance
between population locations based on circuit theory
(McRae et al. 2008).
Genetic data were simulated under the IBD, IBR, and

IBB evolutionary-process models for 450 individuals (30
subpopulations 9 15 individuals) using the PopGenRe-
port package (Adamack and Gruber 2014, Appendix S2).
Genetic distance matrices for individual allele counts were
calculated for the simulated datasets based on Manhattan
distance.
We fit three models (IBD, IBR, and IBB) to each of the

genetic-distance matrices (DIBD, DIBR, DIBB) using a gen-
eralized Wishart distribution (Appendix S1) using the rwc
package (Hanks 2017). The nine models had the form

�D�GWmð1; 2WÞ (6)

where GW is the generalised Wishart distribution and
m ¼ 20 represents the number of genetic loci used to
compute D.
The SA models were fit using a raster-based network

representation, with contiguous nodes and edge weights
(and corresponding off-diagonal elements of the ICAR
precision matrix) a function of the distance between
node centroids, and the resistance value at neighboring
raster cells estimated from the data. The spatial covari-
ance for the models was given by

W ¼ KQ�K0 þ s2I (7)

where K is a design matrix linking observations to nodes
(raster cells) in the SSEN, s2 models nonspatial variabil-
ity, and Q is an ICAR precision matrix (Eq. 2), with
edge weights a function of resistance covariates, xij , as
shown in Fig. 4.
The edge weights were modeled as a log-linear func-

tion of an intercept only for the IBD model, an intercept
and a continuous resistance covariate for the IBR model,

0.9990
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FIG. 4. Resistance surfaces for the isolation by distance (IBD), isolation by resistance (IBR), and isolation by barrier (IBB)
evolutionary-process hypotheses.
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and an intercept and a binary covariate representing a
nonpermeable barrier to movement for the IBB model
(Fig. 4). Notice that the IBR and IBB models account
for both resistance covariates and the distance between
individuals, while the IBD model is based purely on
distance. Parameters were estimated using maximum
likelihood.
We compared the models using AIC (Akaike 1974)

and found that for DIBD, the data generating model
(IBD) had slightly more support in the data than the
IBR estimating model, and considerably more support
than IBB (Table 1). This is not surprising based on the
patterns observed in the simulated genetic distance ver-
sus resistance plots (Appendix S2). However, there was
no question about which models had the most support

in the data for DIBR and DIBB. The AIC value for the
IBR data-generating model was more than 14 units
lower than the competing IBD and IBB estimating mod-
els for DIBR, while the AIC for the DIBB data-generating
model (IBB) was more than 56 units lower than alterna-
tive IBD and IBR estimating models (Table 1).
The exponentiated b parameter estimates produced by

the final models describe the relationship between the
conductance (i.e., 1/resistance) and the original resis-
tance covariates (Fig. 4) and this relationship can be
plotted, with 95% confidence intervals. Fig. 5a shows
that the relationship between conductance and the resis-
tance covariate described by the fitted DIBR data-gener-
ating model is non-linear, which is not surprising given
that a log-linear model was used. As expected, conduc-
tance through cells with low IBR resistance-covariate
values is higher than those with larger values, with con-
ductance dropping off rapidly as resistance increases
from 1 to 5. The 95% confidence intervals show that
there is more uncertainty about this relationship when
resistance is moderate (e.g., 5 to 10) compared to when it
is low or high (Fig. 5a). The relatively low AIC value for
this model (Table 1) indicates that the DIBR data-gener-
ating model was able to describe this relationship more
accurately than the other models and thus provides
greater insight into the relationship between the IBR
resistance covariate and simulated gene flow. Further-
more, maps of conductance generated using the SA
model (Fig. 5b) could be used to define movement corri-
dors between conservation reserves or examine scenarios
of land-management impacts on gene flow (e.g., McRae
et al. 2008, Landguth and Cushman 2010).

TABLE 1. The Akaike Information Criteria (AIC) values for
the models based on simulated genetic distance (DIBD, DIBR,
DIBB) and the three resistance models: isolation by distance
(IBD), isolation by resistance (IBR), and isolation by barrier
(IBB).

Genetic distance Resistance model AIC

DIBD IBD 22,518.94
DIBD IBR 22,520.23
DIBD IBB 22,527.61
DIBR IBD 22,589
DIBR IBR 22,573.6
DIBR IBB 22,588.43
DIBB IBD 20,414.75
DIBB IBR 20,399.52
DIBB IBB 20,342.68
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FIG. 5. (a) The isolation-by-resistance (IBR) model (DIBR � IBR) shows that conductance (inverse resistance) has a nonlinear
relationship with the IBR resistance covariate (solid black line). The dotted lines denote the 95% confidence intervals. (b) Similar
patterns are observed in a map of mean conductance, which is highest in areas with low resistance covariate values.
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CONSIDERATIONS

The benefit of using SA models with SSENs is the
ability to model spatially dependent data and gain statis-
tically robust inferences. However, the advantages gained
in fitting a SA model strongly depend on the genetic dis-
tance matrices containing sufficient information to esti-
mate edge weights. In other words, there must be
relatively strong spatial dependence in the data and this
is affected by both the genetic and field survey design.
Genetic data are collected from individuals at multiple

locations in landscape-genetic studies, and often trans-
formed into a genetic distance matrix prior to modelling.
These matrices are usually based on a subset of alleles
found on neutral loci (i.e., microsatellite alleles or SNPs)
that have no known function and as such, are not
believed to be involved in natural selection (Wagner and
Fortin 2013). Instead, the variability in the genetic data
should reflect genetic drift; highlighting the influence of
landscape resistance on gene flow and population struc-
ture. There are numerous filtering steps designed to
reduce the negative effects of sequencing errors, missing
data, duplicated loci, linkage disequilibrium, deviations
from Hardy-Weinberg equilibrium, and polymorphism
(Benestan et al. 2016). As noted by the authors, these
choices can affect inferences in models fit to genetic
data, but filtering decisions will be dependent on the
data set and the research question of interest (Andrews
et al. 2016). The initial choice of alleles was particularly
important in the past, when it was often cost prohibitive
to sample more than 20 loci (Waits and Storfer 2016).
However, with the advent of next-generation sequencing,
it is not uncommon to obtain genetic data at tens of
thousands of loci. As a result, genetic sampling is
expected to be the least limiting factor in future land-
scape-genetic studies (Balkenhol and Fortin 2016).
The field survey design is another important consider-

ation, but the optimal design is expected to differ
depending on the environment and species of interest
(Balkenhol and Fortin 2016). The number of individuals
must be sufficient to represent the genetic diversity in
the population and appropriate for the research question
(Waits and Storfer 2016). If the genetic diversity is low,
then it may be captured with a relatively small number
of individuals and alleles; while more individuals and
alleles will be required when genetic diversity is high. In
rare cases, power analysis is used to identify the mini-
mum sample size needed (Ryman and Palm 2006). Simu-
lation studies can also help identify the minimum
number of individuals and sub-populations needed to
detect the effects of distance and landscape resistance on
gene flow (Manel et al. 2012). General rules of thumb
have been proposed, suggesting that 20 to 30 individuals
are needed when using microsatellite data (Hale et al.
2012). However, these numbers are insufficient for the
SA models described here. Instead, larger minimum
sample sizes are needed (>100 observations in our expe-
rience) due to the additional parameters being estimated

and the loss of effective degrees of freedom. Larger sam-
ple sizes may also be needed as the complexity of the
edge-weights model increases. Nevertheless, sample size
may not be an issue in many studies, where researchers
have artificially decreased the sample size by aggregating
genetic data from individuals to the sub-population
level. Aggregation is not necessary using this approach,
which implies that researchers can make use of all of
their genetic data. Although estimating the edge weights
within a SA modeling framework may not be possible
for every existing dataset, future studies could be
designed to meet these requirements.
Finally, it is important to keep in mind that correla-

tion does not equal causation. Many different environ-
mental and biological processes can affect genetic
dissimilarity between individuals and populations, and it
is possible that patterns in resistance covariates and dis-
tance measures mimic patterns produced by the true
causal factor (Rellstab et al. 2015). For example, if alle-
les are incorrectly assumed to be neutral, selection may
be causing a particular pattern in genetic differentiation
rather than resistance to gene flow (Whitlock and
McCauley 1999). Alternatively, migration and drift may
not have reached equilibrium for populations that are
currently expanding and as a result, patterns in genetic
differentiation would not necessarily reflect current pat-
terns in gene flow (Whitlock and McCauley 1999). Even
when assumptions such as these are correct, multiple
landscape genetic hypotheses are often highly correlated
(Murphy et al. 2008); as was the case here, where we
observed similar correlations between genetic data gen-
erated using an IBD model (DIBD) and an IBR estimat-
ing model (Appendix S2). Thus, it is important that a
priori hypotheses describing the effects of landscape
resistance on gene flow are carefully constructed based
on current scientific knowledge, and tested using sophis-
ticated and robust modelling approaches (Cushman and
Landguth 2010), such as those described here.

CONCLUSIONS

There is an undeniable need for quantitative methods
in landscape genetics that can be used to explore ques-
tions about spatial structure in genetic data sets. SA
models provide a natural framework to investigate those
questions. Spatial autocorrelation underpins common
evolutionary-process hypotheses in landscape-genetic
studies and thus it is sensible to use a statistical method
that incorporates spatial autocorrelation (Balkenhol
et al. 2009). SA models are designed to describe the
neighborhood structure in spatially correlated network
data and provide a flexible probabilistic framework used
to make inferences about the effects of habitat selection
and movement preferences on gene flow. The data model
for these network-level analyses may include raw genetic
data or genetic distance matrices, as well as covariates
on nodes and edges. Covariates representing multiple
evolutionary-process hypotheses can also be assessed
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within a single modeling framework, which produces
interpretable parameter estimates for resistance compo-
nents, with uncertainty estimates, so that inferences can
be made about their relative influence within and
between populations. In addition, standard model selec-
tion methods, such as regularization or information-the-
oretic-based approaches, may be used to compare and
select among models (Hooten and Hobbs 2015); while
predictions, with estimates of uncertainty, can be made
at unobserved locations or under different land-use or
climate scenarios. The ability to predict provides man-
agement benefits (Storfer et al. 2007), but can also be
used to validate models using k-fold cross-validation.
Most notably, the ability to account for missing data
within the SA model means that a contiguous data
model can be used when resistance values are estimated.
Thus, a priori assumptions about the spatial location of
edges between non-contiguous nodes, the relative influ-
ence of individual resistance covariates, and the overall
resistance between nodes are avoided. Closer collabora-
tion between ecologists and spatial statisticians will lead
to new methods that are specifically designed to answer
spatial and spatio-temporal questions about connectivity
in landscape-genetic studies.
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