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A Bayesian hierarchical model for forecasting
intermountain snow dynamics

James B. Odei’, Jiirgen Symanzik and Mevin B. Hooten

Because of a continual increase in the demand for water as well as an ongoing regional drought, there is an imminent need
to monitor and forecast water resources in the Western United States. In particular, water resources in the Intermountain
West rely heavily on snow water storage. Thus, the need to improve seasonal forecasts of snowpack and considering new
techniques would allow water resources to be more effectively managed throughout the entire water-year. Many available
models used in forecasting snow water equivalent (SWE) measurements require delicate calibrations. In contrast to the
physical SWE models most commonly used for forecasting, we offer a statistical model. We present a data-based statistical
model that characterizes seasonal SWE in terms of a nested time series, with the large scale focusing on the inter-annual
periodicity of dominant signals and the small scale accommodating seasonal noise and autocorrelation. This model provides
a framework for independently estimating mainly the temporal dynamics of SWE for the various snow telemetry sites. We
use snow telemetry data from 10 stations in Utah over 34 water-years to implement and validate this model. Copyright ©
2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Snow is considered to play significant roles in climate, terrestrial biosphere, and hydrology. As an integral part of the annual water budget,
during the winter snowpack, water is accumulated and then released in the spring snowmelt season (Ichii ez al., 2007).

The Intermountain West region of the semi-arid Western United States (WUS) composes of varying ecological and economic systems
(Bailey, 1995) where over 75% of water resources result from snowmelt water. In this region, many different systems including snow courses,
snow telemetry (SNOTEL), aerial markers, and airborne gamma radiation (Cowles et al., 2002) are used to measure the amount of water
in the snow. The term Intermountain West generally composes of six states including Utah. We use the term “intermountain” because our
underlying principle can be extended to other states from this region.

A report from the National Climatic Data Center indicated that since 1998, multi-year droughts have seriously affected the supply of water
in the Southwest (http://www.wcc.nrcs.usda.gov/snotel/Utah/utah.html), and these droughts are some of the major
risks residents and ecosystems of this region are facing (Mote et al., 2005). Thus, effective long-term management decisions must be made on
the basis of predictions concerning accumulation and melt of intermountain snow, a major water resource for the region. Modeling can offer
a useful tool to perform such prediction, and physically-based numerical computer models are broadly used to generate snow and related
forecasts (Jin et al., 1999). The majority of these physical models are able to produce reasonable forecasts during the snow accumulation
phase, but some perform poorly during the snowmelt stage because of inadequate representation of snowmelt regimes (Jin ez al., 1999; Jin
and Wen, 2012) and spring climate forcing (Saha et al., 2006).

With the growing concern about the effects of change in climate on snowpack accumulation (Lapp et al., 2005; Mote et al., 2005; Mote,
2006) and societal seasonal water supply requirements (Miller et al., 2003; Van Rheenen et al., 2004; Brekke ef al., 2004; Stewart et al.,
2005), accurate forecasting of water supplies has become increasingly urgent. Previous hydrologic simulation models and a spatial statistical
model developed by the National Weather Service (NWS) enables us to address some of these questions. The NWS hydrologic simulation
model generates extended streamflow predictions, water supply and spring flood outlooks, and flood forecasts (Day, 1985; Hudlow, 1998).
With the spatial model, estimation of snow water equivalent (SWE) across the WUS river basins are obtained on a 30-arc second grid (Carroll
and Cressie, 1996). An important part of the NWS spatial model is that its covariance function produces the covariance between the SWE
at two sites. In situations where areas have no observed measurements available, the NWS spatial statistical model uses ground-based and
airborne SWE data (Day, 1990; Carroll et al., 1995, 1999).

Despite some successes in statistical snow modeling, there still remains a need for accurate seasonal forecasts. For example,
Seidou et al. (2006) used Bayesian models for the interpolation of field measurements of SWE. Cowles et al. (2002) presented a Bayesian
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spatio-temporal analysis of the combined SWE data from four sources (snow courses, SNOTEL, aerial markers, and airborne gamma radia-
tion) that allow for systematic differences in their accuracy and reliability. Their work also focused on identifying long-term temporal trends
spatially. Additionally, Leisenring and Moradkhani (2011) described a statistical approach to “calibrating” a mechanistic snow model. This
model was used to produce longer range forecasts, but it did not allow that some of the current water-year had already occurred. There are
also alternative approaches for estimating SWE when it is not measured directly, for example, by linking it to auxiliary data sources such as
snow depth and bulk snow density (Jonas et al., 2009).

Given the need for improved forecasts, we offer a new modeling direction, which is complimentary to other efforts. Some of the benefits
of statistical models are as follows: they are simple, very efficient in computation, and easy to use. Most importantly, statistically-based snow
models rely heavily on observational data, which greatly increase their reliability in forecasting. All these benefits are missing in physical
models. In this article, we present a nested time-series statistical model for SWE data arising from the SNOTEL monitoring stations. Our
objective here is to use an empirical Bayesian hierarchical statistical model to analyze our economically important variable: distribution of
SWE. Our hierarchical model incorporates both spatial structure and measurement uncertainty.

Section 2 provides an overview on how the SWE data were obtained, dimension reduction, and a presentation on the formulation of the
hierarchical model. In Section 3, we look at results after implementing the model from Section 2. We briefly discuss some important general
assessments in Section 4 and state our conclusions in Section 5. Appendix A provides an overview of the R (R Core Team, 2012) code used
for the modeling. The Appendix B provides the derivations of the full conditional distributions in this article.

2. MATERIALS AND METHODS
2.1. Snow telemetry data sources

In this article, we provide a proof-of-concept application of our model to mountain ranges in the state of Utah. This state has active SNOTEL
monitoring stations that provide various snow and environmental measurements (i.e., SWE, air temperature, precipitation, snow depth, and
soil moisture/temperature). In this article, 10 SNOTEL stations, each with 34 water-years (1979-2012) and 365 days per water-year yielding
124,100 (34 x 10 x 365) total SWE observations, were used. For simplicity, February 29 in leap years was ignored. These SNOTEL systems,
installed, operated, and maintained by the Natural Resources Conservation Service, are designed to collect snowpack and other related
climatic data in the WUS and Alaska. An illustration of the state-wide active SNOTEL sites of Utah is shown in Figure 1.

In near real time, SNOTEL uses meteor burst communications technology to communicate data where very high frequency radio signals
are reflected at a steep angle off the band of ionized meteors existing above the earth surface from about 50 to 75 miles (NRCS, 2009).
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Figure 1. Locations of 90 active snow telemetry (SNOTEL) sites in Utah. The black-shaded diamonds and the triangle are the 10 sites with at least 30 years

of SNOTEL measurements selected for model validation. The dashed lines represent county boundaries. The sites are as follows: (1) Tony Grove, (2) Ben

Lomond Peak, (3) Horse Ridge, (4) Little Bear, (5) Bug Lake, (6) Dry Bread Pond, (7) Monte Cristo, (8) Farmington, (9) Timpanogos Divide, and (10)
Parley’s Summit. The Tony Grove SNOTEL site is further discussed in Section 2.1
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Figure 2. Plots of snow water equivalent measurements (in inches) for the Tony Grove site (1979-2008). Each of these plots represents the amount of water
stored during the water-year

Generally, these SNOTEL sites are located remotely on high watersheds where accessibility is difficult or restricted. For maintenance
purposes, access involves the use of helicopters, skiing, snowmobiles, hiking, and snowshoeing. Overall, there are six Natural Resources
Conservation Service data collection offices that monitor daily site statistics. When data are received, they are converted to engineering units
and screened properly for errors and then stored in a database. The data (and additional information) are made available to the public through
the National Water and Climate Center website (http://www.wcc.nrcs.usda.gov).

Figure 2 shows plots of SWE measurements for the Tony Grove SNOTEL site from 1979 to 2008. The time of SWE measurements is in
days of a water-year (1 October—30 September). For example, in the 1979 water-year, SWE measurements were taken between 1 October
1978 and 30 September 1979. Years with large (e.g., 1997) and small (e.g., 1981 and 1987) measurements of overall SWE are readily
apparent in Figure 2. Also, there were years (e.g., 1982 and 2006) with relatively high SWE measurements early in the water-year and
sharp decreases by the middle of the water-year. In addition to these observations, there are other factors or important (dominant) signals
underlying the SWE measurements at the SNOTEL sites that cannot be seen directly but nonetheless could be modeled. We will discuss in
Section 2.2 how we can capture the important signals underlying the SWE measurements.

2.2. Dimension reduction

Spatial and spatio-temporal data and processes of interest are naturally high dimensional, and when considered in a statistical context, it
is common for model specifications to have a large number of parameters and state variables. A popular approach to dealing with high-
dimensional parameter spaces in spatial and spatio-temporal models (e.g., Shumway and Stoffer, 2006, state-space models) is to project
the process onto a lower-dimensional manifold for further modeling. This technique, sometimes referred to as fixed-rank or low-rank
approximation (Wikle, 2010, Ch. 8) or fixed rank kriging in geostatistics (Cressie and Johannesson, 2008; Shi and Cressie, 2007), can be
readily achieved through the use of a transformation involving a set of basis functions that map the latent lower-dimensional dynamic pro-
cess to the scale at which the data are collected. It should be noted that in theory, dimension reduction procedures reveal a set of latent,
underlying processes. The data can then be fully utilized to learn about an underlying process that is governed by a parsimonious set of
parameters. Many forms of basis functions are possible (e.g., wavelets, Fourier, splines, and empirical orthogonal functions (EOFs)), and
their utility varies depending on the goals of the study.

The predictor variables (e.g., SWE on a given date at several snowcourses) used in operational water supply forecasting are typically
correlated. A satisfactory and statistically rigorous manner to deal with these inter-correlations is the use of principal component analysis
(Garen, 1992). In the spatio-temporal literature, principal components are commonly used for such dimension reduction and are referred
to as EOFs (Bjornsson and Venegas, 1997). The two most common ways to obtain these basis functions are to decompose the space-time
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covariance matrix spectrally (eigen decomposition) (Golub and van Loan, 1996) or to use the singular value decomposition (SVD) (Golub
and Reinsch, 1970) on a matrix of the data directly. In this article, we take the latter approach.

On the basis of the SNOTEL measurements, we obtain our SWE data for site s in matrix form, say Y7xasr = [Ys1, Y52, -+ ysT],, where
¥s¢ is of dimension 365 x 1 and represents SWE measurements at site s in year ¢ for all 365 days in a water-year, M = 365 days and T is
determined by prior water-years. For example, for 2008 water-year, we only use data from 1979 through 2007 (29 years), for 2009 water-
year, we use data from 1979 through 2008 (30 years), and so. So, T = 29 for 2008 water-year, 30 for 2009 water-year, and so on. The
sample average of SWE at site s for the past 7" years for day d, y_g is % Zthl Vsta Where the scalar yg, 4 represents the observed SWE
at site s in year ¢ for day d. The obtained SWE sample average, y 4, is then repeated at each site s for day d in all the T water-years to
form a matrix y that has the same dimension as Y (7" x M) with each row made up of the average SWE observed for each day at site s for
T water-years. Thus, yrxy = [V..1,¥.2, Y. d»--- ¥..365], Where § 4 is of dimension 7" x 1 and contains T repetitions of the obtained
SWE average, y 4, for day d.

Applying SVD to our SNOTEL data, we decompose the SWE data after removing the day-of-year sample mean for site s independently as

’

Y -y = UDV ~ UDV 1)

The approximation in Equation (1) is the mechanism for reducing dimensionality in the parameter space. The UDvV representation on the
right hand side of Equation (1) is a truncation of the UDV decomposition based on the first ¢ important signals (EOFs). It should be noted
here that ¢ is much smaller than M. The matrix of orthonormal vectors V (first ¢ columns of V) is of dimension M x q and contains the
important signals (EOFs). The matrix of left singular vectors, U (first ¢ columns of fJ), has dimension 7" x ¢ and contains the latent times
series. The singular values are contained in D, a diagonal matrix of dimension ¢ x g with the eigenvalues on the diagonal that is obtained
from the first ¢ eigenvalues (on the diagonal) of D.

Because U contains the set of time series corresponding to each signal in V for site s,
4
U = [us1, 052, .., Ug7]

where each ug; is of dimension g X 1, we can obtain approximations of the SWE for a particular year ¢, at site s, ys; of dimension M x 1 by
adding the day-of-year sample mean to the product of V, D, and the time series corresponding to that selected year as

Vst ~¥.. + VDug; (2)

where y .. (also of dimension M X 1) consists of the averages of SWE measured for each day in the water-year at site s for the past 7' years.
Thatis,y.. = [V..1, V.2 s Voud s s )7..M]/- There may be an underlying physical process that may operate on a lower-dimensional manifold.
If we can parse the model into a data component that accounts for additional noise that cannot be explained and a process component
represented by an underlying latent dynamic process, then we have defined a hierarchical model. For more details on this basic approach and
its strengths, see Wikle and Hooten (2010). Thus, this general equation (2) provides motivation for a hierarchical statistical model.

2.3. Nested time-series models

In a more general sense, by considering the temporal dependence of SWE among the SNOTEL sites, we can specify a model for all of
the SWE data by partitioning the temporal structure into a large and a small temporal resolution. The specifications of the large and small
temporal resolutions are carried out using vector autoregressive and conditional autoregressive (CAR) models, respectively. Thus, a nested
time-series model with a spatio-temporal structure results.

2.3.1.  The Bayesian hierarchical statistical model

A general spatio-temporal statistical model was introduced in Odei et al. (2009). In this article, we focus on a simplified version of the
general spatio-temporal statistical model that treats the SNOTEL sites independently. Using a Bayesian approach, we propose a hierarchical
statistical model for SWE. Letting the dynamics of SWE for any site s be represented by a dimensionally reduced vector autoregression, for
prediction (forecasting), we model yz; as follows:

Vst = ¥s. + VDAsrug ;1 + €51 (3)

with eg; ~ N(0,Xy), ¢t = 1,2,..., T, and where ;. (of dimension M x 1) consists of the averages of SWE measured for each day in the
water-year at site s for the past 7' years. Thus, we have ¥s. = [Vs.1, V5.2s os Vg.ds -o» )7sAM]/- The covariance structure, Xy, handles the
small-scale temporal (daily) SWE correlation, which allows for latent autocorrelation in the days of the water-year. The latent time series
for site s in the tth year, ug;, in Equation (2) is postulated as the product of a propagation matrix, As; and ug;—1, the latent time series in
year t — 1 for site s. The propagation matrix Ay, of dimension g x ¢ handles the inter-annual scale temporal SWE correlation. This matrix
could be specified in various ways depending on the desired amount of generality in the dynamics; it could also be linked to temporally
varying covariates such as Pacific Decadal Oscillation and El Nifio/Southern Oscillation. Here, we treat ys; as a joint multivariate normal
distribution, which would be discussed further in Section 2.3.2.
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The remaining parameters in our hierarchical model are defined as follows:

Ase = diag(as)

ogr ~ N (a,agl)
o~ N (0.021)

Ty =07 (I—pW)~!

The CAR model specification we used for W and p is standard in both the spatial and time-series statistical literature (Schabenberger and
Gotway, 2005). W itself in our case is fixed and thus does not have a prior. It merely provides a feeling for which time points are neighbors
of which other time points. W is an M x M temporal proximity matrix that allows for structure between neighboring days. The elements
of the matrix W, wyg (k,d = 1,2,..., M) are 1/2 if the absolute difference between the kth and dth days is one and it is O otherwise.
Furthermore, recent literature in Markov random field modeling suggests that small p parameters are not very useful in describing dependence
structures. Thus, the recommendation has been to use either a very strong prior on p that puts it close to 1 or simply remove it altogether
(Banerjee et al., 2004). The latter choice yields an intrinsic CAR (ICAR) model that is technically improper (in the probability sense) because
it does not integrate to one. However, we alleviate this problem by informing p to be less than one but very large (Banerjee et al., 2004).
Thus, p is estimated by sampling from a truncated normal distribution with mean and standard deviation of 0.99 and 0.01, respectively, on
the interval [—1, 1].

The variance component O')% was assumed to have an inverse gamma distribution ayz ~ 1G(v1,vp) with initial values of the scale (v1)
and shape (v2) parameters as 3 and 0.05, respectively. Here, the autoregression coefficients &, can be considered mixed effects that depend
on the global coefficients, a. In order to make our priors on the o5y and o parameters vague, we specified the initial values of 03 and 002 as
10 and 100, respectively. With these types of models, variances are notoriously sensitive to prior specifications (Gelman, 2006). Thus, how
well the model behaves would depend on good choices of initial values for the variances. In this article, we chose values that were relatively
diffused (spread out) and conservative for what we thought the variances might likely be. Further detailed descriptions and applications of
how a hierarchical model works can be found in Davis and Seaman (2002), Suess et al. (2002), and Wikle et al. (2001).

2.3.2.  Implementation

As part of our Bayesian hierarchical statistical modeling, given the SWE measurements for any site s, ys;, we obtain the posterior distribution
as proportional to the product of the likelihood of the data given the latent process models and parameter models as

[tesehe 0 pltzse}] o ﬁ[zs,ms,,a&]x[«ma] <[] x [0] x [0 @

t=1

where zgs; = ygr — ¥s.. The bracket notation [ . ] denotes the probability distribution of the argument contained within the brackets. We also
obtain the full conditional distributions of ey, e, ayz, which are straightforward to sample from, and they depend on the centered response
variable zg;. The full conditional distribution for both eg; and e is multivariate normal and that of 0y2 is inverse gamma (Appendix B).

Analytically, the posterior obtained in Equation (4) is not tractable. Thus, with the estimate of the parameter p, we then implemented
the model using a hybrid Metropolis—Hastings and Gibbs Markov Chain Monte Carlo (MCMC) sampling algorithm (Banerjee et al., 2004;
Carlin and Lewis, 2009) using the R software (R Core Team, 2012). The R packages used as part of the model implementation include
MCMCpack (Martin et al., 2011), mvtnorm (Genz and Bretz, 2009; Genz et al., 2011), msm (Jackson, 2011), lattice (Sarkar, 2008), Mass
(Venables and Ripley, 2002), and spdep (Pebesma and Bivand, 2005; Bivand et al., 2008).

The MCMC algorithm was run for 5000 iterations with burn-in periods of 1250 iterations. Convergence, which was assessed visually,
occurred rapidly and the posterior distribution appeared well characterized. Summaries of the post-convergence MCMC samples provide
posterior inference for model parameters. The resulting MCMC samples were used to calculate summary statistics for all the latent processes
and model parameters (&, &ts¢, Xy). Many statistical methods (e.g., simple and multiple linear regression models, and logistic regression
models) provide confidence intervals and can (in cross-validation mode) provide prediction intervals. The advantage of the simulation
approach is that it provides estimates of the entire posterior distribution that permits us to obtain interval estimates as well. For example,
the 2.5th and the 97.5th quantiles of the (post-convergence) sampled values for a model parameter provide a 95% interval estimate of the
parameter. In the Bayesian framework, such an interval is termed credible interval or credible set to differentiate it from the confidence
interval in frequentist statistics (Schabenberger and Gotway, 2005). Unlike confidence intervals, credible intervals have a direct probabilistic
interpretation: a 95% credible interval defines an interval having a 0.95 posterior probability of containing the parameter of interest.

For the purpose of forecasting, we consider measurements of SWE for a water-year at site s, yg; (for ¢ € {2,3,..., T}) partitioned into
observed (obs.) and unobserved (unobs.) SWE measurements. Thus, we can think of both as a joint multivariate normal random vector

_|: Yst,obs. ]
Yst =
Yst,unobs.
NN([_yst—l.,obs. :| |: Zobs.,obs. 2:obs.,unobs. ])
Yst—1.,unobs. 2:urmbs.,obs. Z‘unobs.,unobs.
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where for forecasting after day d, ¥5;—1_,0ps. is the average SWE over ¢ — 1 previous years corresponding to days 1 to d and Ys; 1. ynobs.
is the average SWE over ¢ — 1 previous years corresponding to days d + 1 to M = 365. Then, in the MCMC algorithm, we can use
composition sampling (a technique for computing an integral) (Gelman et al., 2003; Carlin and Lewis, 2009) to obtain samples from the
posterior predictive distribution for the unobserved SWE as

Ystunobs.|Vst,obs. ~ N (M*y Z*)

where we use multivariate normal results to obtain the conditional mean and variance

- -1 -
IL* = Yst—1.,unobs. + zunobs.,obs.zobs_,gbs_ (YSt,obs. - YSt—l.,obs.)

and

* -1
DIRNE 2;unobs.,unobx - 2;unobs.,obs.Egbs.,um;bs_Eobs.,unobs.

2.3.3.  Model validation

For the purpose of validation, the model was implemented using different forecast initiation dates/days in a water-year and selected SNOTEL
sites with at least 34 years of data for our posterior predictions. The initiation dates/days were chosen such that they were 30 days apart with
the first initiation day being 8 January (when we have a reasonable amount of SWE data for meaningful predictions). Posterior predictive
credible intervals were also obtained for the “unobserved” hold-out SWE data. Here, the hold-out SWE data are the data obtained by splitting
the original SWE data into two groups, the training and the testing sets. The choice of the train/test split was carried out using the day d after
which the forecasting would be made. Thus, SWE measurements from day 1 to day d (training set) in the current water-year are considered
observed, and SWE measurements from day d + 1 to day M = 365 (testing set) in the current water-year are considered as unobserved
when the model is implemented. The SVD is calculated on ¢ — 1 previous years of SWE data prior to the forecast in the current water-year.

The probability skill of the SWE forecasts is assessed by means of the ranked probability skill score (RPSS; Wilks (1995)). The RPSS
is used to evaluate a model’s skill in capturing categorical probabilities relative to climatology. The SWE values were divided into three
categories: values below the 25th percentile, above the 75th percentile, and the rest between the 25th and 75th percentiles. The RPSS ranges
from —oo to 1.0; the highest value indicating a perfect forecast and a negative value implying that the forecast has lesser accuracy as
compared with that of climatology.

3. RESULTS

Our Bayesian hierarchical model presented in Section 2.3 was fitted to the SWE data described in Section 2.1. SVD was performed on the
data matrix in Equation (1), the scaled SWE data (Y —Y¥), and truncated to obtain the important seasonal signals and inter-annual time series.
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Figure 3. Boxplots for proportion of snow water equivalent that fell outside the 50% (a and c) and 95% (b and d) credible intervals of the posterior predictive

distribution in forecasting as of 8 January in the 2008 water-year (a and b) and 2009 water-year (c and d) with important signals, ¢ = 2, 4, and 6 over the
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Table 1. Showing the proportion of variance explained by the orthogonal components
of each decomposition (signal)

Signal (g)
1 2 3 4 5 6
Proportion of variance (PV) (%) 80.68 9.89 3.01 1.92 0.95 0.67
Cumulative PV (%) 80.68 90.57 9358 95,50 96.45 97.12
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Figure 4. Plot of the orthonormal vectors, v;g (t = 1,2,...,365; g = 1,2, 3, 4) containing the first four annual dominant signals. These plots may vary
by year to be forecasted and also depend on the data matrix set up in Equation (1)
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time series for the Tony Grove snow telemetry site based on the four important signals (g) obtained from the snow water equivalent data reduction (1979-2008)
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important signals (g) obtained from the snow water equivalent data reduction (1979-2008). TG=Tony Grove, BLP=Ben Lomond Peak, HR=Horse Ridge,
LB=Little Bear, BL=Bug Lake, DBP=Dry Bread Pond, MC=Monte Cristo, FAR=Farmington, TD=Timpanogos Divide, and PS=Parley’s Summit
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Figure 7. Boxplots for the estimates of the model parameter, ¢¢, based on the four important signals (g = 1, 2, 3, 4) obtained from the snow water equivalent
data reduction in the 2008 water-year for the (a) Tony Grove and (b) Little Bear snow telemetry sites. The spread is given in the boxplots, in which the median,
lower and upper quartiles, and minimum and maximum values are given
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Figure 8. Observed snow water equivalents (SWEs) for 2008 water-year and posterior prediction as of 8 January 2008 (day 100; vertical brown dashed-

dotted line) for the Tony Grove snow telemetry site. The horizontal axis shows the day (in water-year), and the vertical axis shows the SWE (in inches) in each

plot. The previous data envelope (prev. data env., black dashed line) indicates the minimum and maximum SWEs for each day from the past 29 water-years.

The dark gray-shaded region (pred. CI: 50%) and light gray-shaded region (pred. CI: 95%) are estimates of the 50% and 95% credible intervals, respectively,

of the posterior predictive distribution. The solid salmon line (prev. data mean) shows the average amount of SWE based on the past water-years and the solid

orange line (current data) indicates the actual observed SWE for the current water year. The dotted black line (5th & 95th perc.) represents the 5th and 95th
percentile of the SWE measured for each day from the past 29 water-years
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To choose the value of g for our truncation, we selected three different values (2, 4, and 6) and then constructed boxplots for the proportion
of the actual SWE that fell outside the obtained 50% and 95% credible intervals for the posterior predictive distribution to forecast SWE
after 100 days (January 8) with ¢ = 2, 4, and 6 in the 2008 and 2009 water-years based on the 10 selected SNOTEL sites in this article.
Overall, from Figure 3, with the exception of a few outliers, the boxplots for ¢ = 4 showed a much shorter range of the proportion of the
actual SWE that fell outside the obtained 50% and 95% credible intervals in both water-years. The initial SVD of the data matrix (Y —y)
for T = 29 and for T = 30 years showed that four of the signals contributed about 95.5% of the variability in the data (Table 1) and thus,
provided a reasonable reduction in the dimension of the parameter set to facilitate estimation while retaining the dominant system dynamics.
On the basis of these results, ¢ = 4 was used for all of the following years.

A plot of the first four dominant seasonal signals can be seen in Figure 4. The first dominant signal (solid black line, signal 1), which
accounts for approximately 81% of the variability in the data, reveals the overall average SWE measurements with the maximum around
day 230 (18 May) of the water-year that begins on 1 October in the previous calendar year. The second most important signal (dashed line,
signal 2), which explains an additional 10% of the variability in the data, gives an indication of the discrepancy between the middle and the
end of the water year.

Figure 5 shows a latent time-series plot (say ¢,) from U in equation (1) for the Tony Grove SNOTEL site (s = 1). In this figure, we
consider the first four latent time series, which correspond to the expressions of the first four dominant signals through the years 1979—
2008. We note here that for this site, ¢gt is a 1 x T matrix that consists of the gth row entries of [ug1, us2, g3, ..., ug7]. In the first latent
time-series (g = 1) plot, we observe that the smallest value of almost zero occurs in years numbered 3 (1981), 9 (1987), and 14 (1992),
and the largest value occurs in year numbered 19 (1997). The years with the smallest values indicate a very low amount of snow, and the
year with the largest value had a large amount of snow. In case of the second latent time series (g = 2), a lower value indicates a smaller
amount of snow at the beginning of the snow year (from 1 October to 30 November), and a higher value indicates a large amount of snow.
This time series shows a discrepancy between the middle (from 1 February to 30 April) and late portion (between 1 May and 30 June) of
the year. Combining these first two time series, we obtain a general shape of the overall amount of snow for a particular snow season with
approximately 90% of the dynamics represented.

In terms of the estimation of model parameters (e, ats¢, Xy) in Section 2.3.1 based on the posterior predictive distributions obtained for
the parameters of the propagation matrix o, es¢, and Uy2, using composition sampling, we found that although some of the posterior a5 were
quite different from zero especially in the cases of the first two important signals (g = 1, 2), the global autoregression coefficients a were
not (Figures 6 and 7). This is likely due to the limited amount of inter-annual data (T = 29), or it could also be that there is no temporal
autocorrelation at these time scales. The covariance matrix for the short time scale had a very large posterior range parameter o2, indicating
a high degree of smoothness in the daily SWE measurements.

The posterior predictive credible intervals always performed well in terms of capturing the “unobserved” hold-out data as part of our
model validation. We obtained posterior predictions for four different initiation dates/days (8 January, 7 February, 9 March, and 8 April).
The posterior predictions in the calendar days showed poor results for forecasting. This is because we have little or no snow for that period of
time in the water-year (especially from 1 October to 30 November). Figure 8 shows an enlarged example of a plot for the posterior prediction
of SWE as a posterior predictive mean with 50% and 95% credible intervals. Here we considered the Tony Grove SNOTEL site using the 8
January (day 100) initiation date for our posterior predictions.

The graphs of the posterior predictions for SWE based on the four different initiation dates in five consecutive water-years (2008, 2009,
2010, 2011, and 2012) with 50% and 95% credible intervals for the Tony Grove and Little Bear SNOTEL sites are displayed in Figures 9
and 10. Table 2 contains a summary of the percentages of the actual SWE measurements that fall outside the 50% and 95% credible intervals
for the Tony Grove and Little Bear SNOTEL sites.

In Figure 9, we notice that in the 2011 water-year, for all the initiation dates chosen, the 95% credible interval for the posterior prediction
was not able to capture well a large proportion of the actual SWE. Specifically, from the end of March toward the beginning of July, we notice
that SWE measures higher than the maximum from the previous 32 water-years. Similar extreme observations were also recorded at the
Timpanogos Divide, Farmington, and Monte Cristo SNOTEL sites. This resulted in under-prediction because of our model being incapable
of predicting outside the previous data envelope, that is, the historic minimum and maximum SWEs. Overall, the 2011 water-year rather
seemed to be an unusual year for many of the 10 selected SNOTEL sites as a result of the record high measurements of SWE. In the 2012
water-year, for the initiation dates 7 February (day 130) and 8 March (day 160), the unseemly over-prediction is due to the high amount of
snow recorded in the prior months.

In Figure 10, we notice that our credible interval for the 8 January initiation date of the 2011 water-year captures only a small proportion
of the actual SWE. This noticeable over-prediction was as a result of an unexpectedly high amount of SWE measured toward the end of
December (above the expected average). Our obtained posterior predictions showed that the three other initiation dates in 2011 water-year
yielded useful forecasts for the rest of the season. The 8 January and 9 March initiation dates of the 2012 water-year also posed some
problems for our model, given the steep SWE increase in mid-January and the steep SWE decline shortly after 9 March. Overall, the 95%
credible intervals capture, on average, a large proportion of the actual SWE measurements in the other water-years (and initiation dates) for
this site.

The probabilistic forecast skills, expressed by RPSS using the 8 January posterior predictions, are presented in Figure 11. In the 2008
water-year, with the exception of the Farmington site, all the SNOTEL sites show a positive RPSS. In addition, for the 2009 and 2010 water-
years, all 10 sites show a positive RPSS and, thus, outscore the climatology forecast. For the 2011 water-year, all the SNOTEL sites show a
negative RPSS, an indication of lesser accuracy from our model compared with that of climatology forecast. This is in agreement with what
was found using the predictive credible interval.
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Figure 9. Observed snow water equivalents and posterior predictions for the Tony Grove snow telemetry site. Rows 1 (top) through 5 (bottom) show plots
for the 2008, 2009, 2010, 2011, and 2012 water-years, respectively. Columns 1 (left) through 4 (right) show posterior predictions based on the initiation dates
(8 January, 7 February, 9 March, and 8 April, respectively). See Figure 8 for additional details
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Figure 10. Observed snow water equivalents and posterior predictions for the Little Bear snow telemetry site. Rows 1 (top) through 5 (bottom) show plots
for the 2008, 2009, 2010, 2011, and 2012 water-years, respectively. Columns 1 (left) through 4 (right) show posterior predictions based on the initiation dates
(8 January, 7 February, 9 March, and 8 April, respectively). See Figure 8 for additional details
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Figure 11. Ranked probability skill score for the 10 selected snow telemetry sites for the (a) 2008, (b) 2009, (c) 2010, and (d) 2011 water-years with the 8
January initiation date used in the posterior predictive forecasting. TG=Tony Grove, BLP=Ben Lomond Peak, HR=Horse Ridge, LB=Little Bear, BL=Bug
Lake, DBP=Dry Bread Pond, MC=Monte Cristo, FAR=Farmington, TD=Timpanogos Divide, PS=Parley’s Summit

4. GENERAL ASSESSMENTS

We used our Bayesian hierarchical model to successfully incorporate the SNOTEL SWE data in a likelihood and create posterior predictive
distributions for the process of interest. Our model is comparable with other developed empirical statistical models, except that those were
restricted to making statistical inferences on distributions, while our model relies heavily on observational data. Specifically, the statistical
approach by itself does not explicitly incorporate knowledge about the atmospheric process but provides a heavily data-based method for
prediction. Using a fully-rigorous statistical model for the phenomenological behavior of SWE over space and time, we are able to properly
learn about the uncertainty in our predictions of SWE for the near-future.

A critical part of modeling efforts is evaluating model performance. A number of cross-validation approaches are available when it comes
to model evaluation. However, model fit within the prediction credible interval is assumed to be homogeneous for all traditional model-fit
metrics. A benefit of the Bayesian approach is that inference is made on the basis of the posterior distribution. For example, we considered
plots of the posterior prediction of SWE as a posterior predictive mean with 50% and 95% credible intervals (Figure 8). The results shown
in Table 2 indicate that the credible intervals for the posterior predictive of the non-spatial Bayesian hierarchical model proposed does well
by capturing larger proportions of the actual SWE measured. For example, in the case of the 95% credible interval, larger proportion means
80% or more of the SWE measured. In addition, we observed that the model performed weakly for the Tony Grove site for all four initiation
dates in 2011 and for the Little Bear site for the 8 January initiation date in 2011 with respect to the 95% credible interval. This was mainly
due to discrepancies in the SWE measurements compared with the previous years; large amounts of snow were recorded in the month of
December of the 2011 water-year for both sites. There were readily visible under-estimation, over-estimation, and data running out of the
past min—max envelopes, especially in the 2011 water-year.

S. CONCLUSIONS

The statistical model presented in this article provides a framework for independently estimating the temporal dynamics of SWE for various
SNOTEL sites. Using a parsimonious set of important signals, we can reduce the dimension of the SWE process and obtain meaningful
posterior forecasts for the remainder of the water-year, beginning on various starting dates in a year. Except for the 2011 water-year, we
noticed that our model predictive skills were positive. This is an indication that our model has some higher accuracy than that of climatology
forecast. Our approach differs considerably from some of the predictive SWE models, in that, it focuses on phenomenological modeling
(rather than mechanistic) and it produces within-season forecasts of SWE. In addition, our model is purely data based and does not rely on
extensive mechanistic SWE models and their associated forcings and parameterizations.

Better knowledge about the uncertainty associated with snow water prediction could be put into a GIS framework to accumulate runoff
volumes and provide information to farmers and land managers about future irrigation availability. Similarly, likely future water level ranges
for reservoirs and lakes could be obtained in a similar fashion and provide information about fishery resources and recreational opportunities.
Locally and regionally, dry conditions contribute to wildfire likelihood; thus, SWE predictions from our model could be aggregated at
relevant spatial scales to provide an improved understanding of future soil moisture conditions at various time points in the late spring.
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We noted that the statistical framework we presented could be modified to accommodate missing and misaligned data sources. Our model
is currently not able to handle locations where historical SWE measurements contain data gaps (missing or unobserved values). However,
we would be able to do meaningful forecasting if an appropriate imputation technique is first applied to fill these data gaps. This could be as
simple as a moving average if only a few observations are missing or as complex as co-kriging if SWE measurements and other observations
from nearby locations are available. New SWE stations are being added regularly and although this increases our spatial resolution, it does
not help us learn about historical SWE patterns. These kinds of issues will not decrease our learning, but they may enhance it in other aspects
(e.g., spatial information instead of temporal information) that we have not yet considered.

Our model was developed to best predict the remainder of a water-year given early information. It is able to properly account for the
uncertainty in prediction so that it could be used to provide managers and scientists with an idea of how predictable a certain year might be.
However, if one were interested in predicting a different quantity (like peak SWE) then a different model may need to be constructed and
evaluated.

Ichii et al. (2007) discussed snow models in terrestrial biosphere models, and they pointed out that snow dynamics, snow depth, snow
water storage, and spring run off are factors that directly affect intermountain ecosystem and economic function. Knapp (1998) discussed
wildfire prevalence, modeling, and prevention. In all of these scenarios, predicted SWE might be another useful component to further enhance
these models. Moreover, predicted SWE might be useful for reservoir level forecasting for summer water availability, irrigation potential for
agriculture, and avalanche research.

Future work might include focusing on relationships between the SWE and other response variables of interest (water supply, fire fre-
quency, etc.). This way, we can forecast meaningful seasonal runoffs that would be used to make sound water management decisions. The
relationship between SWE and fire frequency could assist land managers with the assessment of post-fire water quality, reforestation, and
animal habitat issues. For the problem of historical SWE measurements with data gaps, one could also borrow the strengths of physical
process models by combining model results using a method similar to Bayesian model averaging (Hoeting et al., 1999). Utilizing the com-
ponents together, however, would be both advantageous and scientifically thorough and should provide better forecasts and understanding
of snowpack dynamics. We will also consider the spatial dependence of all 90 active SNOTEL sites in Utah, and we will include other spa-
tial covariates (e.g., latitude, longitude, temperature, precipitation, and elevation) in our modeling efforts. Finally, we plan to implement the
general statistical model that was introduced in Odei et al. (2009).
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APPENDIX A. SUMMARY OF COMPUTER R CODE

The provided R code enables readers to apply the proposed methods to their own data and to reproduce all figures in this paper, a key
requirement in terms of reproducible research (Baggerly and Berry, 2011). Datasets for this paper can be obtained from the freely accessible
web archives of National Water and Climate Center (http://www.wcc.nrcs.usda.gov/snow/).

For each SNOTEL site, the “read.Snotel.R” function is used to clean up the historical and current water-year daily SWE measurements by
reading the downloaded SNOTEL data in text format 1 year at a time and output vectors of values with NAs in place of blanks and “- - -”. The
“utah.snotel.current.data.R” and “utah.snotel.historical.data.R” functions use the “read.Snotel.R” function to put the already downloaded
historical and current text files of SWE measurements for the 90 active Utah SNOTEL sites in a matrix form.

The “swe.svd.mcmc.R" function performs the SVD on the data matrix discussed in Equation (1), computes, and saves the sam-
pling estimates of the model parameters o, ot5¢, and Xy in Section 2.3.1 for a specified number of simulations. This code requires
the R packages: MCMCpack (Martin er al, 2011), mvtnorm (Genz and Bretz, 2009; Genz er al., 2011), msm (Jackson, 2011),
lattice (Sarkar, 2008), Mass (Venables and Ripley, 2002), and spdep (Pebesma and Bivand, 2005; Bivand et al., 2008). It also pro-
duces samples of the posterior distributions for the unobserved SWE after a chosen day d in our forecasting of SWE. The function
“plot.swe.post.R” uses output from the “swe.svd.mcmc.R” to enable us to reproduce Figures 8—10. To reproduce Figures 1-7 and
11, as well as Tables 1 and 2, we used some of the commands in the “Codes-Used.R” file. The function “prop.pred.R” is used to
generate Table 2. The “invgammastrt.R” function computes the initial values of the shape and scale parameters of the inverse gamma
distribution for oyz. The function “krig.swe.R” augments the historical SWE data for SNOTEL sites with missing values using a
kriging approach. The text file “xcoord.txt” contains latitude and longitude coordinates of the 90 active SNOTEL sites in this arti-
cle. All R code and data have been combined in a single zip archive (odei-et-al-R-Code-Data.zip) and can be downloaded from
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http://www.math.usu.edu/~symanzik/papers/odei-et-al-R-Code-Data.zip. Our results were produced with R
version 2.15.1.

APPENDIX B. DERIVATION OF THE FULL-CONDITIONAL DISTRIBUTIONS

Considering the definition of Ay in Section 2.3.1, we can rewrite Equation (3) as
Zst = Qs,t—last + &5t (B1)

where zs; = yst —¥s. and Qs,;—1 = VDdiag(us,;—1).
The joint posterior distribution of the parameters in the full model, given the data, is given by

[tese. .02 plizse}] o ﬁ[zs,|as,,ay2]x[ast|a] x [a) x [0] % [e] (B2)

t=1

To use the computationally efficient Gibbs sampler, we need to analytically specify the full-conditional distribution for each parameter in
the model. The derivations of these full-conditionals are given here.

From the joint posterior distribution in the preceding text, the full-conditional distribution for e, the autoregression coefficients related
to the global coefficients, a, is

st ) o [zt s 0F |  [tse ] (B3)
The prior distribution of a5 is N (a, J‘%I), and the likelihood is the process model:

Zst |‘¥st» Uyz ~ N(Qs,t—l“sz 2;y)

Further simplification yields

1 ’
[ase]|.] o exp %—5 (zst — Qs,i—10t51) Ey_l (25t — Qs,t—lasz)}
1 / -1
X exp { —3 (ogr — ) (0'31) (oesr — oc)}

1 ’ _ 1 ’ ’ _
X exp % —3 (—2zst23y le,t_last)} X exp {_5 (“sth,t—lzy 1Qs,t—1°‘5t>}

(B4)
1 ’ 2 -1 1 ’ 2 -1
X expy =3 —2a (aal) e | X exp =5 | &y ((7“ ) ot
1 ’ _ ’ -1
X exp {_5 (_2 (Zstzylos,t—l +a (Gozcl) )“st)}
1 ’ 4 — _1
X exp { —3 (ast (Qs’t_lzy "Quro1 + (goztl) )ocst)}
Then the full conditional distribution for eg; is
asr ~ N(A71b, A7) (B5)
’ _ —1 ’ _ ’ —1 !
where A = Qs,t—lzy le,t_1 + (U‘%I) andb = (ZSIEy IQS,;—l + (GO%I) ) .
The full conditional distributions for e and ay2 can be found in a similar way. Consider o:
T
laf ] oc | [ leesele] | x [a] (B6)

t=1
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and the prior distribution of e is N (0, (7021). Simplifying Equation (B6) yields

T

1 / -1 1 , -1
[e].] tljlexp(—2 (asr — ) (O'O%I) (ast—a)) X exp{—i(a—O) (031) (a—O)}
1 r ’ 2 -1 1 7 2 —1
x exp —Et_zl(ast—(x) (aul) (ogr — o) p X exp —3 o (001) o
(B7)
gy (o) iy iy 2! Ly (o2n) !
xexpy =5 t_Zl —2og, (oa) o X expy —5 t_Zl o (aa) o x exp)—5 (@ (00 ) o
1 L 4 2 -1 1 ’ r 2 -1 2 -1
o expy 5 -2 Z_Zlast (aal) o xexpy =5 |« t_Zl (0a1> + (GOI) o
Then the full conditional distribution for « is
o ~ N(A*_lb*,A*_l) (BS)

’

-1 -1 / -1
where Ay = (Zthl (o21) ) + (021)" and by = (ZzT=1 ay, (021) ) .
The full-conditional distribution in the case of a)? is
T
[0y2|.] % 1_[ [zs,|ast,0y2] X [ayz] (B9)
t=1
and the prior distribution of O'y2 is 1G(vy, v2). Here, it must be noted that

1 —(v2+1)
2 2
Oy | V1,V = ——— | 0, ex
[ yl ! 2] vi’zl"(vz) ( y) P

1 } (B10)

2
l)]Oy

Letting Rys = zss — Qg,r—105¢ and further simplifying equation (B9) yields

T
1 —(2+1) 1 1 ,
2 2 -1
[G |]o< (0 ) exp{— }Xexp _*Z<th Ry;
y 7 \"y 2 sty
|Zy]2 V10y 2ia )
1 2\~ (24D 1 I (o (o !
=T T (Oy) CXPNTIGE( X P T D Ry (Uy I—pW) ) Ry (B11)
‘ayz (I—,oW)_l‘ y 1=1
—("L v 41) 11 1&
2 2
¢’ (ay) X exp —g " + 3 ; (Rst (I—pW) Rst)
Then the full conditional distribution for (Ty2 is
of ~1G(r*.q*) (B12)

where r* = % + % Zthl (R;t (I—pW)Ry; ) and g* = % + ;.
‘We have derived analytic full-conditional distributions for all parameters in the model, and the joint posterior distribution of the parameters
in the model can be found using hybrid Metropolis—Hastings and Gibbs MCMC sampling algorithm (?BCGs2003; Carlin and Lewis, 2009).
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