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Introduction
For more than a century, paleoecologists, paleolimnologists, and 
paleoceanographers have tried to infer environmental changes 
from temporal changes in the composition of ecological commu-
nities preserved in sediments (Edwards et al., 2017). Early work 
focused on qualitative assessments of the environmental affinities 
of different species or groups of species (Hustedt, 1939 [1937]; 
Iversen, 1944; Nygaard, 1956; Phleger, 1953; Von Post, 1918; 
Wright et al., 1963). By the 1970s, qualitative approaches began 
to give way to quantitative reconstructions. This shift was led by 
formative work of John Imbrie and colleagues. In a benchmark 
paper, Imbrie and Kipp (1971) introduced a framework for quan-
titative reconstruction of past environments from compositional 
data using transfer functions (Imbrie et  al., 1973; Imbrie and 
Kipp, 1971). Transfer functions aim to formally and quantita-
tively relate changes in the composition of an ecological commu-
nity to changes in a paleoenvironmental covariate.

Imbrie’s work centered on the marine realm, using foramin-
ifera to reconstruct past sea surface temperatures. However, simi-
lar techniques were simultaneously being developed for 
paleoclimatological inference from terrestrial data (e.g. pollen) 
(Imbrie and Webb, 1981; Webb and Bryson, 1972) and were soon 
applied to other kinds of paleoecological data. Researchers have 
successfully used many different types of organisms to infer many 
different target variables. Some examples include reconstructing 

temperature and precipitation changes via changes in the sur-
rounding vegetation as recorded by pollen (Webb and Bryson, 
1972), inferring bog water-table depth (WTD) histories using 
changes in testate amoebae assemblages (Warner and Charman, 
1994; Woodland et al., 1998), and generating records of lake pH 
and salinity based on the types of diatoms living in the lakes and 
preserved in sediment cores (Battarbee et al., 2002).

In particular, diatom-based pH reconstructions were a key tes-
tbed for development of quantitative methodologies. Researchers 
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applied many possible methodologies to the problem of how to 
best reconstruct the pH of lakes based on diatom assemblages pre-
served in sediments (Battarbee, 1984; Birks et al., 1990; Charles, 
1985; Davis et  al., 1985; Oehlert, 1988; Renberg et  al., 1985). 
This work led to application of diatom-based pH reconstructions 
in Europe and the United States as a key line of evidence in deter-
mining the effects of acid precipitation on lake systems. Ulti-
mately, these paleolimnological studies were a major factor in 
environmental policy changes, including the 1990 amendments to 
the Clean Air Act (Smol, 2009).

Applications of transfer functions have continued to the pres-
ent, including important work to understand potential pitfalls and 
improve inferences. Examples include understanding the effects 
of spatial autocorrelation (Telford and Birks, 2009), differential 
preservation (Mitchell et al., 2008), and considering appropriate 
ecological models (Juggins, 2013). Furthermore, there has been 
important work on cross-validation and uncertainty estimation 
(Payne et  al., 2012; Telford et  al., 2004; Trachsel and Telford, 
2016). Despite these advances and applications, there has been 
little fundamental rethinking of the underlying methodologies 
(Birks and Simpson, 2013): simple models like weighted averag-
ing (WA) are still widely used in paleoenvironmental reconstruc-
tions from paleoecological data.

A logical step toward innovation for proxies based on compo-
sitional data is to take advantage of state-of-the-art Bayesian sta-
tistical techniques. Bayesian methods have started to be applied to 
compositional data (Salonen et al., 2012; Toivonen et al., 2001), 
but they have not seen wide use in the community. Bayesian mod-
els allow for a more realistic representation of underlying eco-
logical responses to changes in the environment, inference on the 
underlying ecological processes, and a more formal and thorough 
treatment of all sources of uncertainty.

Uncertainties are a key part of any proxy reconstruction 
because they represent our confidence in the inferences being 
made. Paleoclimate records based on compositional data are 
important indicators of terrestrial climate over the Holocene 
(Marlon et  al., 2017; Shuman et  al., 2018). Thus, when these 
proxies are used in climatic synthesis and data assimilation efforts 
such as PAGES2k (Hydro2k, 2017), the Last Millennium Reanal-
ysis (Hakim et al., 2016), and the PaleoEcological Observatory 
Network (PalEON) (Marlon et al., 2017), meaningful estimation 
of uncertainties is necessary to combine and weigh the data com-
ing from the many different sources. It is therefore critical to 
question and improve inference and uncertainty estimation for 
proxies based on compositional data.

In this paper, we apply Bayesian statistical tools to the problem 
of reconstructing an environmental covariate from compositional 
data. We compare Bayesian methods with a range of existing 
methods in cross-validation and in reconstruction. The framework 
we use is general and potentially applicable to any proxy based on 
compositional data, but we focus on testate amoeba–based recon-
structions of WTD in ombrotrophic peat bogs.

Testate amoebae are single-celled organisms that live on the 
surface of bogs and in lakes, wetlands, and so on. The community 
composition of testate amoebae living on the surface of ombrotro-
phic bogs is sensitive to changes in the surface wetness of the bog. 
Our operational measure of surface wetness is WTD. WTD is 
measured relative to the peat surface, with high values corre-
sponding to deep water tables (dry surface conditions), low values 
indicating wetter surface conditions, and negative values indicat-
ing standing water (Booth, 2008).

Testate amoebae are a prime target for methodological com-
parison because we have a large training dataset of surface sam-
ples from bogs across North America and a new 7500-year long 
testate amoebae record from Caribou Bog in Maine. First, we 
introduce those datasets. Then, we review existing methods for 
developing transfer functions and introduce our new Bayesian 

model. Next, we apply these models to the training dataset and 
perform a cross-validation experiment to test their predictive 
skill. Finally, we use the models to reconstruct WTD and compare 
the resulting reconstructions. We discuss specific implications of 
our results for testate amoebae–based WTD reconstructions and 
general implications for proxies based on compositional data.

Data and methods
Modern surface sample training dataset
Paleoenvironmental reconstruction from compositional data 
requires a modern training dataset, in which both the community 
assemblage and the environmental covariate are measured for a 
number of sites distributed in space. The training dataset should 
sample the full range of covariate values expected in reconstruc-
tion. Developing a training dataset entails measuring the depth to 
the water table (the environmental covariate) at many sites on 
many peatlands, collecting surface samples from the locations of 
the WTD measurements, and, back in the lab, processing the sur-
face sample and counting the testate amoeba assemblage under a 
microscope.

We used a large modern training dataset of 978 samples from 
68 sites in North America (Figure 1). This dataset contains sam-
ples from Booth (2002), Booth (2008), Booth and Zygmunt 
(2005), and Markel et al. (2010). For the 378 samples from the 
Booth (2008) dataset, the WTDs were measured using the method 
of PVC tape discoloration (Booth et  al., 2005). This technique 
produces a measurement of average WTD over a season, which 
can lead to a WTD estimate more directly analogous to the tem-
poral integration of the testate amoeba surface samples, which are 
collected instantaneously but represent time-averaged death 
assemblages (Booth, 2008). The WTDs for samples from datasets 
other than Booth (2008) were measured instantaneously at the 
time of collection. For 27 samples, the true WTD was not mea-
sured because it was greater than 50 cm below the surface of the 
bog. These samples were not used because the transfer function 
methods are not statistically robust to this type of censoring, and 
in particular, the censored observations affect the convergence of 
the Bayesian statistical models as formulated in this paper. We 
note that the elimination of these dry samples may have resulted 
in a loss of ecological information for some taxa, such as Hyalos-
phenia subflava. Our training dataset, then, consists of 951 sam-
ples. In practice, this looks like a vector, Y , of 951 measured 
WTDs and a matrix, X , where each of the 951 lines corresponds 
to the observed testate amoeba assemblage from each site. Each 
column of the matrix X  corresponds to a different testate amoe-
bae species.

Site description and lab methods: Reconstruction 
dataset
Caribou Bog (44.985°N, 68.814°W; elevation: 39 m) is a raised, 
ombrotrophic peat bog system located in south-central Maine, 
USA. The bog system (Caribou Bog, Mud Pond, Pushaw Stream 
wetlands) lies in a series of north-northwest to south-southeast 
trending features and covers approximately 2400 ha.

The post-glacial development of the peatland has been chron-
icled by Gajewski (1987) and Hu and Davis (1995). Briefly, after 
the Laurentide ice sheet receded, the isostatically depressed site 
was flooded by ocean water. Approximately 14,800 years before 
present, as the land surface emerged from the sea, an unproduc-
tive glacial lake formed. Eventually, organic sediment deposition 
began, with the oldest organic sediments found by Hu and Davis 
(1995) dating to approximately 12,300 cal. yr BP. A peatland 
began to form via terrestrialization around 11,000 yr BP. This 
began first as a limnic sedge fen before transitioning to an ombro-
trophic wooded fen (8300–9000 cal. yr BP), and finally a 
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Sphagnum-dominated peatland (~6400 cal. yr BP) (Hu and Davis, 
1995). The site has remained a Sphagnum-dominated ombrotro-
phic peatland to the present. The dates of the transitions varied in 
different parts of the bog (Hu and Davis, 1995), and our core sug-
gests that the site was Sphagnum-dominated as far back as 7500 
cal. yr BP, but the above provides a general trajectory.

The modern vegetation at the site is an open Sphagnum–Eri-
caceae peatland with scattered, isolated Picea. There is a narrow 
Alnus swamp around the edge of the bog (Gajewski, 1987). The 
surrounding forests contain secondary Betula papyrifera, Abies, 
and Populus. Prior to European settlement, Tsuga canadensis and 
Pinus were common in the area (Gajewski, 1987).

Sediment cores were collected in the summer of 2014. We 
used a 4-in diameter modified piston corer (Wright et al., 1984) to 
collect the top 251 cm in three drives. We then used a Russian 
(Jowsey) peat corer to collect 96 cm further in two drives for a 
total of 347 cm. In the lab, the cores were cut into contiguous 1 
cm sections and subsampled for testate amoebae and radiocarbon 
analyses.

We obtained a 1-cm3 subsample from each 1 cm section of the 
core for analysis of testate amoebae and pollen and prepared them 
using standard techniques based on Booth (2010). Samples were 
boiled in water, sieved to retain the fraction between 15 and 250 
μm, dyed with Safranin O, cleaned via two rounds of centrifuga-
tion, and stored in glycerol. Testate amoebae were identified and 
counted at 400× optical magnification to a count of at least 100 
individuals per sample.

We obtained 24 radiocarbon dates on Sphagnum stems to 
develop a chronology for the core (Table S1, available online). 
Using these dates and the year of collection, we developed an 
age–depth model with Bchron (Parnell, 2014) (Figure S1, avail-
able online). The basal age is approximately 7500 cal. yr BP. The 
age model and core lithology show no signs of depositional hia-
tuses. Sedimentation times range from 5 to 30 yr/cm with a 
median of 18 yr/cm. These are consistent with the regional priors 
established by Goring et al. (2012).

Models

Basic problem.  There are a variety of methods to estimate envi-
ronmental covariates from compositional data. Some of these 
tools have ties to formal statistics; others have developed through 
domain experts’ intuition (Birks, 1998; Juggins and Birks, 2012). 
Regardless of the complexity or connection to formal statistics, 
the most widely used methods are underlain by similar general 
assumptions (Imbrie and Webb, 1981; Juggins, 2013).

The basic idea, following Imbrie and Webb (1981), is that the 
ecological community assemblage Y  is related to the value of 
some environmental covariate X  via an ecological response 
function Re , such that

Y R Xe= ( )

In general, we are interested in the inverse prediction problem 
where we know the ecological assemblage and want to predict the 
covariate

X Y= ( )φ

where φ( )Y  is a so-called transfer function. Having set up this 
basic problem, we introduce the models that have been used to pre-
dict Y  based on X. First, we discuss WA, weighted averaging par-
tial least squares (WAPLS), and maximum likelihood response 
curves (MLRC). These models treat the response of each species to 
the covariate independently. Then, we introduce two methods that 
approach the problem differently: modern analog technique (MAT) 
and random forest (RF). These models use the full assemblage 
simultaneously to estimate the covariate. Next, we discuss uncer-
tainty estimation for WA, WAPLS, MLRC, MAT, and RF. Finally, 
we introduce the Bayesian models (BUMMER and MVGP) which 
are logical extensions and formalizations of the first set of models. 
The Bayesian approaches model the ecological response of indi-
vidual species, but in the Bayesian models the responses are mod-
eled jointly to respect the sum-to-N nature of the data.

Figure 1.  Map showing the sites that make up the modern training dataset sites (blue circles) and the site of the new water-table depth 
reconstruction, Caribou Bog (orange diamond): Panel (a) shows the Continental United States, Panel (b) shows the training dataset sites in 
Alaska, and Panel (c) zooms in on Maine and the surrounding area.
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WA, WAPLS, and MLRC.  These three transfer function methods 
are based on the idea that the ecological response of each species 
to a covariate can be summarized by an optimum value at which 
the species is most abundant (Gauch and Whittaker, 1972). WA is 
a very simple procedure that can be written in two equations. 
First, from the modern training dataset, the estimated optimum  
µ̂k for each of the k  observed species is calculated by

µ k

ik i
i

ik
i

y x

y
= .
∑
∑

Then, these estimated optima, µ̂k, are used to estimate the 
unobserved covariate x  based on the observed assemblage y  as 
follows:

x
y

y

ik k
k

ik
k
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The range of WA-inferred covariate at this point is greatly reduced 
( ‘shrunk’) compared with the observed range in the training data-
set. To correct for this, a linear regression is used to ‘deshrink’ the 
predictions (Birks et  al., 1990; ter Braak and Van Dam, 1989). 
This can be done in two ways: the so-called ‘classical’ deshrink-
ing regresses the inferred covariate values onto the observed 
covariate values from the training set, whereas the ‘inverse’ 
deshrinking regresses the observed values onto the inferred val-
ues. Classical deshrinking produces a larger range of ‘deshrunk’ 
values. Recent work has suggested using a smooth, monotonic 
spline regression instead of the standard linear regression. (Birks 
and Simpson, 2013). We suggest that deshrinking to improve the 
raw WA predictions using a simple regression can be thought of 
as ‘boosting’ in the language of machine learning. Boosting is 
defined as using a set of ‘weak learners’ to produce a ‘strong 
learner’ (Schapire, 1990). The raw WA predictions and the linear 
regression on their own are weak models; combined together they 
produce a stronger model.

Despite the simplicity of WA, it has continued to be success-
ful, with wide applications in paleoclimate inference (e.g. Ames-
bury et al., 2016; Birks and Simpson, 2013; Clifford and Booth, 
2013). Some modifications to WA have been proposed, including 
emphasizing species with narrow tolerances by weighting each 
species by the inverse of their tolerances (ter Braak and Van Dam, 
1989), but in practice this generally has little effect (Juggins and 
Birks, 2012). Another recent suggested modification was to per-
form WA on traits instead of species (Van Bellen et al., 2017). The 
trait-based transfer function performed similarly to standard WA 
on species.

A modification of WA that can significantly improve predic-
tions in some cases is WAPLS (ter Braak and Juggins, 1993). As 
the name suggests, WAPLS combines the WA method described 
above with partial least squares, a dimension-reduction algorithm 
comparable to principal component analysis. WAPLS with a sin-
gle PLS component is equivalent to standard WA. Each additional 
WAPLS component can be thought of as performing WA on the 
residuals of WA to improve the estimation of the optima. For 
details of the algorithm, the reader is referred to ter Braak and 
Juggins (1993) and Juggins and Birks (2012). We suggest that, 
similar to the deshrinking, WAPLS is another example of boost-
ing (Schapire, 1990). In this case, the weak-learner WA is being 
applied multiple times to produce a stronger learner.

WA can be thought of as a simplification of MLRC (Birks 
et al., 1990; Oksanen et al., 1990; ter Braak and Van Dam, 1989). 
Instead of summarizing a species’ response to the covariate with 
a simple optima (as in WA), MLRC fits a Gaussian response 
curve for each species, in turn. Then, in prediction, the curves are 

used in a maximum likelihood framework to estimate the envi-
ronmental covariate for an observed assemblage. MLRC is not 
widely used because the curves are difficult to fit within the maxi-
mum likelihood framework and the model often does not perform 
as well as WA or WAPLS (Juggins and Birks, 2012).

MAT and RF.  Whereas WA, WAPLS, and MLRC use the response 
of each individual species to predict the covariate, a different 
approach, MAT, uses the full assemblage at once to estimate the 
covariate (Jackson and Williams, 2004). MAT uses the same 
training dataset, but instead of estimating a species-by-species 
response to the covariate, MAT assumes that similar assemblages 
should be associated with similar covariate values. To estimate 
the covariate for a given assemblage, MAT finds the k-closest 
analog assemblages in the training dataset based on a multidimen-
sional distance metric. There are many possible choices for dis-
tance metrics, each with unique strengths and weaknesses 
(Prentice, 1980), but chord distance has become widely used for 
compositional data (Overpeck et  al., 1985). The analog assem-
blages identified in the training set are each associated with a 
value of the covariate. For the assemblage of interest, the covari-
ate is estimated by taking the mean (could use median or some 
weighted mean as well) of the covariates of the analog assem-
blages. In statistics, MAT is known as k-nearest neighbors. MAT 
has not been widely applied to testate amoebae, but it is com-
monly used in the reconstruction of paleoclimate from pollen and 
other compositional data.

Another analytical approach we apply to the data is RF (Brei-
man, 2001). RF is a common machine learning technique. Like 
MAT, RF generates predictions by identifying analogs, but RF 
uses a very different algorithm. Instead of using a simple multi-
variate distance metric, RF creates a large number of dichoto-
mous decision trees to identify analogs. RF begins by creating 
bootstrapped versions of the modern training dataset: the modern 
training dataset is randomly sampled with replacement to create a 
bootstrapped training set of the same size as the real training data-
set. Then, for each bootstrapped training dataset, RF begins a 
dichotomous decision tree by choosing a random subset of spe-
cies and identifying which of those species best splits the observed 
covariate. This process is repeated at each node until a full deci-
sion tree is grown. RF stops when each terminal node satisfies a 
‘stop’ condition by containing only a small number of observa-
tions or not being able to make a meaningful further split. Many 
different trees are created to make a ‘random forest’. Then, to 
make a prediction, an assemblage is run through all of the deci-
sion trees. The predicted value of the covariate is the average of 
the covariate value for each of the terminal nodes identified for 
the sample over all the trees. For details, the reader is referred to 
Breiman (2001) and Liaw and Wiener (2002).

Uncertainty estimation.  WA, MLRC, MAT, and RF do not pro-
duce full predictive distributions, so uncertainty must be esti-
mated. This estimation is done by bootstrap re-sampling of the 
data (Birks et al., 1990; Juggins, 2017; Liaw and Wiener, 2002). 
This re-sampling of the data approximates the re-sampling of the 
parameters that is done in Bayesian statistics to produce a full 
predictive distribution (Hobbs and Hooten, 2015).

We illustrate the bootstrap process by describing its imple-
mentation for WA. The process is similar for the other models. 
Each bootstrap cycle begins by randomly drawing from the train-
ing set (with replacement) to create a new modern training dataset 
the same size as the full modern training dataset. The samples in 
the full training data that are not a part of the bootstrap sample are 
used as an out-of-sample validation test set (approximately one-
third of the total number of samples is out-of-sample per boot-
strap sample). For each bootstrapped training set, the model is fit 
to the bootstrap sample and predictions of the covariate are 
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generated on the out-of-sample bootstrap validation data. The 
bootstrapping is run for a large number of iterations, say 1000, 
and the out-of sample predicted covariate values are compared 
with their respective observed values. Using the predictive distri-
bution and the observed distribution, the root mean square predic-
tion error is calculated. The first component of the mean square 
prediction error (MSPE), called v1 , is intuitive: v1  is the vari-
ability in the estimation of the taxon optimum values µ̂k across all 
of the bootstrap samples. This error component varies for each of 
the reconstruction samples. The v1  error approaches zero as the 
size of the calibration dataset increases. The second component, 
v2 , is the difference between the measured covariate values and 
the predicted covariate values when a sample is in the bootstrap 
test set. This error component arises from variation in taxon abun-
dance for a given covariate value and does not vary between 
reconstruction samples. Using the language of statistical learning, 
we can call v1  the reducible error (the error that decreases as 
sample size increases) and v2  the irreducible error. The irreduc-
ible error consists of variation that cannot be modeled by the 
method in question except as a random process.

WA, MLRC, MAT, and RF fail to account for the uncertainty 
in translating multinomial counts to proportions. For example, we 
are much more certain that an underlying composition is 

1
3

1
3

1
3, ,( )  if our count vector is (500,500,500)  than if the 

observed count vector is (5,5,5) . WA, MLRC, MAT, and RF do 
not consider the underlying counts; instead, they begin with 
observed proportions and thus lose some information about the 
uncertainty in those proportions. Previous work on the influence 
of count number on transfer function performance found that 
count totals from 50 to 150 performed similarly (Payne and 
Mitchell, 2009), but this work did not consider the uncertainties in 
going from counts to proportions.

Bayesian approaches.  Bayesian statistics allows us to efficiently 
fit more complex and realistic mechanistic models. Bayesian 
approaches begin by mathematically specifying all parts of the 
process and their interrelations. These processes generally form a 
natural hierarchy that in Bayesian models manifests as a series of 
conditional probabilities. This is called a Bayesian hierarchical 
model (Hobbs and Hooten, 2015). Bayesian hierarchical models 
can flexibly account for all sources of uncertainty within a model 
(or even between models if Bayesian Model Averaging is used; 
Hoeting et al., 1999). Bayesian hierarchical models can capture 
more complexity in ecological responses to an environmental 
covariate, jointly estimate taxon responses to the environmental 
covariate, and model the data in the form they were generated. 
Bayesian models used in this paper are also generative models 
(Gelman et al., 2017), meaning they can be used to simulate data. 
Simulation studies can be useful to better understand the data and 
system (Tipton et  al., 2019). Here, we consider two Bayesian 
models: BUMMER (Toivonen et al., 2001) and a new model we 
call multivariate Gaussian process (MVGP; Tipton et al., 2019).

BUMMER (Toivonen et  al., 2001) is a Bayesian unimodal 
response model that can be thought of as a Bayesian version of 
MLRC in that it models the response of each taxon to the changes 
in the covariate as a Gaussian kernel. BUMMER assumes the 
functional relationship between taxon abundance and environ-
mental covariate can be reasonably approximated using a bell-
curve shape. BUMMER has been applied to paleoenvironmental 
reconstructions based on chironomids (Toivonen et al., 2001) and 
pollen (Salonen et al., 2012) with some success, but has not been 
used on testate amoebae previously.

MVGP is a Bayesian hierarchical model that relaxes the 
assumption of a unimodal response. MVGP requires only a smooth 
response and uses a flexible B-spline or Gaussian process (here we 
use the B-spline version) to fit each taxon’s response to the covari-
ate. This allows for more complex and realistic functional responses 

of species’ abundance to the covariate (Tipton et al., 2019). Other 
choices of functional response, not explored in this paper, include 
low-rank correlated Gaussian processes, penalized B-splines, and 
shape-restricted splines constrained to be unimodal but not neces-
sarily bell-shaped.

The process for fitting and predicting with these Bayesian 
models is similar for both MVGP and BUMMER. As with all of 
the other methods, these models begin with the modern calibra-
tion dataset, and like WA, WAPLS, and MLRC, these Bayesian 
approaches seek to model the relationship between the abun-
dance of each taxon and the covariate (Figure 2). These Bayesian 
models fit the relationship jointly, meaning that if one species has 
a high abundance at a particular value of the covariate, at least 
one or more other species must be lower. The Bayesian models 
start with the counts collected by the analyst and then the model 
accounts for large variation in composition at a given covariate 
value using a Dirichlet-multinomial distribution. Both BUM-
MER and MVGP model the latent functional response between 
abundance and the covariate. Both Bayesian models are fit to the 
training data using Markov Chain Monte Carlo to generate a pos-
terior distribution. The posterior estimates of parameters are then 
used to generate posterior predictions of the covariate given an 
assemblage either from the test data (in cross-validation) or from 
subfossil samples downcore (in reconstruction). The posterior 
predictions are generated by inverting the functional relationship 
between abundance and the environmental covariate, producing 
a proper probability distribution for each covariate in the 
dataset.

MVGP and BUMMER have a few notable features. First, 
instead of converting counts to proportions, both models begin 
with compositional count data. It is better to model the data in the 
manner the data were collected than to transform the data to fit a 
specific model because data transformations done before the 
modeling can introduce uncertainty that can be difficult to account 
for. For example, we know that the compositional count data have 
variability that is unaccounted for in the traditional models. By 
modeling the compositional counts with a Dirichlet-multinomial 
likelihood, the Bayesian hierarchical models are better able to 
account for the overdispersion observed in the data while auto-
matically satisfying the sum-to-one constraint. MVGP jointly fits 
a functional relationship between abundance and the covariate 
using B-splines. The B-spline functional relationship is capable of 
capturing potentially asymmetric and/or multi-modal responses 
in a species’ relative abundance along an ecological gradient 
(Hefley et al., 2017). These potentially more complex functional 
responses to the covariate are not accommodated by models based 
on unimodal distributions or a simple mean (i.e. BUMMER, WA, 
MLRC). There are many potential avenues for modifying these 
Bayesian models to improve the predictions. Some ideas include 
accounting for interactions among species, adding spatially/tem-
porally correlated random effects to model overdispersion in the 
data, and clustering species with similar responses to the environ-
mental covariate to reduce the number of parameters that need to 
be estimated.

Cross-validation and scoring rules
We use cross-validation to evaluate the performance of all of 
these models introduced above. Cross-validation consists of five 
steps: (1) setting aside a subset of the data (the test set), (2) fitting 
a model using the remaining data (the training set), (3) generating 
predictions about the test set, (4) evaluating the predictions about 
the test set, and (5) repeating the process with different test and 
training sets. In statistics and machine learning, cross-validation 
performance of a model gives a good indication of the perfor-
mance of a predictive model on novel data (Hooten and Hobbs, 
2015). If a model’s predictions are accurate and precise under 
cross-validation, then it is generally reasonable to assume that the 
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quality of the predictions will generalize to new data. This gener-
alizability is a critical property in paleoclimate reconstruction 
because there are often no direct measurements of the covariate of 
interest for the reconstruction samples. Recent work on transfer 
function validation has highlighted the usefulness of independent 
test sets, such as modern samples not included in the training set 
(Payne et al., 2012; Tsyganov et al., 2016; Van Bellen et al., 2014) 
or instrumental data (Swindles et  al., 2015). In the case where 
these are unavailable, cross-validation remains the state-of-the-art 
and is commonly used to evaluate competing models in statistics 
and machine learning. For this study, no independent test set or 
instrumental data are available, so we perform a 10-fold cross-
validation and use the following scoring rules to evaluate the 
strengths and weaknesses of the predictions coming from the 
seven models under comparison

Evaluation of model performance using cross-validation 
requires a choice of scoring rule. Commonly used scoring rules 
include MSPE and mean absolute error (MAE). MSPE measures 
the model’s skill in predicting the mean, while MAE measures 
skill in predicting the median. Smaller MSPE and MAE indicate 
better model performance.

A desirable property of a scoring rule is propriety. A scoring 
rule is proper if the scoring rule chooses the best predictive model 
on average. In practice, proper scoring rules have a similar inter-
pretation to many other statistical quantities: for any given dataset 
a proper scoring rule might not pick the best model due to sam-
pling variability, but a proper scoring rule will pick the best pre-
dictive model over repeated re-sampling. MSPE and MAE are 
generally not strictly proper scoring rules because if there are two 
models with the same predictive mean but different predictive 
standard deviations, the models will have the same MSPE, but the 
model with 95% predictive coverage intervals closest to a 95% 
frequency is the better predictive model. Therefore, MSPE is 
unable to determine the better predictive model and is not strictly 
proper. The continuous ranked probability score (CRPS) was 
developed to be a proper scoring rule that is both accurate (predic-
tive mean is centered on the latent quantity) and precise (the pre-
dictive distribution is calibrated so that the α%  predictive 
distribution has empirical coverage near α%  (Gneiting, 2011). 

For the non-Bayesian methods, the CRPS score is equivalent to 
MAE because these methods do not produce full predictive 
distributions.

Computing methods
Analyses were done in R (R Core Team, 2017). WA, MLRC, and 
MAT were fit with the rioja package (Juggins, 2017). RF was fit 
using the package randomForest (Liaw and Wiener, 2002). BUM-
MER was fit using Stan (Carpenter et al., 2016). MVGP was fit 
using the BayesComposition package, available on GitHub at 
github.com/jtipton25/BayesComposition. The BayesComposi-
tion repository also includes code and data to replicate the figures 
and analyses in this paper.

Results and discussion
Because WA and WAPLS are the most commonly used transfer 
function methods in the analysis of testate amoebae, we focus our 
analysis on the performance of WA and WAPLS compared with 
the Bayesian models, with some brief discussion of the broader 
suite of models.

Fits to training set
Figure 2 illustrates the model fits to the training dataset by com-
paring MVGP, WA, and WAPLS. Each taxon’s distribution of 
abundances is plotted as a function of WTD. The response curves 
generated by MVGP and the raw WA optima, deshrunk WA 
optima, and WAPLS optima are plotted for each taxon. The plots 
of abundance versus WTD illustrate the strongly over-dispersed 
nature of the data and the difficulty of summarizing these distri-
butions with a simple mean. The distributions of some taxa may 
be reasonably summarized by an optimal WTD (e.g. Amphitrema 
wrightianum and Pseudodifflugia fulva–type). The distributions 
of other species, however, are clearly not well-represented by the 
WA optima (e.g. Assulina muscorum and Trigonopyxis arcula). 
For many species, the deshrunk WA optima and the WAPLS-
derived coefficient are comparable, but there are many notable 

Figure 2.  Species abundance versus water-table depth (cm) from the samples in the training dataset (points). The smooth curves are from 
multivariate Gaussian process for each species. The solid vertical lines are the raw optima from weighted averaging (WA). The dashed vertical 
lines are the deshrunk WA optima. The dot-dash vertical lines are the coefficients from weighted averaging of partial least squares after five 
partial least squares components.
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differences. For some species (e.g. H. subflava, Nebela collaris-
bohemica–type, and others), the WAPLS-derived coefficients are 
significantly different from what a visual inspection of the distri-
bution might suggest. The species coefficients derived from 
WAPLS with multiple components (here we are using two PLS 
components) become no longer interpretable as optima of the 
ecological distributions. Instead, they are regression coefficients 
meant to give a better overall prediction of the covariate (Juggins 
and Birks, 2012).

Cross-validation experiment
We performed a 10-fold cross-validation experiment. Each of the 
951 samples in the training set was in the test set for exactly one 
of the cross-validation folds. Figure 3 shows the observed versus 
predicted WTDs with a one-to-one line and a linear fit. We also 
calculated four scoring metrics to numerically evaluate the cross-
validation results (Table 1).

The results of the cross-validation show a clear bias-variance 
trade-off in both the plots of observed versus fitted WTD (Figure 
3) and in the scores (Table 1). WA, WAPLS, MAT, and RF all 
show significant bias in the plots of observed versus predicted 
WTD as evidenced by an offset of the linear fit (blue line) from 
the one-to-one line (red line). This induced bias, a shrinkage to 

the mean, allows for generally smaller standard deviations. In 
contrast, MVGP, BUMMER, and MLRC have smaller bias but 
larger variance.

This bias-variance tradeoff is also apparent in the cross-vali-
dation scores (Table 1). MAT, RF, WA, and WAPLS have the 
smallest MSPE and MAE (metrics of prediction accuracy for the 
mean) compared with MLRC, which has the largest MSPE and 
MAE, and MVGP and BUMMER, which are intermediate.

WA, WAPLS, MLRC, and RF all have 95% credible interval 
(CI) coverage close to the nominal rate. The Bayesian methods 
(MVGP and BUMMER) had the lower coverages, approximately 
75%, for their 95% CIs. This is likely due to overdispersion in the 
count data beyond what can be accounted for by the Dirichlet-
multinomial likelihood.

For CRPS, the integrated mean and variance score, BUMMER 
performs best, followed by MVGP, RF, and MAT and then WA 
and WAPLS. MLRC performs worst.

Will skill in cross-validation generalize to novel data?
The goals of model evaluation under cross-validation are to esti-
mate how well the predictive model can generate predictions on 
novel data. In our experiment, we consider a variety of methods 
that have relative predictive strengths and weaknesses. WA, 

Figure 3.  Observed versus predicted water-table depth (cm) for each model from the 10-fold cross-validation experiment on the training 
dataset of 951 surface testate amoebae assemblages. Red lines in each panel indicate the one-to-one line. Blue lines in each panel are a linear fit 
of the observed versus predicted WTDs. Error bars denote the 95% credible interval.

Table 1.  Scoring results from 10-fold cross-validation experiment performed on the modern training dataset. Lower scores for MSPE, MAE, 
and CRPS indicate better performance. For coverage, better performance is indicated by values closer to the nominal rate (in this case, 95%).

MVGP BUMMER WA WAPLS MLRC MAT RF

MSPE 121.05 111.65 89.99 86.38 193.14 71.99 74.30
MAE 8.32 8.08 7.20 7.02 10.04 6.24 6.22
% CI coverage 75 75 95 98 94 73 95
CRPS 6.27 6.06 7.20 7.02 10.04 6.24 6.22

MVGP: multivariate Gaussian process; WA: weighted averaging; WAPLS: weighted averaging partial least squares; MLRC: maximum likelihood response 
curves; MAT: modern analog technique; RF: random forest; MSPE: mean square prediction error; MAE: mean absolute error; CRPS: continuous ranked 
probability score.
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WAPLS, MAT, and RF are generally good predictive methods, 
but are not based on a statistical likelihood. Thus, their predictive 
ability does not come with any of the statistical guarantees like 
the ‘law of large numbers’.

Furthermore, because MAT and RF rely on finding analogs to 
generate predictions, their predictive skill can only generalize to new 
data when there are reasonable analogs for the new data in the train-
ing set. In cross-validation, this is unlikely to be important, but non-
analog issues can become a source of bias when generating 
predictions downcore. MAT is not widely used for reconstructions 
with testate amoeba datasets due to these difficulties of finding good 
analogs downcore (Charman, et al. 2007), but because MAT is still 
widely used with other sources of compositional data (Marsicek, 
et al. 2018; Simpson, et al. 2005), we have retained it here for com-
pleteness. There are many possible sources of non-analog assem-
blages, but one potential source for testate amoebae–based 
reconstructions is differential preservation of certain types of tests 
(Mitchell et al., 2008). Thus, it is important to check whether there 
are good analogs for the downcore samples in the training dataset. To 
do this, we calculated the squared chord distance of the accepted ana-
logs for each sample in the training set in cross-validation and for 
each sample in the Caribou Bog core. We found that the Caribou Bog 
samples had systematically worse analogs than the training dataset 
(Figure 4a). We then looked at these analogs in the time domain and 
found there is no clear temporal trend in accepted analog distance 
(Figure 4b), but there does appear to be some serial autocorrelation 
with some periods having better analogs and some having worse ana-
logs in the training dataset.

This analysis provides evidence that the strong predictive skill 
of MAT, RF, WA, and WAPLS in cross-validation may not gener-
alize to predictive skill in reconstruction, a feature that is common 
in Quaternary paleoclimate and paleoecology (Jackson, 2012). 
On the other hand, likelihood-based approaches such as MLRC, 
MVGP, and BUMMER are capable of generalizing to novel data 
where there are not appropriate analogs and generating predic-
tions with uncertainties that account for how well the covariate 
value is known for a given assemblage. From this perspective, 
likelihood-based methods are a relatively conservative approach 
to prediction because they are potentially less prone to issues of 
analog similarity and predictive bias (Tipton et al., 2019).

Reconstruction
We now move from cross-validation, where we have both the tes-
tate amoeba assemblage and the measured WTD, to reconstruction. 
In reconstruction, we only have a testate amoeba assemblage and 

we wish to estimate a WTD. The 7500 years of testate amoeba 
assemblages from Caribou Bog are shown in Figure S2 (available 
online). We then apply the seven transfer function models to infer a 
WTD history from Caribou Bog. The resulting reconstructions are 
shown in Figure 5, and the z-scores of the reconstructions are 
shown in Figure S3 (available online). The methods break out into 
three subsets. The first subset is formed by the two Bayesian mod-
els – MVGP and BUMMER; the resulting reconstructions look 
similar to each other in terms of both means and uncertainties. The 
main difference between MVGP and Bummer is the magnitude of 
some of the smaller deviations. MVGP tends to have a somewhat 
damped response compared with BUMMER. This damped 
response could be due to the more flexible ecological responses 
allowed by MVGP. The uncertainties, as denoted by the 50% and 
95% CIs are generally smaller and more variable from sample to 
sample compared with the other methods. It makes intuitive sense 
that some predictions should be more certain than others for many 
potential reasons, including, for example, the particular set of spe-
cies present and their distributions, the similarity to samples in the 
training dataset, or the number of individuals counted. With their 
uncertainties that vary from sample to sample, Bayesian models 
capture these features of the data.

The next subset is WA, WAPLS, MLRC, and MAT. The recon-
structions for Caribou Bog that result from these WA, MLRC, and 
MAT all look similar to each other, again with some variability in 
the magnitude of the changes in WTD. The reconstructed pattern 
from WAPLS appears to be intermediate between the Bayesian 
models and WA. For this set of four models, the uncertainties 
from sample to sample are nearly constant. These unchanging 
uncertainties are due to the large v2  irreducible error component. 
The v2  component is responsible for 98% of the root mean square 
error of prediction in this dataset. This large irreducible error 
component limits the usefulness of the uncertainties estimated 
from these methods.

Finally, RF produces predictions with a mean near the mean of 
the training dataset, little variability around that mean, and wide 
uncertainties. This is likely due to the lack of good analogs in the 
training set for the reconstruction samples as discussed above. 
The samples with smaller uncertainties for RF (e.g. around 2000 
and 6000 yr BP) are associated with samples that have better ana-
logs in the training dataset (Figure 4b).

Inference on past hydrology
To a first order, when the different methods are applied to the 
same subfossil dataset (Figure S2, available online), the resulting 

Figure 4.  (a) Squared chord distances of the accepted analogs from modern analog technique (MAT) for the training dataset (red) and 
reconstruction dataset from Caribou Bog (blue). Smaller squared chord distance corresponds to more similar assemblages. The training 
dataset contains many good analogs for the assemblages within the training dataset (distances for the red density curve are small), whereas 
the distances of the analog assemblages for the reconstruction dataset are larger and thus not as similar. (b) Time series of the median squared 
chord distance from the accepted analog assemblages in the training dataset to each assemblage in the Caribou Bog reconstruction dataset. 
This panel shows temporal evolution of the analogs summarized by the blue density curve in Panel (a).
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estimates of past hydrological variability are similar (Figure 5; 
Figure S3, available online). This is reassuring because the under-
lying data are identical between the different reconstructions, but 
there are some junctures at which one might draw different infer-
ences depending on the method used to reconstruct WTD. For 
example, one would infer a significant dry event at ca. 4000 yr BP 
using MVGP and BUMMER. But using WA, MAT, and other 
methods, this event is not nearly as pronounced. This divergence 
is related to differing model responses to an increase in Assulina 
muscorum. A. muscorum occurs across the moisture gradient, but 
obtains significantly higher abundance in dry conditions (Figure 
2). This affinity for dry conditions leads the Bayesian models to 
infer drier conditions in response to a small increase in A. musco-
rum. In contrast, WA does not respond strongly because the per-
centage increase of A. muscorum is relatively small, and therefore, 
its influence on the WA reconstruction is small. This event illus-
trates how MVGP and BUMMER can draw out potentially 
important single-species anomalies that may be missed by other 
models. This sensitivity leads to a more complete use of the full 
assemblage, but it comes with a caveat: we need to carefully 

consider whether species, like A. muscorum, that can leverage a 
WTD reconstruction are faithful indicators of the hydrologic sta-
tus of the peatland. These are testable ecological hypotheses and 
avenues for future improvement of mechanistic models (e.g. 
accommodation of more complex relationships between the abun-
dance of certain species and the covariate).

In contrast to the event at 4000 yr BP, at ca. 6000 yr BP, WA, 
MAT, and MLRC show a large drop in WTD, but MVGP and 
BUMMER do not. The large change in WTD predicted by WA 
and others is driven by a change in dominance from Archerella 
flavum to H. subflava. These species occur in high percentages 
( 40% ), and thus, the exchange of the two drives large changes 
in WTD for WA. However, the change in the dominant species 
does not drive a large change in the MVGP and BUMMER recon-
structions because the difference between the affinities of the two 
species, when considering their full distribution in this calibration 
dataset, is relatively small (Figure 2). Numerous modern and 
paleoecological studies suggest that the shift from A. flavum to H. 
subflava is a meaningful indicator of a change from wet to dry 
conditions (e.g. Booth and Jackson, 2003; Charman et al., 1999; 

Figure 5.  Reconstructions of water-table depth based on testate amoebae assemblages from Caribou Bog. For each panel, the underlying 
testate amoebae assemblage data are identical; the only thing that changes is the transfer function model. The dark shading denotes 50% 
credible interval, and the lighter shading denotes 95% credible interval.
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Clifford and Booth, 2013; Sullivan and Booth, 2011; Swindles 
et  al., 2009; Talbot et  al., 2010), suggesting that the Bayesian 
methods likely underestimate the covariate response to this 
change in the testate amoebae assemblage. Incorporating this 
expert knowledge is possible in the Bayesian hierarchical frame-
work, and future model development should seek to understand 
and refine the response of these models to changes in dominant 
species. These two events represent examples of differential sen-
sitivity of different types of transfer function methods. These 
kinds of differences in reconstructions based on choice of transfer 
function model are a source of uncertainty that deserves increased 
attention in paleoenvironmental reconstructions from proxies 
based on compositional data. Understanding where and why dif-
ferent models diverge can lead to improved inference on both 
modern ecology and past hydrology.

Conclusions and future directions: 
Or, Why Bayesian? Why bother?
We have presented a detailed analysis of methods for reconstruct-
ing WTD from testate amoebae community composition. We 
reviewed existing methods and introduced a new Bayesian 
method and a Bayesian method that had not yet been applied to 
testate amoebae data. We tested the models in a cross-validation 
framework and then applied them to reconstructions.

We found that the existing methods compare well in cross-
validation with more complex Bayesian models, but for the sim-
pler existing methods we found that their predictive skill in 
cross-validation may not transfer to skill in reconstruction (Tipton 
et al., 2019). When we applied the models in reconstruction, we 
found generally similar inferences of past hydrology with some 
key differences. We investigated the sources of some of the dis-
crepancies between the reconstructions from different models. 
Ultimately, when comparing competing models at a single site 
without an independent target for validation, it is unclear whether 
one reconstruction is correct and another is wrong. By presenting 
a systematic comparison of results from different models on the 
same datasets, we illustrate the importance of model choice as a 
source of uncertainty in records based on compositional data 
(Gelman and Loken, 2014; Jackson, 2012).

Bayesian models are worth developing and considering for 
testate amoebae and other paleoenvironmental proxies based on 
compositional data. Bayesian models like MVGP and BUMMER 
are mechanistic models driven primarily by assumptions about 
the unobserved ecological processes. Developing these types of 
models makes our assumptions clear and written in the formal 
language of statistics and can yield improved mechanistic under-
standing of the system being studied. Mechanistic models under-
pinned by formal statistics like these are worth the extra effort 
involved because they allow for a more complete use of the com-
positional data we spend so much time collecting and result in 
more robust paleoenvironmental inferences. Including meaning-
fully estimated uncertainties makes these inferences even more 
useful. Bayesian models formally account for uncertainty 
throughout the modeling process (Hobbs and Hooten, 2015). This 
more complete treatment of uncertainty quantifies how well we 
really know the past values of the environmental covariate of 
interest. In secondary analyses and syntheses, uncertainties are 
necessary to weigh and combine information from many different 
types of proxies (Hakim et al., 2016; Shuman et al., 2018). When 
Bayesian models are used on a network of sites, it is possible to 
add an explicit spatial component to borrow strength across sites 
and gain new inference on the covariate over space and time with 
complete uncertainties. With traditional methods, there is a less 
clear path to achieve a similar borrowing of space and time while 
properly propagating uncertainty.

We encourage users of all proxies based on compositional data 
to carefully examine their data and methods in a framework like 
the one presented here. Testing and comparing new and existing 
models in a systematic framework leads to a deeper understand-
ing of the strengths and weaknesses of available tools. Regardless 
of whether the process results in dramatic improvements of infer-
ences, the process itself is clarifying and important: questioning 
and testing models and assumptions that underlie our important 
scientific inferences is critical for minimizing ‘ignorance creep’ 
(Jackson, 2012).
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