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1  | INTRODUC TION

Ecological systems are characterized by dynamics and uncertainty 
at many scales, but observing all relevant scales may be difficult 
or impossible (Wiens, 1989). Instead, we must use models to scale 
and connect processes across multiple levels (Levin, 1992), such as 
from the scale of observation to the hypothesized scale of biological 

process, or from a single individual or species to a population or 
community. For example, in movement ecology, we often collect 
telemetry data and observe movement at the individual level, but 
wish to make inference on the population as a whole, like to better 
understand responses to environmental conditions that are similar 
among individuals (Hooten et  al.,  2016). Alternatively, modelling 
ecosystems or ecological communities often involves joint anal-
ysis of many taxonomic groups as well as the processes that con-
nect them (Levin,  1992; Warton et  al.,  2015). Finally, conducting 
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Abstract
1.	 Bayesian hierarchical models allow ecologists to account for uncertainty and make 

inference at multiple scales. However, hierarchical models are often computation-
ally intensive to fit, especially with large datasets, and researchers face trade-offs 
between capturing ecological complexity in statistical models and implementing 
these models.

2.	 We present a recursive Bayesian computing (RB) method that can be used to 
fit Bayesian models efficiently in sequential MCMC stages to ease computation 
and streamline hierarchical inference. We also introduce transformation-assisted 
RB (TARB) to create unsupervised MCMC algorithms and improve interpretabil-
ity of parameters. We demonstrate TARB by fitting a hierarchical animal move-
ment model to obtain inference about individual- and population-level migratory 
characteristics.

3.	 Our recursive procedure reduced computation time for fitting our hierarchical 
movement model by half compared to fitting the model with a single MCMC al-
gorithm. We obtained the same inference fitting our model using TARB as we 
obtained fitting the model with a single algorithm.

4.	 For complex ecological statistical models, like those for animal movement, multi-
species systems, or large spatial and temporal scales, the computational demands 
of fitting models with conventional computing techniques can limit model speci-
fication, thus hindering scientific discovery. Transformation-assisted RB is one of 
the most accessible methods for reducing these limitations, enabling us to imple-
ment new statistical models and advance our understanding of complex ecological 
phenomena.
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ecological studies introduces additional uncertainty, including 
sampling and detection uncertainty as well as spatial and temporal 
variation between study sites and years, which must be considered 
when specifying ecological models (Beissinger et al., 2016; Royle & 
Dorazio, 2008).

Bayesian hierarchical modelling has become a popular tool in 
ecology, facilitating scaling by relating process models at one level 
to parameters at another level (Hobbs & Hooten,  2015; Royle & 
Dorazio,  2008). Hierarchical models are flexible and facilitate the 
inclusion of multiple sources of uncertainty in the data, process and 
parameter components (Berliner,  1996; Cressie et  al.,  2009). For 
example, many integrated population models (IPMs) use a Bayesian 
hierarchical framework to integrate multiple data sources to under-
stand population dynamics and demographic processes (Schaub 
& Abadi, 2011). However, IPMs and other hierarchical models can 
quickly become large and time-consuming to fit.

Ecological science has seen a rapid increase in the availabil-
ity of big data, advanced statistical techniques and collaborative 
research, and our ability to specify ecological models that cap-
ture more of the complexity of natural phenomena has improved 
substantially as a result (McCallen et  al.,  2019). However, many 
ecologists have also reached the point where computational de-
mands limit what can be modelled. Furthermore, as ecologists are 
increasingly interested in long-term monitoring and prediction 
(Dietze et al., 2008), statistical models must be fit each time data 
are added. Collaborations with computer and data scientists and 
new software packages for efficient computing have introduced 
sophisticated computational techniques (e.g. distributed comput-
ing) in ecological science, but barriers to wide implementation 
of these approaches are a bottleneck for advancing ecological 
modelling (Hampton et  al.,  2017; Visser et  al.,  2015). Therefore, 
more accessible approaches for reducing computational limita-
tions are needed to support progress in ecological modelling and 
understanding.

Recursive computing techniques, also known as batch or modular 
computing or Bayesian filtering, are used to fit a statistical model in a 
series of steps (Särkkä, 2013). These techniques simplify computing 
at each step, without modifying the original model specification or 

resulting inference. One recursive Bayesian computing (RB) method, 
introduced by Lunn et al. (2013), leverages the properties of Markov 
chain Monte Carlo (MCMC) sampling (Gelfand & Smith,  1990) to 
lessen the computational burden of fitting hierarchical models. The 
authors used RB to reconcile the results of several independent stud-
ies in a meta-analysis (Lunn et al., 2013), and the method has been 
applied in ecological contexts to facilitate online updating (Hooten 
et  al.,  2020), model individual and group variation in physiological 
measurements (Hooten & Heey,  2019), and scale movement and 
resource-selection models from individuals to populations (Gerber 
et al., 2018; Hooten et al., 2016). While not unique to ecology, RB 
is a natural computational technique for ecologists to consider be-
cause the RB framework mirrors many ecological study designs and 
hierarchical models.

Consider a study of invasive cheatgrass Bromus tectorum occur-
rence in grasslands in Montana, in the northwestern United States 
(Pearson et al., 2018). Cheatgrass occurrence was monitored at 20 
grassland sites by sampling 20 randomly selected 1-m2 plots within 
each site. Suppose we want to model the probability of cheatgrass 
occurrence yij in Montana grasslands using a Bernoulli generalized 
linear mixed model (GLMM) specified as

where j indexes sites and i indexes plots within each site. In this 
model, pj is the probability of cheatgrass at site j, and logit(pj) arises 
from a Gaussian distribution with study-wide parameters µ and σ2, 
arising from Gaussian and inverse gamma distributions, respectively 
(Figure 1). Thus, pj are ‘random effects’ because they will vary for 
each site but will arise from a single underlying distribution. We use 
Gaussian random effects, with the logit link function to constrain pj 
to the proper support, and seek inference on µ. The full-conditional 
distributions for the logit(pj) are not analytically tractable, so the 

(1)yij ∼ Bern(pj), i = 1, … , N, j = 1, … J,

(2)logit(pj) ∼ N
(
�, �2

)
,

(3)� ∼ N
(
�0, �

2
0

)
,

(4)�2 ∼ IG(q, r),

F I G U R E  1   (a) Directed acyclic diagram 
(DAG) for Bernoulli GLMM of cheatgrass 
occurrence in Montana (1)–(4) and (b) 
schematic for partitioning DAG according 
to the TARB framework. In (a), Y is the 
matrix whose columns are the data 
vectors y j for the sites j = 1, …, J. In stage 
1, the data Y are partitioned by site and 
fit to obtain the posterior distributions 
for the pj. In stage 2, samples from these 
posterior distributions are used to sample 
logit(pj), μ, and α2

(a) (b)
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logit(pj) cannot be sampled using Gibbs updates and will need to be 
tuned individually to fit the model (Gelfand & Smith, 1990). This min-
imal example could be fit in a single, conventional MCMC algorithm, 
but we describe the procedure to fit it recursively to demonstrate 
RB methods.

We could fit this model using RB by first partitioning the data 
by site, Y = (y�

1
, …, y�

J
)�. These individual partitions would be an-

alysed independently in a first-stage MCMC algorithm with a 
temporary prior for logit(pj) to obtain temporary posterior distri-
butions for the parameters logit(pj). Then, the resulting temporary 
posterior distributions would be used as proposals in the sec-
ond-stage algorithm to update the study-wide parameters µ and 
σ2, and the logit(pj) given µ and σ2 (Lunn et al., 2013). However, we 
would still need to tune the updates for each logit(pj) by hand in 
the first stage because the full-conditional distributions are not 
analytically tractable. This would slow model fitting and may be 
difficult.

Instead, we propose a modification of RB, which we call trans-
formation-assisted RB (TARB), to eliminate tuning in the first stage 
and ease model fitting with unsupervised algorithms and efficient 
Gibbs updates. In what follows, we demonstrate how to implement 
RB and TARB to fit ecological models and apply TARB to a hierar-
chical movement model for avian migration to make individual- and 
population-level inference. Additionally, we discuss the implemen-
tation of TARB to other ecological models to illustrate its wide 
applicability.

2  | MATERIAL S AND METHODS

Our Bernoulli GLMM is a hierarchical model comprised of data, pro-
cess and parameter components (Berliner, 1996), with a set of latent 
random effects θ j = logit(pj) for j = 1, …, J (Figure 1). The group-level 
parameters ψ =  (µ, σ2)′, which correspond to the full study area in 
our example, describe the distribution underlying the partition-level 
(e.g. site-level) parameters θ j. For data partitioned Y = (y�

1
, …, y�

J
)�, 

this can be written

Note that square brackets [⋅] denote probability distributions (Gelfand 
& Smith, 1990).

In general, θ j could be an m × 1 vector that describes the parti-
tion-level process with m covariates. The data partitions y j do not 
need to be equal-sized, and can represent any natural data subset 
such as different field sites as in our example, telemetry fixes for 
distinct individuals, results from several studies in a meta-analysis 
or data on different species in a community, as long as dependence 
within the data partitions is accounted for in the data or process 
models.

The RB approach presented by Lunn et al. (2013) is carried out 
by specifying prior distributions [θ j] in the first stage to obtain a 
sample from the posterior distributions [θ j|y j] ∝ [y j|θ j][θ j] for each 
partition j = 1,  ..., J independently. Next, the hierarchical model in 
Equations 5–7 is fit using a second-stage MCMC algorithm with 
Metropolis–Hastings (MH) updates for θ j, in which random samples 
from the temporary, first-stage posterior distributions for θ j are 
used as the proposals θ j

(*). This eliminates the need for tuning in the 
second-stage MH updates. Also in the second-stage algorithm, the 
group-level parameters ψ are updated based on their full-conditional 
distributions [�� ⋅ ]∝ (

∏J

j=1
[�j�� ])[� ]. The MH acceptance probabil-

ity for each θ j
(*) is min(rj

(*), 1) where

for MCMC iteration k = 1, …, K. Notably, neither the MH ratio (10) 
nor the full-conditional distributions for ψ involve the data y. For the 
data model to cancel in the numerator and denominator of the MH 
ratio (10), the proposals θ j

(*) should be independent draws from the 
first-stage posterior distributions for θ j. Thus, in practice, we sample 
θ j

(*) randomly with replacement from the first-stage Markov chains 
so that the samples are uncorrelated (Hooten et  al.,  2020; Lunn 
et al., 2013).

If the hierarchical model is specified such that the conditional 
distributions for θ j are not analytically tractable, like in our GLMM, 
then the first stage of the model must be fit using MH or importance 
sampling (Geweke, 1989) which must be tuned by the user for each 
partition (Hooten et al., 2016). Thus, rather than specifying a first 
stage-prior directly on θ j, we use TARB and specify a prior [g(θ j)] on 
a transformation g(θ j) of the parameters θ j. It is most advantageous 
to specify g so that the first-stage priors on g(θ j) are conjugate with 
the data model to allow us to use an automated Gibbs sampler in 
the first stage. In GLMMs and other hierarchical models, we often 
specify models so that parameters and random effects arise from 
Gaussian distributions, and use a link function to constrain these 
parameters to the appropriate support. Thus, in these cases, g will 
likely be a back-transformation (i.e. the inverse of the link function) 
that allows us to specify conjugate first-stage priors. However, unlike 
if we were to specify a different model to facilitate conjugacy, using 
TARB allows us to incorporate prior knowledge and obtain inference 
in terms of the original model specification. For example, if we let 
g(θ j) = logit–1(θ j) in our cheatgrass example, then we can specify a 
temporary beta prior on pj in the first stage. In this example, the ben-
efit of doing so extends beyond conjugacy to a first-stage posterior 

(5)yj ∼ [yj|�j], j = 1, …, J,

(6)�j ∼ [�j|� ],

(7)� ∼ [� ].

(8)r
(k)

j
=

[
yj|�(∗)j

] [
�
(∗)

j
|� (k−1)

] [
�
(k−1)

j
|yj

]
[
yj|�(k−1)j

] [
�
(k−1)

j
|� (k−1)

] [
�
(∗)

j
|yj

] ,

(9)=

[
yj|�(∗)j

] [
�
(∗)

j
|� (k−1)

] [
yj|�(k−1)j

] [
�
(k−1)

j

]
[
yj|�(k−1)j

] [
�
(k−1)

j
|� (k−1)

] [
yj|�(∗)j

] [
�
(∗)

j

] ,

(10)=

[
�
(∗)

j
|� (k−1)

] [
�
(k−1)

j

]
[
�
(k−1)

j
|� (k−1)

] [
�
(∗)

j

] ,
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distribution that can be written analytically, and therefore does not 
require MCMC to sample. We provide the complete procedure to 
fit the cheatgrass GLMM using TARB, with code, in the Supporting 
Information (Appendix A in Supporting information).

We need to use the resulting first-stage posterior distribution 
as a proposal distribution in the second-stage MCMC algorithm, 
but the first-stage posterior distribution [g(θ j)|y j] is on the trans-
formed parameters g(θ j). Thus, to account for the first-stage prior 
on transformed parameters, we must modify the MH ratio (10) and 
use a change of variables technique to ensure the proposal is on the 
same transformation that appears in the process component (6) of 
the original hierarchical model. While we could easily use the first-
stage posterior distribution to obtain a sample from the desired pos-
terior distribution [θ j|y j], the MH ratio requires us to evaluate the 
probability density function [θ j|y j] rather than sample from it. There 
are many possible methods for obtaining this distribution, including 
analytical change of variable techniques and numerical approaches. 
For continuous random variables, we use a change of variables tech-
nique where

in which J(g(θ j)) is the Jacobian matrix defined as

The Jacobian matrix consists of partial derivatives of each element 
of g(θ j) with respect to each element of θ j. Its determinant |J(g(θ j))| 
maps the change in the transformed variables to the change in the 
non-transformed variables (dg(θ j) onto dθ j), yielding the correct prob-
ability distribution of the non-transformed variable when multiplied to 
the probability distribution of the transformed variable. Thus, substi-
tuting (11) for the proposal in the second-stage MH ratio (10) results in

The data component of the hierarchical model cancels in the MH ratio 
(14) associated with the second-stage MCMC algorithm regardless of 
the transformation used in the first-stage temporary prior, and we ac-
count for the transformation via the determinant of the Jacobian in the 
modified TARB ratio (14). In our cheatgrass GLMM, because θ j = pj is 
a scalar, the Jacobian simplifies to the derivative of g = logit–1(pj) with 
respect to logit(pj) (Appendix A in Supporting information). Thus, we 

can use TARB to create unsupervised first-stage algorithms that can 
be easily parallelized and a second-stage MCMC algorithm that does 
not rely on the data model. This results in substantial computational 
savings when the data model is complex or there are many data mod-
els to fit and allows the second stage to be updated easily if new data 
partitions become available.

3  | APPLIC ATION: WHITE STORK 
MIGR ATION

To demonstrate TARB, we developed a hierarchical animal move-
ment model for the migratory behaviour of white storks Ciconia  
ciconia in western Europe to obtain individual- and population-level 
inference for migration characteristics. We analysed data from 
J = 15 individuals tracked with GPS units from 30 July 2018 to 29 
September 2018 (Figure 2; Cheng et al., 2019; Fiedler et al., 2019 
data). These data are available in the r package ‘moveVis’ (Schwalb-
Willmann et al., 2020).

3.1 | Model statement

We specified a continuous-time hierarchical model for stork move-
ment with the data component

where s j(ti) is the measured position of individual j at time i (for 
j = 1, …, J and i = 1, …, nj). We defined the potential function in (15) as 
p(s, β j) ≡ x′(s)β j, which describes a surface upon which an individual is 
more likely to move ‘downhill’ (Brillinger, 2010; Hooten et al., 2017). In 
our specification, this surface is a linear function of covariates x(s) and 
will influence the speed and directional persistence of movement. The 
term dti represents the change in time between successive positions s 

j(ti-1) and s j(ti), and I is the 2 × 2 identity matrix. The statistical model in 
(15) converges to the stochastic differential equation (SDE)

as dt → 0, where db j(t) is bivariate Gaussian white noise.
In the data model (15), the parameters �2

j
 relate to the speed of 

the migrating individuals and will vary around a group-level speed. 
However, due to the positive support of the variance components �2

j

, we chose to model the individual-level process relating to migra-
tion speed in the transformation log(σj) so that the support is un-
bounded and can be suitably modelled with a Gaussian distribution. 
Otherwise, to create Gibbs updates for �2

j
 directly in a single-stage 

algorithm, we would need to specify a conjugate inverse gamma 
process model on �2

j
, and specifying hyperpriors on the associated 

shape and scale parameters would be neither trivial nor biologically 
intuitive. Thus, we specified a process model for log(σj) instead of �2

j
, 

implying the transformation function �2
j
= g(log(� j)) = e2log(�j).

(11)
[
�j|yj

]
=
[
g(�j)|yj

] |J(g(�j))|,

(12)J(g(�j)) ≡

⎡⎢⎢⎢⎢⎢⎢⎣

�g1(�j)

��j,1
⋯

�g1(�j)

��j,p

⋮ ⋱ ⋮

�gpg (�j)

��j,1
⋯

�gpg (�j)

��j,p

⎤⎥⎥⎥⎥⎥⎥⎦

.

(13)r
(k)

j
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yj|�(∗)j
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�
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j
|� (k−1)
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]
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] ,

(14)=

[
�
(∗)

j
|� (k−1)

] [
g(�j)

(k−1)
] |J(g(�j)(k−1))|[

�
(k−1)

j
|� (k−1)

] [
g(�j)

(∗)
] |J(g(�j)(∗))|

.

(15)sj(ti) ∼ N(sj(ti−1) − ∇p(sj(ti), � j)dti, �
2
j
dtiI),

(16)sj(t) = −∇p(sj(t), � j)dt + � jdbj(t),
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In our example, we expected migration to occur primarily in a single 
direction and specified x(s) = s2 where the second component of posi-
tion s corresponds to latitude and the coefficient vector is comprised 
of a single parameter β. Thus, the negative gradient of the potential 
function in (15) simplifies to −∇p(s j(t), β j) = –(0, βj)′. However, this sim-
plification is based on the assumption that all individuals will migrate in 
a north/south orientation. To allow for individual variation in the bear-
ing, we multiplied the potential function in (15) by the rotation matrix

where ϕj is the angle from south of a migratory path, resulting in the 
data model

Assuming that the variability in βj and log(σj) across individuals 
can be accounted for as Gaussian random effects and that individual 

variability in ϕj does not arise from an underlying group-level distri-
bution, we have � j ∼ N(�� , �

2
�
), log(�j) ∼ N(�� , �

2
�
), and ϕj ~ Unif(0, π), 

where population-level means μβ and μσ are modelled with Gaussian 
priors and �2

�
 and �2

�
 arise from inverse gamma priors (full model in 

Supporting Information, Appendix B in Supporting information).

3.2 | Two-stage implementation

We fit our model to a subset of the stork migration data (approxi-
mately two observations per day per individual) using TARB. In the 
first stage, we specified individual-level models using the tempo-
rary prior [βj, �

2
j
] =  [βj]  [�

2
j
], where βj ~  [βj] ≡ N(μ0, �2

0
) and �2

j
 ~  [�2

j

] ≡ IG(q0, r0) for j = 1, …, J. Thus, in the first stage, we sample from the 
posterior distribution

for each individual j = 1, …, J. We sampled sequentially from the con-
jugate full-conditional distributions [βj|⋅] and [�2

j
|⋅] using Gibbs updates 

and from [ϕj|⋅] using a MH update in an MCMC algorithm in r (version 

(17)M ≡

⎛
⎜⎜⎝
cos(�j) −sin(�j)

sin(�j) cos(�j)

⎞
⎟⎟⎠
,

(18)sj(ti) ∼ N(sj(ti−1) − � j

⎛
⎜⎜⎝
sin(�j)

cos(�j)

⎞
⎟⎟⎠
dti, �

2
j
dtiI),

(19)
[
� j, �

2
j
, �j|Sj

]
∝

nj∏
i=2

[
sj(ti)|� j, �2j , �j

] [
� j
] [

�2
j

] [
�j

]
,

F I G U R E  2   (a) Migratory trajectories for J = 15 white storks tracked via GPS loggers in fall 2018, with each individual represented by a 
different colour, and (b)–(d) posterior means (points) and 95% credible intervals for model parameters resulting from fitting our hierarchical 
movement model to n = 1,675 telemetry locations from J = 5 white storks as a single hierarchical algorithm and in two stages using TARB. 
It is important to note here that we show the posterior distributions for the first-stage estimates to illustrate how some individual-level 
parameters borrow strength from the group-level parameters in stage 2, but in practice, the first-stage posterior estimates would not be 
used to make inference

(a) (b)

(c)

(d)
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3.6.1) that we parallelized over individuals with the ‘parallel’ package (R 
Core Team 2019).

To use samples from the first-stage models as proposals in the 
second-stage algorithm, we calculated the Jacobian determinant in 
(14). Letting θ j ≡  (βj,  log(σj))′, and the 2 × 1 vector transformation 
g(θ j) be comprised of components g1(θ j) = βj and g2(�j) = e2log(�j), we 
calculated the Jacobian

which has the determinant |J(g(θ j))| = 2�2
j
. Thus, the second-stage MH 

ratio from (14) to update βj, log(σj), and ψj for individual j is

The scalar multiple of 2 from the Jacobian determinant cancels in the 
numerator and denominator of (21). In the second-stage algorithm, 
we used the MH ratio in (21) to accept our proposals for βj

(*), log(σj
(*)) 

and ϕj
(*) which we sampled jointly at random (with replacement) from 

our first-stage MCMC sample. Then, we sampled the group-level 
model parameters (μβ, �

2
�
, μσ, and �2

�
) sequentially from their full-con-

ditional distributions using Gibbs updates (Appendix B in Supporting 
information).

Alternatively, it is possible to fit the full hierarchical model using 
a standard MCMC algorithm with Gibbs updates for βj, μβ, �

2
�
, μσ and 

�2
�
. However, we would need to use MH updates for log(σj) and ϕj, 

and in cases where the number of individuals J is large, we may have 
to tune a prohibitively large number of proposal distributions to yield 
optimal acceptance rates in the MCMC algorithm. Nonetheless, to 
demonstrate that we obtain the same inference with TARB as com-
pared to a single MCMC algorithm, we also fit the full model with a 
single algorithm, updating βj and log(σj) sequentially for each indi-
vidual with Gibbs and MH updates, respectively, and the remaining 
model parameters as above.

3.3 | Results

We fit our movement model to a subset of n = 1,675 stork telemetry ob-
servations across J = 15 individuals using TARB with K = 100,000 MCMC 
iterations for each stage, computing the first stage in parallel over 8 
cores, and using a single hierarchical MCMC algorithm with K = 100,000 
MCMC iterations. The recursive approach required 2.95 min and the sin-
gle algorithm required 9.87 min; thus computation was over three times 
faster using TARB. With a larger dataset of n = 155,161 locations for 15 
individuals and K = 60,000 MCMC iterations, computation time to fit 
the model recursively, in parallel over 15 cores, was 49 min, compared to 
88 min to fit the model as a single algorithm.

Both computational approaches resulted in the same 95% credible 
intervals and posterior means for βj and log(σj) and the same popula-
tion-level means μβ and μσ (Figure 2). The stage-two posterior credible 
intervals for the βj and log(σj) for each individual j indicate individual 
variation in speed and directional persistence of migration, but the 
population is centred around μβ and μσ. First-stage credible intervals 
are included only to visualize the relationship between stage one and 
stage two in Figure 2, and are not used for inference. The shrinkage in 
interval width between the first- and second-stage posteriors of βj and 
log(σj) indicates individual-level inference was informed by group-level 
parameters in the second stage, although this effect was relatively 
minor in this example. Furthermore, fitting the model to simulated data 
shows that both computational approaches do equally well recovering 
‘true’ simulated parameters (Appendix C in Supporting information).

4  | DISCUSSION

In our application, we illustrated how TARB can be used to ef-
ficiently fit a hierarchical animal movement model to telemetry 
data, but TARB could be implemented in many ecological mod-
els to improve computational efficiency. In Table 1, we highlight 
several studies from the ecological literature in which the authors 
used a Bayesian hierarchical model (or desired to, barring compu-
tational limitations, as in Breed et al., 2009) that could be fit with 
TARB. To demonstrate the application of TARB to existing eco-
logical models, we discuss two examples in detail, outlining how 
the models can be specified in the two-stage framework for faster 
computation.

4.1 | Harbour seal counts

Cressie et al.  (2009) specified a Bayesian hierarchical model to ex-
plicitly account for uncertainty at the data and process levels while 
estimating abundance of harbour seals Phoca vitulina from census 
data (Ver Hoef & Frost, 2003) in Prince William Sound

where yij is the number of hauled-out seals counted from photographs 
during each aerial survey i conducted at site j. In the observation 
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model (22), counts arise from a Poisson distribution with intensity 
parameter λij that represents the expected number of haul-outs in 
a given survey and location. The expected number of haul-outs (λij) 
arises from a normal distribution with mean μij that is a function of 
covariates x ij with variance parameters σij

2 for each survey and lo-
cation. Site-level coefficients θ j arise from a population-level mul-
tivariate Gaussian distribution, where Σ is a diagonal matrix with 
population-level variance parameters along the diagonal. Thus, the 
hierarchical model in (22)–(25) is a special case of a generalized linear 
mixed model.

Surveys were conducted several times per year at each site. 
Thus, in the first stage of the TARB framework, counts could be 
modelled independently for each site with the model

where a temporary gamma prior on λij is conjugate with the data 
model (22) in the first stage so that the MCMC algorithm is unsu-
pervised and could be parallelized over the sites. To complete model 
fitting in stage two, log-transformed first-stage samples for λij would 

be used as proposals in the MH update for log(λij) in a second-stage 
algorithm,

where d

dlog(�ij)
elog(�ij) = �ij. All other parameters in the second stage 

would be updated in the same manner as in a conventional algorithm.

4.2 | Host plant genetics

Evans et al. (2012) conducted a common garden experiment to de-
termine the effects of cottonwood host (Populus spp.) genotype on 
the abundance of herbivorous mite Aceria parapopuli galls on trees. 
In our notation, their model was

where yimt is the number of galls on tree i with genotype m in year t. 
The intensity parameter θimt is a log-linear function of fixed effects α 
for year and genotype and random effect of tree, βi. Modifying the 
process model to

and using temporary priors on γ1 and γ2 results in an unsupervised first-
stage algorithm. We make a similar adjustment to the second-stage 
MH ratio as in (28) for recursive computation.

4.3 | Conclusion

Transformation-assisted RB is one of the most accessible ap-
proaches for fitting ecological models recursively with improved 
computational efficiency and ease. Transformation allows us to 
extend the benefits of RB to more model specifications, and the 
demonstrated approach with change of variables can be imple-
mented for most continuous random variables. The ability to in-
corporate prior information into analyses is a well-known feature 
of Bayesian analysis, but it can be difficult to determine how to 
do so in a robust way, and TARB is a natural approach for using 
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TA B L E  1   Examples of ecological studies with Bayesian 
hierarchical models that could be implemented in a transformation-
assisted recursive Bayesian framework

Discipline Study

Fish & Wildlife Ecology Burton et al. (2012)

Cressie et al. (2009)

Breininger et al. (2019)

Kuhnert et al. (2005)

Monroe et al. (2017)

Moore and Barlow (2011)

Integrated Population Models Cleasby et al. (2017)

Eacker et al. (2017)

Raiho et al. (2015)

Schaub et al. (2013)

Animal Movement Breed et al. (2009)

Eckert et al. (2008)

Jonsen et al. (2006)

McClintock et al. (2013)

Muff et al. (2019)

Forestry & Plant Ecology Dietze et al. (2008)

Evans et al. (2012)

Hanks et al. (2011)

Iijima and Otsu (2018)

Vieilledent et al. (2010)

Ecosystem Ecology Borsuk et al. (2001)

Coll et al. (2019)

Shelton et al. (2016)
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posterior estimates from a previous study as prior information in 
subsequent studies. Finally, TARB leverages the parallel comput-
ing capacity of modern multi-core computers (Visser et al., 2015) 
to reduce the computational bottleneck created by large datasets 
and conventional sampling techniques.

Decreased computation time is a major advantage of fitting hier-
archical models using TARB, but reducing tuning and partitioning the 
data in the first stage are equally, if not more, advantageous. This is es-
pecially true for large hierarchical models where one might otherwise 
have to individually tune dozens or hundreds of individual-level pa-
rameters to achieve convergence, which would require repeatedly fit-
ting the model. Furthermore, because the first-stage algorithm is used 
to fit data partitions independently and the second-stage algorithm 
does not rely on the data directly, we expect additional computational 
gains. Finally, by design, TARB accommodates uneven sample sizes of 
partitions, because the first-stage posterior distributions will reflect 
the uncertainty associated with different sample sizes, thus implicitly 
weighting the partitions according to sample size in the second stage.

In many cases, the first-stage algorithms of RB and TARB ap-
proaches could be implemented in an existing package like JAGS, Stan 
or NIMBLE (NIMBLE Development Team, 2019; Plummer, 2003; Stan 
Development Team, 2018), but the second-stage algorithm cannot be 
easily implemented in this software. However, using TARB, it may be 
possible to fit models that are not feasible using these software pack-
ages at all. While automated software is convenient and well-suited to 
a wide range of models, it cannot accommodate all model specifica-
tions and users do not always have control over tuning. Although soft-
ware packages can often fit large models quickly, this may be achieved 
via computation in C++ rather than R (e.g. Stan; Stan Development 
Team,  2018) or by making approximate inference (e.g. INLA; Rue 
et al., 2009). Recursive techniques like TARB can also be implemented 
in C++ via R and rcpp for greater computational efficiency, and the 
results can be used to obtain both marginal and joint inference.

While TARB can be implemented for a broad range of hierarchi-
cal models, there are some cases for which TARB, as presented here 
using the Jacobian to perform a change of variables, is not ideal for 
model fitting. For example, hierarchical models that have common 
parameters at the data level, in addition to partition-level parame-
ters, such as GLMMs with both fixed and random effects, are not 
easily implemented using TARB. In this case, prior-proposal RB may 
be helpful (Hooten et al., 2020). Additionally, the Jacobian approach 
for computing transformed densities is well-suited for transform-
ing continuous random variables, but alternate approaches must be 
used for discrete random variables. We demonstrated TARB using 
this technique because it serves as a good introduction into recur-
sive techniques with transformation. For other random variables or 
applications, there are many useful generalizations of this approach 
that could be used to obtain valid transformations.

Hierarchical models are powerful tools for understanding com-
plex ecological systems, but the computational demands of fitting 
ecologically realistic models can make them impractical or impos-
sible to implement. Recursive Bayesian computing techniques ad-
dress these computational demands, and partitioning model fitting 

into stages is natural in many ecological applications. For example, 
in adaptive management, RB and TARB would allow managers to fit 
first-stage individual-, year- or site-level models as data are collected, 
and add new partitions to existing results by subsequently updating 
the second stage. Additionally, because the second-stage algorithm 
only requires first-stage posterior samples, partitions could repre-
sent data collected by different researchers during ongoing projects, 
and researchers could fit population-wide models without needing 
to share data (Hooten et al., 2020). Thus, in the current era of big 
data and complex modelling in ecology, TARB is an approachable 
technique that reduces the computational limitations on the ecolog-
ical models ecologists can specify and fit.
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