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Improving Wildlife Population Inference Using
Aerial Imagery and Entity Resolution

Xinyi Lu , Mevin B. Hooten, Andee Kaplan, Jamie N. Womble, and
Michael R. Bower

Recent technological advancements have seen a rapid growth in the use of imagery data
to estimate the abundance and spatial distribution of animal populations. However, the
value of imagery datamay not be fully exploited under traditional analytical frameworks.
We developed a method that leverages aerial imagery data for population modeling
through entity resolution, a technique that stochastically links the same individual across
multiple images. Resolving duplicate individuals in overlapping images that are distorted
requires realigningobservedpoint patterns optimally; however, popularmachine learning
algorithms for image stitching do not often account for alignment uncertainty. Moreover,
duplicated individuals can provide insight about detection probability when overlaps are
viewed as replicate surveys. Ourmodel resolves individual identities by linking observed
locations to latent activity centers and estimates total population as informed by the
linkage structure.Wedeveloped a hierarchical framework to achieve entity resolution and
abundance estimation cohesively, thereby avoiding single-direction error propagation
that is common in two-stage models. We illustrate our method through simulation and a
case study using aerial images of sea otters in Glacier Bay, Alaska.
Supplementary materials accompanying this paper appear on-line

Key Words: Bayesian; Data augmentation; Hierarchical model; Spatial capture-
recapture.

1. INTRODUCTION

Aerial surveys are widely used to provide abundance information about terrestrial and
marine species (Caughley 1974; Ver Hoef 2014). Compared to traditional observer-based
surveys, imagery surveys have the advantage of reducing risk for observers and providing a
permanent record that can be independently verified (Buckland et al. 2012). In addition to
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population counts, the imagery data (often referred to as photographs; Fig. 3 in Supplemen-
tary Material) provide individual-level information such as color, size, and location, which
can be leveraged to identify animals without marking them (Williams et al. 2020). This gain
in information leads to more reliable modeling of population abundance than using count
data only (Dennis et al. 2015; Barker et al. 2018; Ketz et al. 2019). In what follows, we
describe a Bayesian hierarchical model to identify unique individuals in overlapping images
and estimate population size under a unified framework. We apply our model to analyze
aerial imagery data of sea otters (Enhydra lutris kenyoni) in Glacier Bay, Alaska. During a
survey, images are acquired at a regular time interval with overlapping regions in the direc-
tion of aircraft movement as it flies along transects that are systematically placed across the
Glacier Bay. Sea otters in the images are located and counted by trained observers after the
survey. Past studies using these data have either discarded overlapping images to meet the
independent count assumption of binomial models (Lu et al. 2019), or treated counts from
overlapping regions as temporal replicates in N-mixture models (Williams et al. 2017).
We demonstrate the advantages of our method over the previously described methods in
simulation.

The information we use to resolve individual identities are the observed locations of
individuals in a sequence of images. However, individual positions may be distorted when
the aircraft deviates from its scheduled trajectory due to a variety of reasons that can influ-
ence altitude and aircraft position, resulting in an artificial transformation of the image
footprints. Further, micro-movement of sea otters and locating uncertainty during labora-
tory processing make exact matching of observed locations in overlapping regions nearly
impossible. There exists a rich literature on image stitching where the common objective is
to optimally combine a sequence of overlapping images into a composite image by mini-
mizing a loss function (Levin et al. 2004; Szeliski 2006; Brown and Lowe 2015; Gross and
Heumann 2016). However, optimization-based image stitching algorithms do not usually
provide uncertainty about the stitching process and are seldom integrated into other models
to provide additional learning about the system. On the other hand, the statistical literature
associated with entity resolution, also known as record linkage when the objective is to
merge multiple data files (in our case, images) in the absence of unique identifiers (in our
case, individual tags, for example), may provide a theoretical basis for uncertainty quan-
tification. We incorporate uncertainty in the record linkage process into a capture-recapture
model for abundance estimation.

Traditional approaches to record linkage compare similarities between pairs of records
from which matching decisions are made (Fellegi and Sunter 1969; Jaro 1989; Winkler
1995). Larsen and Rubin (2001) presented record linkage as a mixture of linkage probabil-
ities between a model for probable links and a model for probable nonlinks. Fortini et al.
(2001), McGlincy (2004), and Larsen (2004) developed the Bayesian approaches based on
the same idea. However, comparison-based approaches are largely infeasible computation-
ally, even when the number of possible links is moderately large (Winkler 2006). One way
to reduce the computation cost of record linkage is by “blocking,” where records parti-
tioned into different blocks are considered nonlinks a priori (Christen 2011; Steorts et al.
2014). Alternatively, record linkage can be presented as the clustering of observed records
by unobserved identities (Copas and Hilton 1990; Tancredi and Liseo 2011; Liseo and Tan-
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credi 2011; Steorts et al. 2015; Tancredi et al. 2018). Each latent identity has a “true” value
and the associated records are modeled as stochastic distortions from the truth. Steorts et al.
(2015) introduced the graphical record linkage model by representing the linkage structure
as a bipartite graph between observed records and latent identities. By comparing records
to latent identities instead of each other, the computation time to link d data files with a
maximum of n records per file can be substantially reduced from O (

nd
)
to O(dn). One

distinction between the graphical record linkage model and other non-parametric clustering
methods such as Dirichlet process models and Pitman-Yor process models is that the latter
often assume linear growth of cluster size with the size of data (Wallach et al. 2010; Betan-
court et al. 2016), whereas in record linkage problems, co-referent clusters tend to stay small
even when the number of records grows. Following Liseo and Tancredi (2011) and Steorts
et al. (2015), we made use of a bivariate Gaussian model conditional on the latent truths to
identify unique individuals in the imagery data.

The output of a record linkage model can be used to learn about population size. When
uncertainty exists in linkage structure, record linkage and size estimation are often regarded
as two separate stages (LaPorte et al. 1993; Anderson and Fienberg 1999; Lum et al. 2013).
Sadinle (2018) proposed using “linkage-averaging” to transfer linkage uncertainty as quan-
tified by Bayesian posterior samples into the subsequent stage of population size estimation.
Although linkage-averaging facilitates model exploration by allowing the combination of
different record linkage models with population models, any bias in the record linkage
stage will propagate into the size estimation stage regardless of model choice (Tancredi and
Liseo 2011). Our hierarchical framework naturally relates entity resolution and abundance
estimation as one generative process, thereby allowing information exchange and feedback
between these two model objectives. Other unified modeling approaches exist, including
those presented by Link et al. (2009) and Wright et al. (2009) that incorporate misidentifi-
cation into capture-recapture models by sampling from latent multinomial distributions, the
hierarchical record linkage models proposed by Tancredi and Liseo (2011) and Liseo and
Tancredi (2011) that reflect capture-recapture dynamics through latent matching matrices,
and the latent Poisson processmodel proposed byGreen andMardia (2005) to align partially
labeled protein structures. We propose a novel framework that combines a record linkage
model and a spatial capture-recapture model (Royle and Young 2008) to align distorted
animal locations and to account for heterogeneity in detection probability due to temporally
changing survey units.

We present our hierarchical record linkage model in Sect. 2. In Sect. 3, we illustrate the
model through simulation and a case study using aerial photographs of sea otters in Glacier
Bay, Alaska. Finally in Sect. 4, we discuss possible extensions and broader applications of
our model.

2. MODEL

2.1. DATA MODEL

Consider a sequence of T images with nt observed individuals in image t , for t =
1, . . . , T (see Fig. 2 in SupplementaryMaterial, for example). Let yi,t be a two-dimensional
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vector of latitude and longitude denoting the observed location of the i th individual in image
t , and let ui,t denote the true location of that individual. Distortion in yi,t occurs in laboratory
processing when the image footprint,Ft , is artificially scaled and rotated to fit in a template,
Qt , assuming the aircraft trajectory follows a fixed height and orientation. The image centers
(latitude, longitude)were recordedby aGPSdevice on the aircraft in real time and are reliable
to represent the truth. Using the known image center μt as a reference point, we connect
the distorted displacement of the observed location from the image center to that of the true
location, ui,t , from the image center as

yi,t − μt = (1 + ct ) R (θt )
(
ui,t − μt

)
, (1)

where the counterclockwise rotation matrix is given by

R (θt ) =
(
cos θt − sin θt

sin θt cos θt

)

.

The scaling parameter, ct , and the rotation parameter, θt , are modeled using basis function
regression to ensure smoothness and flexibility in the aircraft trajectory (Hefley et al. 2017).
We specify

ct = w(t)′α,

θt = v(t)′β,
(2)

where w(t) and v(t) are the basis functions evaluated at time t for scaling and rotation,
respectively. Due to unknown distortion, the true image footprints are also unknown, and
we model the four vertices of the rectangular image footprint Ft through a georectification
process from the known template Qt ,

ν j,t − μt = 1

(1 + ct )
R (−θt )

(
ν∗
j,t − μt

)
, j = 1, 2, 3, 4, (3)

where ν j,t denote the vertices of Ft and ν∗
j,t denote the vertices of Qt .

We assume every observed individual has a latent identity, λi,t , that may be shared
across images but not within the same image. The true locations, ui,t , are modeled as
Gaussian conditioned on a transient activity center associated with the latent identity, sλi,t ,
and movement uncertainty, σ 2

u I , such that

ui,t |sλi,t , σ 2
u ∼ N

(
sλi,t , σ

2
u I

)
.

Subsequently, the conditional distributions of the observed locations are expressed as fol-
lows,

yi,t |sλi,t , σ 2
u , ct , θt ∼ N

(
μt + (1 + ct ) R (θt )

(
sλi,t − μt

)
, σ 2

u (1 + ct )
2 R (θt ) RT (θt )

)
.

(4)
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We note that reliable inference from our model depends on a small σ 2
u relative to the

amount of distortion due to scaling and rotation, and we return to this concept in Sect. 3.1.
Based on the latent identities, the data model in (4) allows us to minimize the Procrustes
distance (Dryden and Mardia 1998) between configurations of points in the overlapping
regions, and the process model that we describe in what follows enables inference about the
latent identities.

2.2. PROCESS MODEL

We adopt a parameter expanded data augmentation approach (Royle 2009; Royle and
Dorazio 2012) and assume there is a super-population of size M much greater than the
total number of observations in a study domain, D, that contains the union of all image
footprints. Each individual in the super-population has a binary variable, zm , representing
whether the individual belongs to the population being sampled, where zm ∼ Bern(ψ)

for m = 1, . . . , M . Conditional on the latent identities of the observed individuals, the
augmented data are a zero-inflated version of the capture history. The prior specification on
the zero-inflation parameter,ψ , along with the super-population size,M , implicitly suggests
a prior for the unknown population size, N (Royle et al. 2007).

We let λt denote the vector of latent identities indexed by m for the observed individuals
in image t . A plausible configuration of λt must satisfy two conditions: (a) there are no
duplicate identities, and (b) any identity in λt must be detectable at time t . Otherwise the
probability of observing λt is zero. Each individual in the super-population is associated
with an activity center, sm . We let the activity centers be uniformly distributed in the study
domain a priori. We require that an individual is detectable at time t if and only if it is
a member of the population being sampled (zm = 1) and its realized location is inside
the image footprint at time t (um,t ∈ Ft ). In the spatial capture-recapture model by Royle
and Young (2008), realized locations are fully augmented for all individuals in the super-
population and unobserved um,t are treated as missing data (the model does not account
for measurement error so the observations are the realized locations). However, when the
observed individuals are unidentified, accounting for missingness becomes challenging.
Therefore, we integrate um,t from the process model by letting pm,t denote the probability
that um,t falls in Ft conditional on Ft , the activity center sm , and the movement process
variance σ 2

u , such that

pm,t = P

(
um,t ∈ Ft

∣
∣∣Ft , sm, σ 2

u

)
=

∫

Ft

1

2πσ 2
u
exp

(

− (u − sm)
′
(u − sm)

2σ 2
u

)

du. (5)

Let p0 denote the baseline detection probability (e.g., sea otter detectability due to diving
behaviors). Then we have

P

(
λi,t = m

∣∣∣zm, sm,Ft , σ
2
u , p0

)
=

{
p0 × pm,t , if zm = 1;
0, otherwise.
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Assuming the individuals are independently detected, the probability of observing λt is as
follows,

P

(
λt

∣
∣
∣{zm}Mm=1 , {sm}Mm=1 , σ 2

u ,Ft , p0
)

= 1

nt !
∏

m:zm=1

{
p0 pm,t I (m ∈ λt ) + (

1 − p0 pm,t
)
I (m /∈ λt )

}
,

(6)

where the factor of 1
nt ! indicates that all permutations of λt are equally likely a priori. The

processmodel induces regularization on the number of unique latent identities by controlling
the number of activity centers in an image that belong to the population being sampled.When
the super-population is much larger than the total number of observed individuals, under-
linkage is likely when each observation seeks its own activity center. However, to infer that
a pair of observations in the overlapping region corresponds to different activity centers is to
infer that each individual is detected once between two consecutive visits. Such inference,
along with any extra activity center in the image that remain undetected, will be penalized
by a high detection probability in the model for λi,t . The process model thereby motivates
linkage between observed locations that are spatially proximal.

2.3. PARAMETER MODEL

We used an informative inverse-gamma prior for σ 2
u because we have specific knowledge

about the extent of sea otter movement that is physically possible between consecutive
images (Williams 1989). We imposed a penalization on the second derivatives of the fitted
B-splines through the prior variances of α and β. The penalty parameters were selected
by cross-validation (Wahba 1978; Wood et al. 2016). We specified ψ ∼ Beta(0.001, 1) to
approximate a scale prior for N ([N ] ∝ 1/N , Link, 2013), and we centered the prior for p0
at 0.75 based on a prior data analysis and as suggested in past studies (Williams et al. 2017;
Lu et al. 2019). A full description of prior distributions can be found in Appendix A.

The joint posterior distribution associated with our model is

[
{λt }Tt=1 , {sm }Mm=1 , σ 2

u ,α, β, {zm }Mm=1 , p0, ψ
∣∣
∣Y

]
∝

T∏

t=1

nt∏

i=1

[
yi,t

∣∣
∣sλi,t , σ

2
u , α, β

]
×

M∏

m=1

[sm ]

×
T∏

t=1

[
λt

∣∣∣{zm }Mm=1 , {sm }Mm=1 , σ 2
u , α, β, p0

]
× [p0]

×
M∏

m=1

[zm |ψ] × [ψ] ×
[
σ 2
u

]
× [α] × [β].

The distortion parameters, ct and θt , in Eq. 4 and the image footprint, Ft , in Eq. 6 are
deterministic functions of α and β, and are therefore replaced by the basis function coef-
ficients in the above expression. We implemented our model using MCMC and provide a
full description of the algorithm in Supplementary Appendix A.
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3. APPLICATION

3.1. SIMULATION

We simulated a population of N = 200 individuals and sampled their activity centers
sm , for m = 1, . . . , N , uniformly from a 100 m × 2000 m study domain, D, to emulate
the population intensity in the case study. For t = 1, . . . , T , T = 50, we sampled real-
ized locations um,t ∼ N

(
sm, σ 2

u I
)
. We let σ 2

u be 0.25 based on the estimated maximum
underwater speed of sea otters according to empirical studies (Williams 1989). For the mea-
surement process, we set the image centers to be equally spaced between μ1 = (50, 50)′
and μ50 = (1950, 50)′ and let the footprint template at time t ,Qt , be a 58 m × 58 m square
centered at μt and parallel to the horizontal axis. We generated distortion parameters from
cubic B-splines with coefficients α = β = (0.1, 0.2, 0.1,−0.1,−0.2)′ and obtained the
image footprint Ft using Eq. 3. When um,t ∈ Ft , we detect individual m at time t with
probability p0 = 0.75 as informed by past studies (Williams et al. 2017; Lu et al. 2019).
We recorded the distorted locations of the detected individuals by Eq. 1. Figure 1 illustrates
the simulated image footprints and the true locations as well as the corresponding footprint
templates and the observed locations.

In our implementation of the model, we let the super-population be of size M = 3000.
We ran the MCMC algorithm in R version 3.0.2 (R Core Team 2019) for 15,000 iterations.
Our algorithm took 2.5 hours on a 2.5 GHz Intel Core i5 processor. Advanced sampling
strategies like the split-merge Metropolis-Hastings updates on the latent identities can be
used to expedite computation (Jain and Neal 2004), and parallel computing techniques like
recursive Bayesian methods can improve statistical scalability in future implementations
(Hooten et al. 2021).We used a burn-in of 5000 iterations and obtained posterior realizations
of population size as a derived quantity from the remaining K = 10000 posterior samples
of zm as

N (k) =
M∑

m=1

z(k)m , k = 1, . . . , K . (7)

We obtained posterior realizations of the number of unique individuals from all observations
by counting unique labels in the posterior samples of {λt }Tt=1 as

N (k)
0 =

∣∣
∣∣
{
λ

(k)
t

}T

t=1

∣∣
∣∣ , k = 1, . . . , K . (8)

Ourmodel captured the true parameterswithin their respective 95%credible intervals, which
we summarize in Supplementary Table 1.

Two recent studies have used aerial photographs to estimate sea otter abundance in
Glacier Bay, Alaska. Lu et al. (2019) proposed a nonlinear reaction-diffusion process model
for population intensity, but used only every other image in accordance with the assumptions
of their model. An arbitrary selection of images to use for data analysis may lead to bias in
abundance estimation, especially if population intensity is spatially heterogeneous.Although
our method is not directly comparable to that of Lu et al. (2019), we can compare the
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Figure 1. a Simulated image footprints, Ft , overlaid with true locations, ui,t . The time-indexed points represent
image centers,μt . True locations are marked with “�” in even images and “�” in odd images. The largest rectangle
containing all images is the study domain, D; b simulated footprint templates (dashed rectangles), Qt , overlaid
with observed locations, yi,t , that are marked with “�” in even images and “�” in odd images; c a focused
illustration on observed images 20 and 21 (dashed rectangles), overlaid with posterior samples of image footprints
(solid rectangles) and activity centers (points) with their truths (crossed diamonds) .

estimated number of unique individuals in all images because it refers to the observed
abundance. We observed 111 locations from all images in the above simulation, which
correspond to 90 unique individuals in truth. Our model estimated a posterior mean of 90
unique individuals. However, the number of unique individuals from counting all the odd
images is 60, and the number of unique individuals from counting all the even images
is 51. Discarding half of the images led to inconsistent and insufficient counts, whereas
we improved abundance estimates by accounting for duplicate individuals in overlapping
regions.

Williams et al. (2017) proposed an N -mixture model where the counts from overlapping
images are considered temporal replicates. The model divides images into mutually exclu-
sive regions of overlaps and non-overlaps and denotes y (Ai , j) as the count from the j th
overlap of region Ai , such that ∪n

i=1Ai = ∪T
t=1Ft and Ai ∩ A j = ∅, i �= j . Under the
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Figure 2. a Estimated point-wise 95% credible interval overlaid with the truth for the scaling parameter, c; b
estimated point-wise 95% credible interval overlaid with the truth for the rotation parameter, θ .

assumption of homogeneous detection probability p0 and population intensity η, the counts
are modeled by

y (Ai , j) ∼ Binom (N (Ai ) , p0)

N (Ai ) ∼ Pois (η|Ai |) ,
(9)

where |Ai | is the area of Ai . AlthoughWilliams et al. (2017) accounted for heterogeneity in
p0 and η based on spatial covariates, we fit the homogeneous version of their model in Eq. 9
to our simulated data using an MCMC algorithm. A posterior realization of population size
is obtained as a derived quantity by N (k) = η(k)|D|, for k = 1, . . . , K MCMC iterations.
The estimated posterior mean abundance was 178 with a 95% credible interval (142, 216).
Both the method by Williams et al. (2017) and our method were able to recover the true
population abundance in simulation; nonetheless, our process model distinguished sea otter
detectability due to diving from that due to temporary emigration from the image footprints
(Kendall et al. 1997). In addition to abundance estimation, our estimated activity centers
can be used to inform spatial heterogeneity of the population intensity and our estimated
distortion parameters can be used to reconstruct the aircraft trajectory via trigonometric
projections.

To evaluate our model performance in linkage estimation, we used false discovery rate
(FDR) and false negative rate (FNR) as recommended by Steorts (2015) to account for the
large number of non-links in our application. There are four possible results when comparing
the estimated linkage and the truth:

1. True positive (TP): two individuals have the same latent identity in both the estimation
and the truth;

2. False positive (FP): two individuals are estimated to have the same latent identity
when they are actually different;
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Table 1. True parameter values and marginal posterior means (95% credible intervals) for population size (N )
and the number of unique individuals (N0) under different simulated movement uncertainties (σ 2

u )

σ 2
u N Posterior mean (95% CI) N0 Posterior mean (95% CI)

0.25 200 192 (160, 233) 91 90 (90, 91)
1 200 191 (155, 241) 87 88 (87, 91)
2.5 200 251 (196, 327) 91 95 (93, 97)
10 200 364 (216, 668) 88 100 (93, 108)

3. True negative (TN): two individuals have different latent identities in both the esti-
mation and the truth;

4. False negative (FN): two individuals are estimated to have different latent identities
when they are actually the same.

We computed the posterior mean FDR and FNR as E[FDR|Y ] = 1
K

∑K
k=1

FP(k)

FP(k)+TP(k) =
0.000001 and E[FNR|Y ] = 1

K

∑K
k=1

FN(k)

FN(k)+TP(k) = 0.001 based on the model fit to the
simulated data.

Posterior realizations of the scaling and rotation parameters, c and θ , were obtained as
derived quantities using Eq. 2, and posterior realizations of the image footprints, Ft , were
obtained as derived quantities using Eq. 3. Figure 1 illustrates posterior samples of the image
footprints and the activity centers overlaid with their truth for a subset of images (images
20 and 21). Our model performed well, linking observations that correspond to the same
individual in the overlapping region and correctly estimating their activity centers despite
distortion. Figure 2 demonstrates the point-wise 95% credible intervals for c and θ . The
point-wise 95% credible intervals contained the true simulated values for both parameters.

Lastly, we demonstrate our model inference using simulated data with increasing levels
of individual movement, σ 2

u , while the other parameters are held constant. We note that any
σ 2
u significantly larger than 0.25 would be unrealistic for sea otters in southeastern Alaska;

nonetheless, the followingdemonstration serves to emphasize a viable condition for applying
our method in other survey scenarios. Table 1 summarizes the posterior distributions of the
number of unique individuals andpopulation size alongwith their truth under different values
of σ 2

u . The true numbers of unique individuals vary between simulations due to dependence
on σ 2

u . The estimated 95% credible interval for N0 widens as individualmovement increases,
indicating less certainty in the linkage process. Consequently, the estimated 95% credible
interval for N expands along with σ 2

u , and the credible intervals when σ 2
u = 10 did not

contain the respective truths for N0 or N .

3.2. CASE STUDY

Sea otter populations have undergone significant fluctuations throughout their range
over the past two centuries (Jameson et al. 1982). After being hunted to near extinction
during the maritime fur trade, sea otter populations have recovered in many areas due to
a combination of conservation efforts, translocations, and environmental changes (Larson
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Table 2. Marginal posterior means and 95% credible intervals for the case study

Parameter Posterior mean (95% CI)

p0 0.64 (0.52, 0.75)
ψ 0.19 (0.15, 0.24)
N 566 (453, 704)
σ 2
u 0.45 (0.34, 0.59)

et al. 2014; Eisaguirre et al. 2021).Monitoring sea otter colonization inGlacier Bay provides
important insight into the ability of a keystone species to recover from near extirpation and
to understand their role in structuring the nearshore food web in Glacier Bay (Williams et al.
2019). From 1993 to 2012, observer-based aerial surveys were conducted from small single-
engine aircraft along systematic transects (Esslinger et al. 2015). Beginning in 2017, aerial
photographic methods (Womble et al. 2018) were conducted using model-based optimized
surveys (Williams et al. 2019). Aerial photographic images were post-processed by trained
observers that counted the number of sea otters in each image. For our case study, we
analyzed a sequence of 20 consecutive images with a total of 151 observations (see Fig. 3 in
Supplementary Material for an example of real images). Sea otter locations were recorded
for 60 m × 90 m footprint templates with their long sides perpendicular to the direction
of aircraft movement (vectors connecting consecutive image centers). Figure 3 illustrates
the observed locations overlaid with footprint templates. Our study domain was a 300 m ×
1000 m rectangular region containing all image footprints as shown in Fig. 3.

We let the super-population be of size M = 3000 and ran the MCMC algorithm for
15000 iterations with a burn-in of 5000 iterations. Table 2 summarizes the marginal poste-
rior distributions from the case study. Our estimated detection probability agrees with the
estimates from previous studies (Williams et al. 2017; Lu et al. 2019). Posterior realizations
of population size were obtained as derived quantities by Eq. 7.

Our model inferred a posterior mean of 125 unique individuals among the 151 obser-
vations using Eq. 8. We illustrate posterior samples of the image footprints, Ft , obtained
as derived quantities using Eq. 3 and posterior samples of the true locations, ui,t , obtained
as derived quantities using Eq. 1 for a subset of images (t = 8, 9) in Fig. 3. Using our
model, we estimated counterclockwise rotation as the distortion process for both images,
thereby linking the two pairs of observations in the overlapping region. The posterior mean
linkage probability was 0.98 for observation pairs (a, h) and (b, i), and all other observation
pairs have less than 0.02 posterior mean linkage probabilities. Figure 4 demonstrates the
point-wise 95% credible intervals overlaid with the posterior means for scaling and rotation,
respectively.

4. DISCUSSION

We presented a novel method to perform entity resolution and population size estima-
tion using individual locations obtained from aerial imagery data of sea otters. We coupled
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Figure 3. a Observations from the case study. Footprint templates (dashed rectangles), Qt , are overlaid with
observed locations, yi,t , that are marked with “�” in even images and “�” in odd images. The time-indexed points
represent image centers, μt . The largest rectangle containing all templates is the study domain, D; b a focused
illustration on observed images 8 and 9 (dashed rectangles), overlaid with posterior samples of image footprints
(solid rectangles), Ft . Observed locations are indexed by letters, and posterior samples of true locations, ui,t , are
shown in solid squares in image 8 and solid triangles in image 9 .
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Figure 4. aEstimated posteriormean andpoint-wise 95%credible interval for the scaling parameter, c;b estimated
posterior mean and point-wise 95% credible interval for the rotation parameter, θ .

record linkage and capture-recapture models to accommodate important features of aerial
imagery data. Our unified framework allows information exchange and uncertainty propa-
gation between the estimation of linkage structure and population abundance, and our model
is adequate for both inferential tasks.

Record linkage models are often sensitive to parameters that control linkage probability.
In a sensitivity analysis for the graphical record linkage model, Steorts (2015) showed that
linkage inference is only reliable when a very precise prior is used on the parameter for
distortion probability. In the Bayesian alignment model, Green and Mardia (2005) advised
that informative priors be used for parameters that dictate matching tendency. In our model,
linkage of observed locations is motivated by their proximity in Euclidean distance to latent
activity centers. Therefore, as expected, our model is sensitive to σ 2

u , the parameter con-
trolling movement. Reliable inference requires that animal movement between consecutive
detections be small relative to distortion, otherwise the model would struggle to identify
unique individuals using locations only. Fortunately, much is known about movement char-
acteristics of many species and this information can be used to specify an informative prior
for σ 2

u . During aerial surveys in Glacier Bay, Alaska, the time lapse between consecutive
images is so brief (1 second) that sea ottermovement is significantly limited by their physical
capability, thus we specified the prior for σ 2

u such that movement distance between con-
secutive images was less than a meter (Williams 1989). We provide details for a sensitivity
analysis of prior distributions on σ 2

u in Supplementary Appendix B. In addition to limited
individual movement, our method could potentially benefit from more overlapping regions
and higher population intensities because they provide more instances for linkage. On the
other hand, our method may be hindered by extensive distortions in the image footprints
or highly clustered populations where distances between the true activity centers are closer
than σu .

Although our method is designed to link observed individuals and estimate population
size simultaneously, it can be useful even when the objective is only one of the two. The
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output of a record linkage model provides insight about the number of unique individuals
observed at least once, and abundance estimation requires only the additional subset of
population that is not observed. Population models can be used to provide prior information
about the total number of latent individuals in a graphical record linkage model (Tancredi
et al. 2018), a parameter that has also proven to be influential for inference (Steorts 2015).
Detection mechanisms can guide learning about the number of times an individual’s record
is observed: High detection probabilities indicate frequent observations of an individual,
thereby promoting linkage; low detection probabilities indicate few observations of the
individual, thereby proposing new latent identities. Our model assumptions can be general-
ized to account for more complicated monitoring situations. For example, hypergeometric
models may be used in place of binomial models in capture-recapture studies when individ-
ual detections are correlated due to sampling without replacement from a finite population
(Darroch 1958; Link et al. 2009; Tancredi and Liseo 2011). We may also model heterogene-
ity in p0 to account for factors such as animal diving in response to aircraft disturbance and
survey conditions that affect the backdrop (e.g., kelp, sun angle, sea state).

The use of observed locations in our model helped us better understand the spatial het-
erogeneity in population intensity. Under a uniform prior on sm , the variation in population
intensity is implicitly reflected through the estimated activity centers. A natural extension
to our method is to model the spatial distribution of activity centers explicitly (Efford 2004,
2011; Brost et al. 2017, 2020). We could account for heterogeneity in the distribution of
activity centers using a species distribution model (SDM; e.g., Hefley and Hooten, 2016).
An SDM is often specified as a spatial point process model, which, in our case, could take
the form

[sm |x (sm)] = exp
(
x (sm)′ β

)
∫
D exp (x(s)′β) ds

,

for m = 1, . . . , M , where x (sm) denotes the vector of spatial covariates at sm and β

denotes the associated coefficients. Alternatively, we could attribute heterogeneity in the
distribution of activity centers to the interaction among individuals which could be modeled
mechanistically (e.g., Scharf et al., 2016).

Although our model was designed for aerial imagery data from sea otter population
surveys in Glacier Bay, Alaska, our framework can be adapted for a variety of applications
that involve intersecting fields of observation (Borchers et al. 2020). Our method is also
useful for aligning unlabeled point patterns with consistent measurement error, such as
reconstruction of a three-dimensional object from two-dimensional views (Ourselin et al.
2001; Rezende et al. 2016) and reconstruction of a movement trajectory using multiple
snapshots (Ando 1991; Du et al. 2016).
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APPENDIX A: PRIOR DISTRIBUTIONS

p0 ∼ Beta (3, 1) ,

ψ ∼ Beta (0.001, 1) ,

σ 2
u ∼ IG (100, 25) ,

sm ∼ Unif(D), m = 1, . . . , M,

α ∼ N (0, 0.001R + 0.01I) ,

β ∼ N (0, 0.001R + 0.01I) ,

where R = (
D−
2

)′
D2 and D2 =

⎡

⎢
⎣
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1

⎤

⎥
⎦.
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