
RESEARCH ARTICLE

Predicting sport fish mercury contamination

in heavily managed reservoirs: Implications

for human and ecological health

Jesse M. LepakID
1*, Brett M. Johnson2, Mevin B. Hooten3, Brian A. Wolff2, Adam

G. Hansen1

1 Colorado Parks and Wildlife, Fort Collins, CO, United States of America, 2 Department of Fish, Wildlife and

Conservation Biology, Colorado State University, Fort Collins, CO, United States of America, 3 Department

of Statistics and Data Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX,

United States of America

* Salvelinus2005@gmail.com

Abstract

Mercury (Hg) is a concerning contaminant due to its widespread distribution and tendency

to accumulate to harmful concentrations in biota. We used a machine learning approach

called random forest (RF) to test for different predictors of Hg concentrations in three spe-

cies of Colorado reservoir sport fish. The RF approach indicated that the best predictors of

864 mm northern pike (Esox lucius) Hg concentrations were covariates related to salmonid

stocking in each study system, while system-specific metrics related to productivity and for-

age base were the best predictors of Hg concentrations of 381 mm smallmouth bass (Micro-

pterus dolomieu), and walleye (Sander vitreus). Protecting human and ecological health

from Hg contamination requires an understanding of fish Hg concentrations and variability

across the landscape and through time. The RF approach could be applied to identify poten-

tial areas/systems of concern, and predict whether sport fish Hg concentrations may change

as a result of a variety of factors to help prioritize, focus, and streamline monitoring efforts to

effectively and efficiently inform human and ecological health.

Introduction

Mercury (Hg) is a concerning contaminant due to its widespread distribution and tendency to

bioaccumulate in organisms to concentrations that negatively influence the health of humans,

other organisms, and ecosystems worldwide [1–3]. Mercury enters the landscape through a

variety of natural and anthropogenic pathways including volcanoes, forest fires, erosion, fossil

fuel burning, waste incineration, mining operations, and cement production [4]. Despite

health concerns related to Hg contamination in fish, documented benefits of fish consumption

may outweigh the risks [2,5,6], and healthy fish consumption has been encouraged [7]. Thus,

understanding fish Hg concentrations and monitoring programs are necessary to protect

human health related to fish consumption.

Sport fish Hg concentrations are generally a preferred indicator of Hg contamination in

freshwater systems versus other aquatic organisms. Consumption of contaminated sport fish
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(with Hg incorporated in their muscle tissue) is the major method of transfer of aquatic Hg to

humans [1,2]. However, fish Hg concentrations can be inherently variable due to several fac-

tors, and changes in contributions of Hg to the environment do not necessarily translate

directly to changes in fish Hg concentrations because of complex biogeochemical interactions

[8,9]. Thus, Hg deposition information alone cannot be used to infer fish Hg concentrations

across the landscape, and extensive, large-scale monitoring programs can be cost prohibitive.

Resource limitations within agencies, variability in fish Hg concentrations, and complex envi-

ronmental interactions, make predictive model development (to identify priority areas or spe-

cies of concern for testing) challenging. Approaches incorporating information about

mechanisms influencing fish Hg concentrations and multiple data sources (including corre-

lated predictors) could help overcome some of the obstacles to characterizing dynamic uncer-

tainty in fish Hg concentrations.

Investigators have studied a variety of factors associated with Hg contaminated sport fish in

North America [10–12]. Several patterns have emerged on the larger landscape. For example,

when deposited, Hg can be taken up quickly by water and the organisms within it [13].

Because of this direct water-atmosphere interface, larger systems (higher surface area) receive

more overall Hg deposition relative to smaller systems. In addition, systems in close proximity

(<100 km) to “large” sources of Hg (similar to those found in the eastern and central United

States) can experience increased Hg deposition [14]. Wentz et al. [15] found that Hg inputs to

stream fishes were highest in urban versus rural areas. It follows that systems located near Hg

sources (i.e., population centers or urban areas versus rural areas) could experience higher lev-

els of Hg inputs and exposure.

Fish species, size, and trophic position are important factors influencing sport fish Hg con-

centrations [16–18]. Specifically, large, piscivorous sport fish with elevated trophic positions

tend to have higher Hg concentrations than small, omnivorous or planktivorous fish feeding

at lower trophic levels. Therefore, changes in food web structure (especially the forage base of

sport fish) can alter sport fish Hg concentrations by changing fish trophic position, growth,

and diet [19–21]. Aquatic food web structure and species interactions are often influenced by

fisheries management practices (e.g., harvest regulations, fish stocking). Thus, these potential

sources of variability are important to consider.

In the arid portion of western North America, artificial reservoirs are the predominant

lacustrine systems on the landscape, and tend to be highly managed with respect to their biotic

and abiotic characteristics. These characteristics can influence Hg dynamics [22], and several

studies have found that reservoirs have fish and other biota that can be particularly high in Hg

concentrations in general [23–25]. Reservoirs can experience changes in water levels, and

water level fluctuation has been associated with elevated Hg concentrations in sport fish

[26,27]. These studies suggest that fish Hg levels are influenced by water level fluctuation

through the rewetting and perturbation of dry soils which are relatively rich in sulfate, stimu-

lating population growth of sulfate-reducing bacteria, Hg methylation rates, and Hg uptake by

biota. Analogous patterns of elevated Hg concentrations in biota (zooplankton and fish) in sys-

tems experiencing water level fluctuation have also been found [28].

Nutrient inputs also influence system productivity and subsequent Hg concentrations in

sport fish. Increased productivity can reduce Hg concentrations in organisms through “bloom

“dilution [29,30] or “growth dilution” [31]. When high-quality diet items are available to

organisms, they typically display high rates of somatic growth paired with lower consumption

rates. This reduces Hg concentration in prey and overall intake by predators. In the case of

fish, it has been shown through experimental nutrient additions and observational studies that

fish from systems with higher nutrient inputs have relatively low Hg concentrations [32–34].

Thus, increased nutrient inputs to reservoirs can reduce Hg bioaccumulation in sport fish

PLOS ONE Predicting sport fish mercury contamination in heavily managed reservoirs

PLOS ONE | https://doi.org/10.1371/journal.pone.0285890 August 22, 2023 2 / 21

Environmental Protection Agency (https://www.

epa.gov/) received by JML and BMJ, administered

by the Colorado Department of Public Health and

Environment, Water Quality Control Division. The

funders had no role in the study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0285890
https://www.epa.gov/
https://www.epa.gov/


within them. At the same time, Hg is methylated (becoming bioavailable) under anoxic condi-

tions by bacteria as a byproduct of their energy sequestration pathway [35,36]. High nutrient

inputs can stimulate primary production and decay creating anoxic conditions conducive to

Hg methylation [37,38]. Hypoxic conditions have been associated with high concentrations of

Hg in water, zooplankton, and fish [11,39].

Several additional factors can act as drivers that influence fish Hg concentrations depending

on environmental or other conditions. For example, water temperature can influence growing

season length (and subsequently growth dilution), community composition, and Hg methyla-

tion rates. All else being equal, fish that grow faster can be “diluted” in Hg relative to others

growing more slowly [40]. Thus, more growth and longer growing seasons can result in lower

fish Hg concentrations. However, warmer water may also stimulate microbial activity and Hg

methylation, making Hg more available for uptake by biota. Therefore, elevation and latitude

could influence sport fish Hg concentrations positively or negatively as they relate to differ-

ences in system-specific temperature regimes.

We describe a machine learning approach to identify predictors of Hg concentrations in

three different sport fish species in Colorado, USA reservoirs. We use data compiled from

sources throughout Colorado to test for the relative importance of various predictors of sport

fish Hg concentrations related to the factors described above. We used available system-spe-

cific predictors as indicators of urbanization, food web structure, productivity, and Hg methyl-

ation processes. Further, we used our observations combined with those of others to compare

rates of sport fish Hg change that might be expected in response to a variety of factors primar-

ily focusing on empirical changes in food webs and hypothetical changes in Hg emissions. Our

comparisons provide a basis to inform decisions about the magnitude and relevant spatial and

temporal scales for developing appropriate fish consumption advice.

Materials and methods

Data collection and compilation

Sport fish Hg concentrations (2004 to 2013) available from Colorado Department of Public

Health and Environment (CDPHE) were used as response variables for three fish species—

northern pike (Esox lucius), smallmouth bass (Micropterus dolomieu), and walleye (Sander
vitreus)—across 32 reservoirs (Fig 1). For each system-species combination, simple linear

regression was used to estimate fish Hg concentrations (and upper 95% confidence intervals

when regressions were based on five or more values) at lengths that were related to the most

commonly applied length-based harvest regulations (i.e., minimum length limits) in Colorado

(864 mm for northern pike and 381 mm for smallmouth bass and walleye). We expected sport

fish Hg concentrations to increase, decrease, or remain the same with increasing lengths

depending on the characteristics of a given reservoir. Thus, estimates of fish Hg concentrations

at their respective, relevant lengths were used whether the regression slope was positive, nega-

tive, or not significantly different than zero. To develop the regression analyses and determine

Hg at the specified lengths, data from individual fish and composite samples were used. Com-

posite samples were represented by a single datum as the mean length of the group of fish

tested and the resulting Hg concentration. Individual fish lengths in composite samples were

within 5% of the measured mean for all fish included in any given composite sample. Measure-

ments of Hg concentration that fell below detection limits (variable across years) were cen-

sored by assigning a value equal to half the detection limit [41]. Regression analyses for single

system-species combinations were never based solely on data that fell below a Hg concentra-

tion detection limit of 0.3 ppm because it was felt the assigned value (0.15 ppm) could mask a

relatively large amount of variability (potential empirical range from 0 to 0.3). In 26 of 730
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cases (less than one half percent of the data available), censored values (0.15 ppm) for the

detection limit of 0.3 ppm were applied. In these cases there were additional data available to

corroborate/support the censored data. Since censored values were similar to uncensored

information, results were not sensitive to the inclusion or removal of these 26 values in regres-

sion analyses, or overall findings. When less than five individual or composite samples were

available for a given system-species combination, those estimates were only retained if data

from other species within the same system, or data from the same system but outside the

2004–2013 timeframe, corroborated the estimate. Samples were collected from different sys-

tems in different years and with different methodologies (i.e., sample sizes, composites versus

individuals, species analyzed) and these are described in Table 1.

We selected a regression approach to maximize the amount of data that could be included

in these analyses and to represent a length that is informative to the health of anglers and their

families that harvest sport fish in Colorado. Our approach generally limited extrapolation out-

side Hg concentrations estimated for 864 mm northern pike and 381 mm smallmouth bass

and walleye. However, extrapolation (using data from fish that did not encompass the length

where point estimates were made) was necessary for some (described below) of the 54 reser-

voir-species combinations. These combinations, (and the range of fish lengths [or individual

fish length] that did not encompass the point estimate) for northern pike (864 mm) included

Lon Hagler (475–591 mm), McPhee (480 mm), Narraguinnep (400–840 mm), Totten (428–

822 mm), and Wellington (490 mm). For smallmouth bass (381 mm) these combinations

included Boulder City (243 mm), Boyd (280 mm), Chatfield (165–300 mm), Harvey Gap

(163–351 mm), Lon Hagler (209–308 mm), Martin (242–285 mm), Nee Gronda (182–275

mm), Pueblo (280–360), Rifle Gap (122–338 mm), and Union (245 mm). For walleye (381

Fig 1. Map of Colorado reservoirs and sport fish species used for analyses. Reservoirs are labelled and shown as

small black circles. Larger colored circles represent the fish species tested in each reservoir, green represents northern

pike, brown represents smallmouth bass and yellow represents walleye.

https://doi.org/10.1371/journal.pone.0285890.g001
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Table 1. Hg sample descriptions by system and species.

Reservoir NPK SMB WAL Year

(s)

Individuals Composites Censored Just write in extrapolation by species, there aren’t

many

CRAWFORD

RESERVOIR

5 2008 1N 4N (2–3)

ELKHEAD

RESERVOIR

8 2005,

2007

1N 7N (4–5)

HARVEY GAP

RESERVOIR

9 2007,

2013

6N 3N (2) 2N (0.1)

LON HAGLER

RESERVOIR

2 2007,

2009

2N 1N (0.1)

MARTIN LAKE 9 2005 9N 8N (0.01)

McPHEE

RESERVOIR

1 2010 1N

NARRAGUINNEP

RESERVOIR

4 2005 4N

RIFLE GAP

RESERVOIR

22 2007,

2008

4N 18N (2–5) 1N (0.1)

SANCHEZ

RESERVOIR

2 2004 2N

STAGECOACH

RESERVOIR

3 2007 3N (2–3)

TOTTEN

RESERVOIR

19 2005 19N 15N (0.1)

VALLECITO

RESERVOIR

23 2004,

2012

8N 15N (2) 11N (0.3)

WELLINGTON

RESERVOIR

1 2007 1N 1N (0.1) Exprapolation in

text.

Reservoir NPK SMB WAL Year

(s)

Individuals Composites Censored Obs (ppb) Total Watercode Reservoir NPK SMB WAL

Barr 9 2004,

2011

9W 1W (0.3) W (132,

298)

9 53796 Barr x

Bonny 11 2005 11W (2–5) 10W (0.1) W (58,

106)

11 79384 Bonny x

Boulder City 2 2007 2S 2S (0.1) S (50) 2 54089 Boulder City x

Boyd 1 55 2006,

2011,

2012

1S, 55W 14W (0.1),

2W (0.02)

S (110), W

(70, 155)

56 52491 Boyd x x

Brush Hollow 15 2004,

2006

5W 10W (6) 1W (0.1) W (301,

844)

15 79409 Brush Hollow x

Carter 68 2006,

2011,

2012

68W W (299,

425)

68 54255 Carter x

Chatfield 12 32 2004,

2013

32W 12S (5) 12S (0.3) S (150), W

(85, 198)

44 54306 Chatfield x x

Cherry Creek 12 2007 12W (4–5) 12W (0.1) W (50) 12 52580 Cherry Creek x

Crawford 5 2008 1N 4N (2–3) N (198,

330)

5 89284 Crawford x

Douglass 20 2007,

2012

17W 3W (5) 4W (0.02),

3W (0.1)

W (38, 96) 20 58695 Douglass x

Elkhead 8 3 2005,

2007

1N 7N (4–5), 3S

(3–4)

N (20,

396), S

(660, 886)

11 66438 Elkhead x x

Harvey Gap 9 4 2007,

2013

6N, 2S 3N (2), 2S

(2–5)

2N, 1S

(0.1)

N (166,

298), S

(328, 563)

13 67226 Harvey Gap x x

(Continued)

PLOS ONE Predicting sport fish mercury contamination in heavily managed reservoirs

PLOS ONE | https://doi.org/10.1371/journal.pone.0285890 August 22, 2023 5 / 21

https://doi.org/10.1371/journal.pone.0285890


Table 1. (Continued)

Horseshoe 16 2005,

2006

1S 15S (2–3) S (420,

693)

16 79803 Horseshoe x

Horsetooth 18 2006 18W (3–4) W (557,

1102)

18 55168 Horsetooth x

Jackson 8 2006 8W (4–5) W (103,

183)

8 53037 Jackson x

Loveland 2 3 2008 2S (2), 2W

(4–5)

1S, 3W

(0.1)

S (105), W

(50)

5 53176 Loveland x x

Lonetree 56 2011,

2012

34W 22W (2) 2W (0.02) W (102,

151)

56 53152 Lonetree x

Lon Hagler 2 2 6 2007,

2009,

2013

2N, 2S, 6W 1N (0.1) N (88), S

(241), W

(61, 98)

10 55562 Lon Hagler x x x

Martin 9 3 4 2005 9N, 3S 4W (4) 8N, 1S,

2W (0.01)

N (30,

152), S

(291), W

(10)

16 79841 Martin x x x

McPhee 1 41 35 2004,

2010,

2012

1N, 29S,

27W

12S (5), 8W

(3–5)

N (440), S

(618, 816),

W (339,

478)

77 94273 McPhee x x x

Narraguinnep 4 4 25 2005,

2013

4N, 4S,

25W

N (1290),

S (347), W

(340, 522)

33 91481 Narraguinnep x x x

Nee Gronda 3 11 2005 3S, 11W 3S, 11W

(0.1)

S (50), W

(50)

14 79613 Nee Gronda x x

North Sterling 37 2013 37W 15W

(0.02)

W (45, 60) 37 53328 North

Sterling

x

Pueblo 6 10 2013 6S, 10W 1S, 8W

(0.02)

S (75,

377), W

(13, 43)

16 81783 Pueblo x x

Rifle Gap 22 9 4 2007,

2008

4N, 4S, 2W 18N, 9S (2–

5), 2W (4)

1N (0.1) N (260,

440), S

(585, 790),

W (351)

35 69422 Rifle Gap x x x

Sanchez 2 12 2004 2N, 12W 2W (0.03) N (764),

W (124,

1006)

14 92128 Sanchez x x

Stagecoach 3 2 2007 3N (2–3),

2W (3)

N (233),

W (125)

5 73902 Stagecoach x x

Totten 19 3 2005 19N, 3W 15N (0.1) N (120,

233), W

(95)

22 92659 Totten x x

Trinidad 18 2004,

2007

18W (2–5) 1W (0.1) W (280,

432)

18 81911 Trinidad x

Union 1 11 2006 1N, 11W 1N, 10W

(0.1)

S (50), W

(86, 121)

12 53570 Union x x

Vallecito 23 28 2004,

2012

8N, 22W 15N, 6W (2) 11N, 2W

(0.3)

N (496,

846), W

(343, 819)

51 92902 Vallecito x x

(Continued)
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mm) these combinations included Rifle Gap (461–525 mm), Stagecoach (388-457mm), and

Totten (520–635 mm). These system-species combinations were retained because additional

data (after 2013 or from other fish species) corroborated point estimates, and including these

system-species combinations allowed us to produce predictions there. We note that this was

done for prediction purposes to inform fish Hg testing, and would not be appropriate to

develop fish consumption advisories to protect human health.

We used data from 32 disparate reservoirs across Colorado with a variety of municipal,

agricultural, and recreational uses. Predictors of the response variables (fish Hg concentrations

at the specified lengths) were selected based on previous research, ease of data collection, and

data availability. We primarily used data that were accessible to us, and also relatively easily

collected or calculated metrics, so others could use analogous measurements across a variety of

systems, potentially with data already available. We acknowledge that some of these metrics

are oversimplified, but complex community, atmospheric and watershed-level modeling to

capture Hg inputs and cycling were outside the scope of this study. Thus, metrics used for pre-

dictions should be selected with forethought, and potential confounding factors should be con-

sidered. We had a priori hypotheses associated with each predictor variable, and for each

system, predictors included a group of 17 indices developed from a compilation of data from

2000 to 2014. These covariates included: 1) system surface area (Area; ha), 2) shortest linear

distance to Colorado Interstate 25 (I-25; km), 3) population density (people/ha) of the county

containing the system (Pop dens), 4) the total mass of salmonids stocked from 2003–2013

(Salm mass; kg), 5) the mean annual stocking density of rainbow trout (Oncorhynchus mykiss)
from 2003–2013 (RBT kg/ha), 6) whether or not rainbow trout were stocked from 2003–2013

(RBT), 7) presence or absence of bluegill (BGL, Lepomis macrochirus), 8) presence or absence

of cyprinids (CYP), 9) presence or absence of gizzard shad (GSD, Dorosoma cepedianum), 10)

presence or absence of green sunfish (SNF, Lepomis cyanellus), 11) presence or absence of yel-

low perch (YPE, Perca flavescens), 12) index of water level fluctuation (H2O "#) with low (0–1

m), medium (1–5 m), and high (> 5 m) fluctuations designated categorically as 0, 1, and 2,

respectively, 13) index of chlorophyll a (Chl a; μg/L), 14) index of Secchi depth (Secc; m), 15)

index of total phosphorous (TP; mg/L), 16) system elevation (Elev; m), 17) system latitude

(Lat).

Data compiled for these analyses were collected intermittently by different agencies and

personnel from 2000–2014 depending on a variety of factors including research or monitoring

objectives, resource availability, and sampling conditions. We used these data to develop sys-

tem-specific indices to characterize covariates and test for their relative importance for pre-

dicting empirical sport fish Hg concentrations. When possible, we limited data use from 2003–

Table 1. (Continued)

Wellington 1 2007 1N 1N (0.1) N (50) 1 56906 Wellington x

Each study reservoir is listed and sample sizes for northern pike (NPK), smallmouth bass (SMB), and walleye (WAL) are provided along with the year or years data were

collected. Individuals that were tested for Hg concentration are indicated with a sample size followed by the letter corresponding to the first letter of the species

represented. Composite samples are indicated with a sample size followed by the letter corresponding to the first letter of the species represented (N, S, and W for

northern pike, smallmouth bass, and walleye, respectively) and a parenthetical range of individuals per composite sample. In systems where empirical data were not

available for a given species, that system was excluded from that species analysis. Data that were censored are indicated with a sample size followed by the letter

corresponding to first letter of the species represented and a parenthetical detection limit relevant to those data. Estimates of fish Hg concentrations (ppb) from

empirical data (Obs) are provided following the letter corresponding to the first letter of the species represented as well as the upper 95% confidence interval

(parenthetically, following the Hg concentration) when five or more samples were available to calculate error for a given system-species combination. Where error could

not be calculated, only the estimated Hg concentration (ppb) is provided parenthetically without the upper 95% confidence interval.

https://doi.org/10.1371/journal.pone.0285890.t001
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2013 to develop the most relevant covariates for the 2004–2013 Hg concentration data for Col-

orado sport fish. We did this to ensure that sport fish Hg concentrations were temporally

reflective of the system-specific conditions characterized by the indices/covariates. However,

contemporaneous data were not always available, and supplemental data from 2000–2002 and

2014 were necessary to characterize some systems (see Table 2 for covariate descriptions).

Thus, our indices/covariates were developed to inform the relative importance of past drivers

of sport fish Hg concentrations, and design future monitoring efforts, but not to develop fish

consumption advice directly.

Data from multiple system-specific surveys and sampling events were available from CPW

from 2003–2013 to inform a subset of covariates including, Area, I-25, Salm mass, RBT kg/ha,

RBT, BGL, CYP, GSD, SNF, YPE, H2O "#, Elev, and Lat. Forage fish species were assessed as

present (captured during any CPW survey from 2003–2013), or absent (not captured during

any CPW survey from 2003–2013). The qualitative water level fluctuation index (H2O "#) was

based on information provided by CPW biologists from 2003–2013. Water quality data (Chl a,

Secc, and TP) were collected by multiple agencies including the United States Geological Sur-

vey, the Bureau of Reclamation, and CDPHE. These data were made available by CDPHE (R.

Anthony and K. Richardson, pers. comm.). Data collected during summer (May-September

inclusive) 2000–2014 were used to calculate mean, system-specific indices to characterize these

water quality covariates. Nutrient data (Chl a, and TP concentrations) below detection limits

Table 2. Predictive variables of sport fish Hg, the mechanism they operate under and their hypothesized influence on fish Hg concentrations.

Predictor Mechanism Expectation Data source Time frame

Area Increased depositional area + CPW Contemporary

I-25 Increased loading/urbanization - Google Earth Contemporary

Pop dens Increased loading/urbanization + 2010 census 2010

Salm mass Stocked forage/biomass dilution - CPW 2003–2013

RBT kg/ha Stocked forage/biomass dilution - CPW 2003–2013

RBT Stocked forage/biomass dilution - CPW 2003–2013

BGL Forage base/biomass dilution - CPW 2003–2013

CYP Forage base/biomass dilution - CPW 2003–2013

GSD Forage base/biomass dilution - CPW 2003–2013

SNF Forage base/biomass dilution - CPW 2003–2013

YPE Forage base/biomass dilution - CPW 2003–2013

H2O "# Methylation/bioavailability + CPW Contemporary

Chl a Nutrients/biomass dilution - CDPHE 2000–2013

Secc Nutrients/biomass dilution + CDPHE 2000–2013

TP Nutrients/biomass dilution - CDPHE 2000–2013

Elev Growing season/biomass dilution + CPW Contemporary

Lat Growing season/biomass dilution + CPW Contemporary

Development of these covariates is described in detail in section 2.1. Data collection and compilation. Abbreviations for the various predictive covariates are: System

surface area (Area; ha), shortest linear distance to Colorado Interstate 25 (I-25; km), population density (people per hectare) of the county containing the system (Pop

dens), the total mass of salmonids stocked from 2003–2013 (Salm mass; kg), the mean annual stocking density (kg/ha) of rainbow trout (Oncorhynchus mykiss) from

2003–2013 (RBT kg/ha), whether or not rainbow trout were stocked from 2003–2013 (RBT), presence or absence of bluegill (BGL, Lepomis macrochirus), presence or

absence of cyprinids (CYP), presence or absence of gizzard shad (GSD, Dorosoma cepedianum), presence or absence of green sunfish (SNF, Lepomis cyanellus), presence

or absence of yellow perch (YPE, Perca flavescens), index of water level fluctuation (H2O "#) with low (0–1 m), medium (1–5 m), and high (> 5 m) fluctuation

designated categorically as 0, 1, and 2, respectively, index of chlorophyll a (Chl a; μg/L), index of Secchi depth (Secc; m), index of total phosphorous (TP; mg/L), system

elevation (Elev; m), and system latitude (Lat). Mechanism, directional expectation of fish Hg concentrations, and data sources and their respective time frames are

provided (CPW: Colorado Parks and Wildlife, CDPHE: Colorado Department of Public Health and Environment).

https://doi.org/10.1371/journal.pone.0285890.t002
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were censored by assigning a value equal to half the detection limit [41]. Values/categoriza-

tions of these metrics are provided for clarity and comparison (Table 3). Data were acquired

from public sources, and fish Hg concentration data are available for download from CDPHE

(https://cdphe.colorado.gov/water-quality-records-center-and-requests). The predictors of

fish Hg concentrations tested for each reservoir are provided in Table 3.

Data analyses

We applied the machine learning technique called random forest (RF) to statistically test for

indices/covariates as predictors of sport fish Hg concentrations within the dataset and to test

for the relative importance and effectiveness of the predictors for characterizing sport fish Hg

concentrations [42]. The RF approach is ideal because it is based on a form of cross-validation,

Table 3. Reservoir metrics and characteristics.

Reservoir Area I-25 Pop dens Salm mass RBT kg/ha Forage H2O Chl a Secc TP Elev Lat

Barr 0 17 0 0 1 RBT, CYP, GSD, YLP 2 62.90 1.75 0.59 0 4421839

Bonny 0 231 0 0 0 CYP, GSD, YLP 0 41.60 0.25 0.13 0 4388661

Boulder City 0 20 0 0 0 RBT, BGL, CYP, GSD, SNF, YLP 1 3.81 1.27 0.01 0 4436495

Boyd 0 3 0 0 1 RBT, BGL, CYP, GSD, YLP 2 4.61 2.16 0.01 0 4475682

Brush Hollow 0 38 0 0 9 RBT, BGL, CYP, GSD, SNF, YLP 2 12.20 1.79 0.03 0 4257259

Carter 0 19 0 0 1 RBT, BGL, YLP 2 1.68 2.85 0.01 0 4464785

Chatfield 0 15 0 0 1 RBT, BGL, CYP, GSD, YLP 2 7.28 2.23 0.02 0 4377856

Cherry Creek 0 3 0 0 2 RBT, BGL, CYP, GSD, YLP 2 16.21 1.02 0.09 0 4387901

Crawford 0 251 0 0 105 RBT, CYP, YLP 2 16.33 3.10 0.02 0 4285036

Douglas 0 6 0 0 2 RBT, BGL, CYP, GSD, SNF, YLP 1 6.08 0.95 0.01 0 4505667

Elkhead 0 198 0 0 90 RBT, CYP, BLG, YLP 1 1.89 1.39 0.02 0 4493826

Harvey Gap 0 239 0 0 435 RBT, BLG, YLP 2 36.50 1.42 0.16 0 4388177

Horseshoe 0 8 0 0 943 RBT, BGL, CYP, GSD, YLP 2 7.49 1.11 0.02 0 4162141

Horsetooth 0 13 0 0 0 RBT, BGL, CYP, GSD, YLP 2 3.14 2.23 0.01 0 4489770

Jackson 0 77 0 0 1 RBT, BGL, CYP, GSD, YLP 2 22.17 0.70 0.14 0 4471765

Loveland 0 7 0 0 1 RBT, BGL, CYP, GSD, SNF, YLP 2 4.91 2.80 0.02 0 4473361

Lonetree 0 12 0 0 0 BGL, CYP, GSD, YLP 2 4.50 2.31 0.02 0 4465199

Lon Hagler 0 13 0 0 8 RBT, BGL, CYP, GSD, SNF, YLP 2 5.47 1.64 0.01 0 4468354

Martin 0 7 0 0 8 RBT, BGL, CYP, GSD, YLP 0 3.63 1.50 0.03 0 4162550

McPhee 0 337 0 0 0 RBT, CYP, YLP 2 2.21 3.27 0.00 0 4157577

Narraguinnep 0 353 0 0 0 YLP 1 1.05 2.14 0.00 0 4155345

Nee Gronda 0 161 0 0 0 BGL, CYP, GSD, YLP 0 8.82 1.06 0.02 0 4241616

North Sterling 0 140 0 0 1 RBT, BGL, CYP, GSD, YLP 2 53.14 0.85 0.15 0 4514409

Pueblo 0 11 0 0 0 RBT, BGL, CYP, GSD, YLP 2 4.53 3.06 0.01 0 4235598

Rifle Gap 0 225 0 0 7 RBT, BGL, CYP, YLP 2 1.14 3.55 0.02 0 4390337

Sanchez 0 79 0 0 0 CYP, SNF 2 3.40 1.50 0.07 0 4104313

Stagecoach 0 158 0 0 5 RBT 1 6.13 2.98 0.06 0 4460391

Totten 0 354 0 0 5 RBT, BGL, SNF, YLP 1 1.28 3.00 0.00 0 4141204

Trinidad 0 3 0 0 2 RBT, BGL, GSD, YLP 1 2.32 1.57 0.01 0 4110224

Union 0 4 0 0 2 RBT, BGL, CYP, GSD, SNF, YLP 1 3.96 1.24 0.02 0 4447762

Vallecito 0 260 0 0 1 RBT, YLP 1 1.46 4.16 0.01 0 4141594

Wellington 0 3 0 0 13 RBT, BGL, CYP, GSD, YLP 2 1.08 1.75 0.01 0 4507498

Abbreviations for the various covariates are provided in Table 2. Prey species are grouped and listed under the Forage category represented by their corresponding three

letter code.

https://doi.org/10.1371/journal.pone.0285890.t003
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is entirely nonlinear, accounts for obscure interactions, and simultaneously evaluates multicol-

linear variables [42,43]. Although many other approaches prevent the inclusion of multicol-

linear variables, the RF approach can incorporate all readily available data for prediction. For

example, TP and Chl a are often highly correlated, and with most approaches, one variable or

the other would need to be excluded from any single predictive model. Using the RF approach

allowed us to incorporate all variables of interest despite potential multicollinearity.

The RF approach falls under a much larger class of machine learning methods where pre-

diction is of primary interest. These methods rely on “bagging,” which refers to the method of

fitting regression trees to numerous bootstrapped versions of the training data (i.e., observa-

tions sampled with replacement from the larger data set). The resulting trees are then averaged

to yield a predictor with low bias and variance. To perform our RF analyses, we used the ‘ran-

domForest’ package 4.6–6 [44] in R [45]. In the RF implementation described here, 2,000

regression trees were used to calculate accuracies and error rates for each observation using

out-of-bag predictions (i.e., predicting data that were withheld from each tree). The predic-

tions of data that were not used to evaluate fit can be considered as a form of cross-validation.

Variable importance can then be assessed by comparing the increase in; 1) mean squared

prediction error, and 2) node purity associated with each individual covariate. We refer the

interested reader to several works for more information on these variable importance metrics

[44–46].

For each fish species, a full model (all predictors) was used to test for predictive power and

variable importance. Although we selected metrics that were relatively common and available,

we were aware that some of the predictors used may not be available. To determine how well

this approach performed when only the best predictors were used, we removed most predic-

tors from the full models and repeated the RF statistical analyses on a condensed model for

each species. Predictors were retained if they were found to be important as measured by the

increase in mean square prediction error and node purity. These selections were made some-

what arbitrarily for demonstration purposes, however, a priori hypotheses, and support from

other research were considered along with the predictor importance metrics when full models

were condensed to the most important three or four variables. For each system-species combi-

nation, we compared the estimated Hg concentrations from empirical data to the Hg concen-

trations estimated from the full RF model. The difference of these (empirical estimate minus

RF prediction) was regressed as a function of the empirically estimated Hg concentrations to

test whether this differed from a one-to-one relationship to evaluate the presence of any bias.

In general, we expected that the best predictors of Hg concentrations in 864 mm northern pike

would be those related to stocked salmonids as forage while the best predictors of Hg concen-

trations in 381 mm smallmouth bass and walleye would be more dependent on system produc-

tivity metrics.

Prediction application

The food web structure in Elkhead Reservoir (Colorado, USA) changed significantly when the

stocking of salmonids (up to 3,400 kg of ~ 250 mm rainbow trout stocked in a single year;

2010, with a mean of about 1,500 kg of salmonids stocked each year) was discontinued in the

fall of 2011. Based on previous whole-system experimental work [20] we expected northern

pike Hg concentrations in this reservoir to increase from this management action. For com-

parison, northern pike Hg concentrations were available from 2005 and 2007, prior to this

management shift when significant masses of catchable (~225 mm) rainbow trout were being

stocked. We used the full and condensed models developed for northern pike to predict what

864 mm northern pike Hg concentrations would be under these new conditions (setting all
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salmonid stocking to zero). The output provided a value for comparison to empirical northern

pike Hg concentration data that were collected late in 2013 (following the cessation of stock-

ing), that was not included as training data for the RF approach. This provided information

from the same system with and without salmonid stocking (a factor expected to have predic-

tive importance for large northern pike) to evaluate model performance, recognizing that the

food web structure may or may not have been in equilibrium following this shift.

Results

Random forest modeling

Salmonid stocking metrics best explained 864 mm northern pike Hg concentrations. Thirteen

systems were included in the 864 mm northern pike RF analysis. The Hg concentration in

northern pike was also predicted from Elkhead Reservoir experiencing no salmonid stocking.

The full model explained about 25% of the variability in northern pike Hg concentrations with

all three salmonid stocking metrics being the most important predictors of northern pike Hg

concentrations (Fig 2). To reduce the number of predictive variables in the model, only the top

three predictors related to stocking were included in a second model. This more parsimonious,

condensed model (northern pike Hg concentration as a function of Salm mass, RBT kg/ha,

and RBT) explained about 50% of the variability in the data. There was a consistent bias from a

one-to-one line (slope; 0.33, F = 28.79, p-value < 0.01) where predicted values were higher

than those observed at relatively low concentrations and lower than those observed at relatively

high concentrations (Fig 3).

The best predictors of smallmouth bass Hg concentrations were metrics related to growing

season, productivity, and forage base. Fifteen systems were included in the smallmouth bass

RF analysis. The full model explained about 55% of the variability in smallmouth bass Hg con-

centrations (Fig 4). Although I-25 appeared as the fourth most important predictor in both

variable importance indicators, the relationship was contrary to expectations; smallmouth bass

Hg concentrations went up with increasing distance from Colorado Interstate 25. Thus, this

predictor was removed from further analyses and the top three predictors (Elev, GSD, and Chl

a) were used in the condensed model. The more parsimonious, condensed model (smallmouth

bass Hg concentration as a function of Elev, GSD, and Chl a) explained about 70% of the vari-

ability in the data. There was a consistent bias from a one-to-one line (slope; 0.25, F = 17.78, p-

value < 0.01) where predicted values were higher than those observed at relatively low concen-

trations and lower than those observed at relatively high concentrations (Fig 5).

Walleye Hg concentrations were best predicted by metrics of system productivity and

growing season. Twenty-six systems were included in the walleye RF analysis. The full model

explained about 10% of the variability in walleye Hg concentrations (Fig 6). Thus, the top four

predictors (Chl a, Elev, Secc, and TP) were used in the condensed model. The more parsimoni-

ous, condensed model (walleye Hg concentration as a function of Chl a, Elev, Secc, and TP)

explained about 17.5% of the variability in walleye Hg concentrations. There was a consistent

bias from a one-to-one line (slope; 0.35, F = 54.17, p-value < 0.01) where predicted values

were higher than those observed at relatively low concentrations and lower than those

observed at relatively high concentrations (Fig 7).

Prediction application

The linear regression-based empirical Hg concentration of 864 mm northern pike in Elkhead

Reservoir based on 2005–2007 data (during salmonid stocking) was 0.02 ppm. When the full

model was applied to predict Hg concentration of 864 mm northern pike in Elkhead Reservoir

without stocking (setting Salm mass, RBT mass/area, and RBT to zero in the model), the result
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was 0.55 ppm. The result from the condensed model (including RBT, Salm mass, and RBT

mass/area as predictors) when the same was done (stocking set to zero) was 0.93 ppm. The

observed 2013 (salmonid stocking ceased) Hg concentration of 864 mm northern pike in Elk-

head Reservoir was 0.57 ppm.

Discussion

Random forest modeling

Our expectations based on previous work in Colorado reservoirs (20,21,47,48) regarding the

factors important for predicting sport fish Hg concentrations were supported by the RF

Fig 2. Random forest variable importance indicators for the full model (all variables) predicting 864 mm northern

pike Hg concentrations from thirteen Colorado Reservoirs. Variables are listed top to bottom in order of relative

predictive value from most to least, respectively. Abbreviations for the various predictive covariates are provided in Table 2.

https://doi.org/10.1371/journal.pone.0285890.g002
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analysis. The most important predictors (based on the RF variable importance indicators) of

864 mm northern pike Hg concentrations in Colorado were related to salmonid stocking, pre-

sumably because of biomass dilution from the consumption of stocked fish that are relatively

high in energy and low in Hg content [20,47,48]. We expected that the most important predic-

tors of 381 mm smallmouth bass and walleye Hg concentrations would be related to biomass

dilution as well, but driven by system productivity rather than fish stocking. This is likely

because 381 mm sport fish are not generally capable of consuming large (> 200 mm) stocked

salmonids [49] that represent the majority of the biomass of fish stocked in Colorado. Thus,

indicators related to system productivity and growing season (i.e., Elev, Chl a, Secc, TP) were

found to be relatively important predictors of smallmouth bass and walleye Hg concentrations

compared to stocking indices.

Four variables that were included as predictors of sport fish Hg concentrations were found

to be relatively unimportant in the RF analysis. The indicators of proximity to emission

sources and deposition potential (Area, I-25, Pop dens) were relatively unimportant as was the

indicator of water level fluctuation hypothesized to be positively correlated to Hg methylation

[26,27]. Instead, we found that productivity (internal and external sources) in the form of

nutrients and forage were better predictors of Hg concentrations in sport fish in this set of sys-

tems relative to indicators of Hg deposition and methylation within our dataset. Although

studies have shown that Hg sources and deposition may be elevated in and around urban

Fig 3. Predicted Hg concentrations of 864 mm northern pike (Esox lucius). Estimated northern pike Hg concentrations from empirical data from

thirteen Colorado reservoirs are plotted as a function of predicted Hg concentrations from the Random Forest (RF) approach. Regions of the plot where RF

predictions overestimate and underestimate estimates from empirical data are indicated. Upper 95% confidence intervals are provided for systems with

empirical estimates based on five or more samples. The condensed model (the three salmonid stocking metrics only) was used in this analysis. A one-to-one

(dotted) line is provided for comparison.

https://doi.org/10.1371/journal.pone.0285890.g003
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areas, that does not necessarily translate to elevated Hg concentrations in fish within those

areas [15,50]. These observations (fish Hg concentrations decoupled from deposition/sources

to some degree) could explain some of our findings related to urbanized areas in Colorado.

In Colorado, system elevation is related to several other factors that could potentially

increase and decrease fish Hg concentrations. As elevation increases agricultural land-uses

decline along with nutrient inputs, precipitation (linked to Hg deposition) increases, growing

season declines, and in-lake forage species (e.g., gizzard shad with relatively high energy and

low Hg content) are less abundant, which could all lead to elevated sport fish Hg concentra-

tions. However, with increasing elevation, food sources tend to have relatively low trophic

positions, food chains tend to be relatively short, and there are generally fewer local sources of

Hg emissions, which could all lead to lower sport fish Hg concentrations. In this case, factors

Fig 4. Random forest variable importance indicators for the full model (all variables) predicting 381 mm

smallmouth bass (Micropterus dolomieu) Hg concentrations from fifteen Colorado Reservoirs. Variables are listed

top to bottom in order of relative predictive value from most to least, respectively. Abbreviations for the various

predictive covariates are provided in Table 2.

https://doi.org/10.1371/journal.pone.0285890.g004
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related to elevation that led to increased fish Hg concentrations appeared to have a stronger

influence than those leading to decreased fish Hg concentrations. The precise mechanism or

combination of mechanisms causing this pattern are unknown, but the other three most

important predictors of fish Hg concentrations were indicators of system productivity.

An RF approach analogous to what is described here is appropriate to inform and stream-

line monitoring programs, but not to obtain estimated Hg concentrations as an alternative to

direct testing. This technique could be used to identify areas where sport fish Hg concentration

shifts may be occurring. Appropriate systems and species could then be prioritized for Hg test-

ing so consumption advisories could be updated accordingly to maximize the benefits of fish

consumption and better protect anglers and their families from potential health risks. For

example, in response to the management actions and subsequent food web shifts observed in

Elkhead Reservoir, testing was prioritized and CDPHE has adjusted fish consumption advice

and monitoring efforts there to be more protective of human health.

Prediction application

The performance of the full and condensed RF models was encouraging. Although there was a

range of variability described by the full and condensed models, model results were reasonable

despite low sample size, and bias appeared systematic (predicted values were consistently

Fig 5. Predicted Hg concentrations of 381 mm smallmouth bass (Micropterus dolomieu). Estimated smallmouth bass Hg concentrations from empirical

data from fifteen Colorado reservoirs are plotted as a function of predicted Hg concentrations from the Random Forest (RF) approach. Regions of the plot

where RF predictions overestimate and underestimate estimates from empirical data are indicated. Upper 95% confidence intervals are provided for systems

with empirical estimates based on five or more samples. The condensed RF model (Elev, GSD, and Chl a) was used in this analysis. A one-to-one (dotted)

line is provided for comparison.

https://doi.org/10.1371/journal.pone.0285890.g005
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higher than those observed at relatively low concentrations and lower than those observed at

relatively high concentrations). The application of the full model to Elkhead Reservoir to pre-

dict northern pike Hg concentrations following 2011 (when salmonid stocking was discontin-

ued), resulted in a value within 5% of empirical observations from 2013, while the application

of the condensed (three stocking variables) model overestimated northern pike Hg concentra-

tions. Thus, the full model set performed well for making predictions in Elkhead Reservoir

specifically, but the condensed model set was more parsimonious and explained more varia-

tion in the data across all of the reservoirs considered during the northern pike analysis. It is

likely that within Elkhead Reservoir, other predictors included in the full model (in addition to

salmonid stocking), may be important for predicting northern pike Hg concentrations, though

Fig 6. Random forest variable importance indicators for the full model (all variables) predicting 381 mm walleye

(Sander vitreus) Hg concentrations from 26 Colorado Reservoirs. Variables are listed top to bottom in order of

relative predictive value from most to least, respectively. Abbreviations for the various predictive covariates are

provided in Table 2.

https://doi.org/10.1371/journal.pone.0285890.g006
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further investigation at the system-specific level would be necessary to identify mechanism(s).

This finding highlights the potential value of the RF approach and including a variety of factors

during predictive analyses.

Conclusions

Many reservoirs in western North America are heavily managed, highly fluctuating, and serve

multiple uses which can influence their Hg dynamics [22]. Biota in reservoirs in particular

have been found to have elevated Hg concentrations [23–25]. These types of heavily managed

and dynamic systems are analogous to those considered here, and Colorado offered a wide

range of predictors like high and low elevation and little or no salmonid stocking to heavy sal-

monid stocking. Thus, the patterns observed in this study may be present in other regions

where comparable lake and reservoir management approaches (e.g., salmonid stocking, irriga-

tion, recreation) are being applied. The RF approach described here could identify important

predictors of fish Hg concentrations at other locations and scales across the landscape to

inform monitoring and advisory programs in place to protect human health.

Based on our observations, sport fish Hg concentrations varied widely across the landscape,

driven by multiple, species-specific factors. Thus, simplistic yet flexible approaches to rapidly

identify areas or species of concern, and communicating findings to anglers and their families

Fig 7. Predicted Hg concentrations of 381 mm walleye (Sander vitreus). Estimated walleye Hg concentrations from empirical data from 26 Colorado

reservoirs are plotted as a function of predicted Hg concentrations from the Random Forest (RF) approach. Regions of the plot where RF predictions

overestimate and underestimate estimates from empirical data are indicated. Upper 95% confidence intervals are provided for systems with empirical

estimates based on five or more samples. The condensed model (Chl a, Elev, Secc, and TP) was used in this analysis. A one-to-one (dotted) line is provided

for comparison.

https://doi.org/10.1371/journal.pone.0285890.g007
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(e.g., the case of the Elkhead Reservoir northern pike population), are likely the most effective

means for addressing human health concerns from Hg contamination in the short-term.

Based on available atmospheric information [14,51,52], Hg deposition may increase in some

areas (including areas of Colorado) in the future. These potential changes coupled with the

observed variation in sport fish Hg concentrations, make the RF approach a useful, predictive

tool to prioritize and streamline Hg monitoring efforts. Control of anthropomorphic Hg emis-

sions represents an important component of the ubiquitous issue of Hg contamination in the

environment. This is recognized by groups like the Minamata Convention on Mercury, and

likely represents one of the few long-term solutions to the problem of Hg significantly exceed-

ing natural concentrations in ecosystems and biota. In the short-term, predictive tools like RF

that incorporate food web structures, and their dynamics, are important to understand and

provide context for Hg bioaccumulation in sport fish and changes in Hg emission, deposition,

and cycling.

Supporting information

S1 File.

(DOCX)

Acknowledgments

We are grateful to Dr. Chris Shade of Quicksilver Scientific and the Cornell University Stable

Isotope Laboratory for technical assistance. We also thank lab assistants of the Colorado State

University’s Fisheries Ecology Laboratory. Data compilations were made possible by R.

Anthony (CDPHE), K. Christianson (CSU), K. Fialko (CSU), K. Richardson (CDPHE), W.

Stacy (CSU), A. Treble (CPW), H. Vermillion (CPW), S. Wheeler (CDPHE), and others.

Author Contributions

Conceptualization: Jesse M. Lepak, Brett M. Johnson, Mevin B. Hooten, Brian A. Wolff.

Data curation: Brian A. Wolff.

Formal analysis: Jesse M. Lepak, Mevin B. Hooten.

Funding acquisition: Jesse M. Lepak, Brett M. Johnson.

Investigation: Jesse M. Lepak, Brian A. Wolff.

Methodology: Jesse M. Lepak, Mevin B. Hooten, Brian A. Wolff.

Project administration: Jesse M. Lepak, Brett M. Johnson, Adam G. Hansen.

Resources: Brett M. Johnson, Mevin B. Hooten, Adam G. Hansen.

Supervision: Jesse M. Lepak, Brett M. Johnson, Adam G. Hansen.

Writing – original draft: Jesse M. Lepak.

Writing – review & editing: Jesse M. Lepak, Brett M. Johnson, Brian A. Wolff, Adam G.

Hansen.

References
1. Driscoll CT, Han Y, Chen CY, Evers DC, Lambert KF, Holsen TM, et al. Mercury contamination in forest

and freshwater ecosystems in the Northeastern United States. Bioscience. 2007; 57: 17–28.

PLOS ONE Predicting sport fish mercury contamination in heavily managed reservoirs

PLOS ONE | https://doi.org/10.1371/journal.pone.0285890 August 22, 2023 18 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0285890.s001
https://doi.org/10.1371/journal.pone.0285890


2. Mergler D, Anderson HA, Chan LHM, Mahaffey KR, Murray M, Sakamoto M, et al. Methylmercury expo-

sure and health effects in humans: a worldwide concern. Ambio. 2007; 36: 3–11. https://doi.org/10.

1579/0044-7447(2007)36[3:meahei]2.0.co;2 PMID: 17408186

3. Wright LP, Zhang L, Cheng I, Aherne J, Wentworth GR. Impacts and effects indicators of atmospheric

deposition of major pollutants to various ecosystems-a review. Aerosol Air Qual Res. 2018; 18: 1953–

1992.

4. Pirrone N, Mason R. editors. Mercury fate and transport in the global atmosphere: emissions, measure-

ments and models. New York: Springer; 2009.

5. Knuth B, Connelly NA, Sheeshka J, Patterson J. Weighing health benefits and health risk information

when consuming sport-caught fish. Risk Anal. 2003; 23: 1185–1197.

6. Nesheim MC, Yaktine AL. editors. Seafood choices: Balancing benefits and risks. Committee on Nutri-

ent Relationships in Seafood: Selections to Balance Benefits and Risks, Food and Nutrition Board. Insti-

tute of Medicine of the National Academies. Washington D.C.: The National Academies Press; 2007.

7. Niederdeppe J, Connelly NA, Lauber TB, Knuth BA. Effects of a personal narrative in messages

designed to promote healthy fish consumption among women of childbearing age. Health Commun.

2019; 34: 825–837. https://doi.org/10.1080/10410236.2018.1437526 PMID: 29482372

8. Wang F, Outridge PM, Feng X, Meng B, Hiembürger-Boavida LE, Mason RP. How closely do mercury

trends in fish and other aquatic wildlife track those in the atmosphere?–implications for evaluating the

effectiveness of the Minamata Convention. Sci Tot Environ. 2019; 674: 58–70. https://doi.org/10.1016/j.

scitotenv.2019.04.101 PMID: 31003088

9. Brigham ME, VanderMeulen DD, Eagles-Smith CA, Krabbenhoft DP, Maki RP, DeWild JF. Long-term

trends in regional wet mercury deposition and lacustrine mercury concentrations in four lakes in Voya-

geurs National Park. Appl Sci. 2021; 11: 1879. https://doi.org/10.3390/app11041879

10. Sorensen JA, Glass GE, Schmidt KW, Huber JK, Rapp GRJ. Airborne mercury deposition and water-

shed characteristics in relation to mercury concentrations in water sediments plankton and fish of eighty

Northern Minnesota lakes USA. Env Science Technol. 1990; 24: 1716–1727.

11. Driscoll CT, Yan C, Schofield CL, Munson R, Holsapple J. The mercury cycle and fish in the Adirondack

lakes. Environ Sci Technol. 1994; 28: A136–A143.

12. Eagles-Smith CA, Ackerman JT, Willacker JJ, Tate MT, Lutz MA, Fleck J, et al. Spatial and temporal

patterns of mercury concentrations in freshwater fishes across the Western US and Canada. Sci Total

Environ. 2016; 568: 1171–1184.

13. Harris RC, Rudd JWM, Amyot M, Babiarz CL, Beaty KG, Blanchfield PJ, et al. Whole-ecosystem study

shows rapid fish-mercury response to changes in mercury deposition. P Natl Acad Sci. 2007; 42:

16586–16591. https://doi.org/10.1073/pnas.0704186104 PMID: 17901207

14. Lin CJ, Shetty SK, Pan L, Pongprueksa P, Jang C, Chu HW. Source attribution for mercury deposition

in the contiguous United States: regional difference and seasonal variation. JAPCA J Air Waste MA.

2012; 62: 52–63. https://doi.org/10.1080/10473289.2011.622066 PMID: 22393810

15. Wentz DA, Brigham ME, Chasar LC, Lutz MA, Krabbenhoft DP. Mercury in the nation’s streams–levels,

trends and implications: U.S. Geological Survey Circular 1395. 2014.

16. Bodaly RA, Rudd JWM, Fudge RJP, Kelly CA. Mercury concentrations in fish related to size of remote

Canadian Shield lakes. Can J Fish Aquat Sci. 1993; 50: 980–987.

17. Power M, Klein GM, Guiguer KRRA, Kwan MKH. Mercury accumulation in the fish community of a sub-

Arctic lake in relation to trophic position and carbon sources. J Appl Ecol. 2002; 39: 819–830.

18. Johnston TA, Leggett WC, Bodaly RA, Swanson HK. Temporal changes in mercury bioaccumulation by

predatory fishes of boreal lakes following the invasion of an exotic forage fish. Environ Toxicol Chem.

2003; 22: 2057–2062. https://doi.org/10.1897/02-265 PMID: 12959531

19. Eagles-Smith CA, Suchanek TH, Colwell AE, Anderson NL, Moyle PB. Changes in fish diets and food

web mercury bioaccumulation induced by an invasive planktivorous fish. Ecol Appl. 2008; 18: A213–

A226. https://doi.org/10.1890/06-1415.1 PMID: 19475926

20. Lepak JM, Kinzli KD, Fetherman ER, Pate WM, Hansen AG, Gardunio EI, et al. Manipulation of growth

to reduce sport fish mercury concentrations on a whole-lake scale. Can J Fish Aquat Sci. 2012; 69:

122–135.

21. Johnson BM, Lepak JM, Wolff BA. Effects of prey assemblage on mercury bioaccumulation in a piscivo-

rous sport fish. Sci Total Environ. 2015;506–507: 330–337.

22. Willacker JJ, Eagles-Smith CA, Lutz MA, Tate MT, Ackerman JT, Lepak JM. The influence of reservoirs

and their water management on fish mercury concentrations in Western North America. Sci Tot Envi-

ron. 2016; 568: 739–748.

23. Tremblay A, Lucotte M. Accumulation of total mercury and methyl mercury in insect larvae of hydroelec-

tric reservoirs. Can J Fish Aquat Sci. 1997; 54: 832–841.

PLOS ONE Predicting sport fish mercury contamination in heavily managed reservoirs

PLOS ONE | https://doi.org/10.1371/journal.pone.0285890 August 22, 2023 19 / 21

https://doi.org/10.1579/0044-7447%282007%2936%5B3%3Ameahei%5D2.0.co%3B2
https://doi.org/10.1579/0044-7447%282007%2936%5B3%3Ameahei%5D2.0.co%3B2
http://www.ncbi.nlm.nih.gov/pubmed/17408186
https://doi.org/10.1080/10410236.2018.1437526
http://www.ncbi.nlm.nih.gov/pubmed/29482372
https://doi.org/10.1016/j.scitotenv.2019.04.101
https://doi.org/10.1016/j.scitotenv.2019.04.101
http://www.ncbi.nlm.nih.gov/pubmed/31003088
https://doi.org/10.3390/app11041879
https://doi.org/10.1073/pnas.0704186104
http://www.ncbi.nlm.nih.gov/pubmed/17901207
https://doi.org/10.1080/10473289.2011.622066
http://www.ncbi.nlm.nih.gov/pubmed/22393810
https://doi.org/10.1897/02-265
http://www.ncbi.nlm.nih.gov/pubmed/12959531
https://doi.org/10.1890/06-1415.1
http://www.ncbi.nlm.nih.gov/pubmed/19475926
https://doi.org/10.1371/journal.pone.0285890


24. French KJ, Anderson MR, Scruton DA, Ledrew LJ. Fish mercury levels in relation to characteristics of

hydroelectric reservoirs in Newfoundland, Canada. Biogeochemistry. 1998; 40: 217–233.

25. Bodaly RA, Fudge RJP. Uptake of mercury by fish in an experimental boreal reservoir. Arch Environ

Con Tox. 1999; 37: 103–109.

26. Sorensen JA, Kallemeyn LW, Sydor M. Relationship between mercury accumulation in young-of-the-

year yellow perch and water-level fluctuations. Env Sci Technol. 2005; 39: 9237–9243. https://doi.org/

10.1021/es050471r PMID: 16382948

27. Selch TM, Hoagstrom CW, Weimer EJ, Duehr JP, Chipps SR. Influence of fluctuating water levels on

mercury concentrations in adult walleye. B Environ Contam Tox. 2007; 79: 36–40. https://doi.org/10.

1007/s00128-007-9229-0 PMID: 17618374

28. St. Louis VL, Rudd JWM, Kelly CA, Bodaly RA, Paterson MJ, Beaty KG, et al. The rise and fall of mer-

cury methylation in an experimental reservoir. Environ Sci Technol. 2004; 38: 1348–1358. https://doi.

org/10.1021/es034424f PMID: 15046335

29. Pickhardt PC, Folt CL, Chen CY, Klaue B, Blum JD. Algal blooms reduce the uptake of toxic methylmer-

cury in freshwater food webs. P Natl Acad Sci. 2002; 99: 4419–4423. https://doi.org/10.1073/pnas.

072531099 PMID: 11904388

30. Chen CY, Folt CL. High plankton densities reduce mercury biomagnification. Environ Sci Technol.

2005; 39: 115–121. PMID: 15667084

31. Karimi R, Chen CY, Pickhardt PC, Fisher NS, Folt CL. Stoichiometric controls of mercury dilution by

growth. P Natl Acad Sci. 2007; 104: 7477–7482. https://doi.org/10.1073/pnas.0611261104 PMID:

17456601

32. Cleckner LB, Garrison PJ, Hurley JP, Olson ML, Krabbenhoft DP. Trophic transfer of methyl mercury in

the northern Florida Everglades. Biogeochemistry. 1998; 40: 347–361.

33. Kidd KA, Paterson MJ, Hesslein RH, Muir DCG, Hecky RE. Effects of northern pike (Esox lucius) addi-

tions on pollutant accumulation and food web structure, as determined by delta C-13 and delta N-15, in

a eutrophic and an oligotrophic lake. Can J Fish Aquat Sci. 1999; 56: 2193–2202.

34. Essington TE, Houser JN. The effect of whole-lake nutrient enrichment on mercury concentration in

age-1 yellow perch. T Am Fish Socy. 2003; 132: 57–68.

35. Compeau GC, Bartha R. Sulfate-reducing bacteria—principal methylators of mercury in anoxic estua-

rine sediment. Appl Environ Microb. 1985; 50: 498–502. https://doi.org/10.1128/aem.50.2.498-502.

1985 PMID: 16346866

36. Fleming EJ, Mack EE, Green PG, Nelson DC. Mercury methylation from unexpected sources: molyb-

date-inhibited freshwater sediments and an iron-reducing bacterium. Appl Environ Microb. 2006; 72:

457–464. https://doi.org/10.1128/AEM.72.1.457-464.2006 PMID: 16391078

37. Bodaly RA, Hecky RE, Fudge RJP. Increases in fish mercury levels in lakes flooded by the Churchill

River Diversion, Northern Manitoba. Can J Fish Aquat Sci. 1984; 41: 682–691.

38. Lienesch PW, McDonald ME, Hershey AE, O’Brien WJ, Bettez ND. Effects of a whole-lake, experimen-

tal fertilization on lake trout in a small oligotrophic Arctic lake. Hydrobiologia. 2005; 548: 51–66.

39. Slotton DG, Reuter JE, Goldman CR. Mercury uptake patterns of biota in a seasonally anoxic northern

California reservoir. Water Air Soil Poll. 1995; 80: 841–850.

40. Ward DM, Nislow KH, Chen CY, Folt CL. Rapid, efficient growth reduces mercury concentrations in

stream-dwelling Atlantic salmon. T Am Fish Soc. 2010; 139: 1–10. https://doi.org/10.1577/T09-032.1

PMID: 20436784

41. Rao ST, Ku JY, Rao KS. Analysis of toxic air contaminant data containing concentrations below the limit

of detection. JAPCA J Air Waste MA. 1991; 41: 442–448.

42. Cutler DR, Edwards TC Jr., Beard KJ, Cutler A, Hess KT, Gibson J et al. Random forests for classifica-

tion in ecology. Ecology. 2007; 88: 2783–2792. https://doi.org/10.1890/07-0539.1 PMID: 18051647

43. Breiman L. Random forests. Mach Learn. 2001. 45:5–32.

44. Liaw A, Wiener M. Classification and regression by random forest. R News. 2002; 2: 18–22.

45. R Development Core Team. R: A language and environment for statistical computing. R Foundation for

Statistical Computing. Vienna, Austria. 2011.

46. Gini C. Variabilità e mutabilità. Bologna: Tipografia di Paolo Cuppini. 1912.

47. Lepak JM, Hooten MB, Johnson BM. The influence of external subsidies on diet, growth and mercury

concentrations of freshwater sport fish: implications for fisheries management and the development of

fish consumption advisories. Ecotoxicology. 2012; 21: 1878–1888.

48. Stacy WL, Lepak JM. Relative influence of prey mercury concentration, prey energy density and preda-

tor sex on sport fish mercury concentrations. Sci Total Environ. 2012; 437: 104–109. https://doi.org/10.

1016/j.scitotenv.2012.07.064 PMID: 22922134

PLOS ONE Predicting sport fish mercury contamination in heavily managed reservoirs

PLOS ONE | https://doi.org/10.1371/journal.pone.0285890 August 22, 2023 20 / 21

https://doi.org/10.1021/es050471r
https://doi.org/10.1021/es050471r
http://www.ncbi.nlm.nih.gov/pubmed/16382948
https://doi.org/10.1007/s00128-007-9229-0
https://doi.org/10.1007/s00128-007-9229-0
http://www.ncbi.nlm.nih.gov/pubmed/17618374
https://doi.org/10.1021/es034424f
https://doi.org/10.1021/es034424f
http://www.ncbi.nlm.nih.gov/pubmed/15046335
https://doi.org/10.1073/pnas.072531099
https://doi.org/10.1073/pnas.072531099
http://www.ncbi.nlm.nih.gov/pubmed/11904388
http://www.ncbi.nlm.nih.gov/pubmed/15667084
https://doi.org/10.1073/pnas.0611261104
http://www.ncbi.nlm.nih.gov/pubmed/17456601
https://doi.org/10.1128/aem.50.2.498-502.1985
https://doi.org/10.1128/aem.50.2.498-502.1985
http://www.ncbi.nlm.nih.gov/pubmed/16346866
https://doi.org/10.1128/AEM.72.1.457-464.2006
http://www.ncbi.nlm.nih.gov/pubmed/16391078
https://doi.org/10.1577/T09-032.1
http://www.ncbi.nlm.nih.gov/pubmed/20436784
https://doi.org/10.1890/07-0539.1
http://www.ncbi.nlm.nih.gov/pubmed/18051647
https://doi.org/10.1016/j.scitotenv.2012.07.064
https://doi.org/10.1016/j.scitotenv.2012.07.064
http://www.ncbi.nlm.nih.gov/pubmed/22922134
https://doi.org/10.1371/journal.pone.0285890


49. Gaeta JW, Ahrenstorff TD, Diana JS, Fetzer WW, Jones TS, Lawson ZJ, et al. Go big or. . .don’t? A

field-based diet evaluation of freshwater piscivore and prey size relationships. PLoS ONE. 2018. 13(3):

e0194092. https://doi.org/10.1371/journal.pone.0194092 PMID: 29543856

50. Chalmers AT, Krabbenhoft DP, Van Metre PC, Nilles MA. Effects of urbanization on mercury deposition

and accumulation in New England. Environ Pollut. 2014; 192: 104–112. https://doi.org/10.1016/j.

envpol.2014.05.003 PMID: 24907856

51. Zhang YX, Jacob DJ, Horowitz HM, Chen L, Amos HM, Krabbenhoft DP, et al. Observed decrease in

atmospheric mercury explained by global declines in anthropogenic emissions. Proc Natl Acad Sci.

2016; 113: 526–531.

52. Lyman SN, Cheng I. Gratz LE, Weiss-Penzias P, Zhang L An updated review of atmospheric mercury.

Sci Total Environ. 2020; 707: 135575. https://doi.org/10.1016/j.scitotenv.2019.135575 PMID:

31784172

PLOS ONE Predicting sport fish mercury contamination in heavily managed reservoirs

PLOS ONE | https://doi.org/10.1371/journal.pone.0285890 August 22, 2023 21 / 21

https://doi.org/10.1371/journal.pone.0194092
http://www.ncbi.nlm.nih.gov/pubmed/29543856
https://doi.org/10.1016/j.envpol.2014.05.003
https://doi.org/10.1016/j.envpol.2014.05.003
http://www.ncbi.nlm.nih.gov/pubmed/24907856
https://doi.org/10.1016/j.scitotenv.2019.135575
http://www.ncbi.nlm.nih.gov/pubmed/31784172
https://doi.org/10.1371/journal.pone.0285890

