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Abstract. Optimal design procedures provide a framework to leverage the learning gener-
ated by ecological models to flexibly and efficiently deploy future monitoring efforts. At the
same time, Bayesian hierarchical models have become widespread in ecology and offer a rich
set of tools for ecological learning and inference. However, coupling these methods with an
optimal design framework can become computationally intractable. Recursive Bayesian com-
putation offers a way to substantially reduce this computational burden, making optimal
design accessible for modern Bayesian ecological models. We demonstrate the application of
so-called prior-proposal recursive Bayes to optimal design using a simulated data binary
regression and the real-world example of monitoring and modeling sea otters in Glacier Bay,
Alaska. These examples highlight the computational gains offered by recursive Bayesian
methods and the tighter fusion of monitoring and science that those computational gains
enable.
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INTRODUCTION

Ecological science involves both data collection and
statistical modeling, but these two fundamental elements
are often developed separately and sequentially in prac-
tice. Studies are commonly structured based on static ran-
dom or space-filling designs. These designs have useful
properties in some inferential settings, but may not repre-
sent the most efficient use of limited field resources, espe-
cially in complex, dynamic ecological systems. In fact,
dynamically evolving processes may be monitored more
efficiently with dynamically evolving designs (Hooten et
al. 2009). Such designs can reduce redundancy in data
collection (Wikle and Royle 1999) and produce higher

quality data and lower prediction uncertainty (Hooten et
al. 2009). Moreover, static surveillance monitoring may
not make use of existing ecological knowledge that can
lead to improved study designs and inference (Nichols
and Williams 2006). In contrast, optimal adaptive survey
design recognizes that existing data (e.g., from a pilot
study or previous monitoring work) provide ecological
information that can be leveraged to ensure that future
data collection efforts are set up to be efficient and infor-
mative (Wikle and Royle 2005, Hooten et al. 2009).
The optimal design process is iterative, and proceeds

through the following steps: collection of data, develop-
ment and fitting of a statistical model, generation of pre-
dictions, evaluation and selection of a new design based
on the model and its predictions, collection of new data
using that design, and so on (Williams et al. 2018, Hoo-
ten et al. 2019). Throughout this process, practitioners
are required to make a number of choices. Among these
is the choice of model framework and structure.
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Hierarchical Bayesian modeling has become widespread
in ecology and is particularly well suited to integrating
ecological processes with unknown parameters and
noisy data (Berliner 1996, Wikle and Hooten 2010). This
integration is achieved by specifying three levels of the
statistical model (Berliner 1996): the data model that
connects observations to the latent ecological process,
the process model that describes that ecological process
and its associated uncertainty, and parameter models
that use prior information to constrain and inform the
parameters of the data and process models.
Fitting these hierarchical models is computationally

intensive and time consuming, especially for large spatio-
temporal models (e.g., requiring more than 10 h in Wil-
liams et al. [2018]). Furthermore, evaluating a given
design often requires generating predictions of the obser-
vations that design might produce in a future data collec-
tion effort, augmenting the original data with the
predicted data, and fitting the model to the augmented
data set. This fitted model then provides a means to eval-
uate how those new data would affect our understanding
of the ecological process and its uncertainty. Finding an
optimal design requires repeating this process (i.e., fitting
the Bayesian hierarchical model) for every potential
design. When the number of potential designs is large, the
computational burden of each individual model fit ren-
ders this task computationally infeasible, requiring sub-
stantial cloud-based or cluster resources (e.g., Williams
et al. 2018), or completely intractable.
The computational burden of the hierarchical Bayes-

ian treatment has limited its application in optimal
design settings, instead forcing practitioners to rely on
other methods (e.g., Kalman filters; Wikle and Royle
2005, Hooten et al. 2009), or explore a relatively limited
subset of designs (Williams et al. 2018). Thus, we cur-
rently lack the ability to carry the inference offered by
modern Bayesian statistical models forward into the
design phase without having to make compromises
about the designs and models we consider. The main
computational bottleneck involves updating an existing
posterior distribution with predicted future data, which
is the crux of Bayesian optimal adaptive design.
Recursive Bayesian inference provides methods that are

well-suited to addressing this bottleneck. In particular,
recursive methods enable a statistical model to be fit in a
series of steps (e.g., to different groups of data, or to new
data as it becomes available; Hooten et al. 2019). This
partitioning of the statistical fitting procedure can offer
large computational gains over fitting the full model every
time new data need to be assimilated (Hooten et al.
2019). Recursive Bayesian methods have recently been
used to facilitate computation in complex ecological
models (e.g., Hooten et al. 2016, Gerber et al. 2018), but
they have yet to be applied in the optimal design setting.
In what follows, we demonstrate how recursive Bayes-

ian methods can be integrated into the optimal design
workflow to substantially reduce the computational cost
of assimilating new data from each potential design. We

first provide an overview of the optimal design process
in a Bayesian hierarchical setting, and identify the cru-
cial role that recursive Bayesian computing can play in
reducing the computational burden. Then we demon-
strate the recursive Bayes optimal design approach in an
application using simulated data and a binary regression
framework. Finally, we apply the recursive Bayes opti-
mal design framework to a complex Bayesian hierarchi-
cal model of sea otter spatiotemporal dynamics,
demonstrating the substantial computational gains that
recursive Bayesian methods offer. These examples high-
light the important role that recursive Bayesian methods
can play in formally coupling optimal adaptive design
and modern hierarchical Bayesian modeling, leading to
improved ecological inference and closing the feedback
loop between modeling and data collection.

METHODS

Evaluating a design

We represent all possible observations of an ecological
process of interest as an N � 1 vector y (e.g., containing
abundance or presence/absence at a complete set of sites
in a study area). Then, we collect an initial sample of n1
observations, y1, produced by an n1 �N design matrix K1

that maps the full domain to the initial observations such
that y1 ¼ K1y. The design matrix, K1, is usually a (sparse)
matrix composed of zeros and ones that selects the subset
of y that is observed. Given a Bayesian model with param-
eters θ, we obtain a sample from the first-stage posterior
distribution ½θjy1� using an appropriate stochastic sam-
pling algorithm (Gelfand and Smith 1990). Importantly,
the recursive Bayes procedure outlined here is compatible
with any valid first-stage sampling algorithm (Hooten et
al. 2019), including Markov chain Monte Carlo (MCMC)
and Hamiltonian Monte Carlo (HMC), and any software
implementation thereof (e.g., NIMBLE [de Valpine et al.
2017] or Stan [Carpenter et al. 2016]).
In the optimal design framework, we use the existing

data y1 and the fitted model to compare how different
designs for future data collection affect our estimate of
some target quantity (often a measure of uncertainty).
Formally, we let l ¼ 1, . . ., L index the set of all possi-
ble designs, defined by n2 �N design matrices K lð Þ

2 , that
would produce a new set of n2 observations given by
y lð Þ
2 ¼ K lð Þ

2 y. The first step of optimal design is to define
a design criterion, d lð Þ y1,y

lð Þ
2

� �
, that summarizes some

aspect of our understanding of the process given both
the original and the new data. Choices of design crite-
rion often include prediction variance (Hooten et al.
2009) or the variance of model parameters (Hooten et
al. 2012) or derived quantities (e.g., abundance; Williams
et al. 2018), in which case the goal of optimal design is
to find the design that will yield the smallest variance
(i.e., the least uncertainty).
Generally, the design criterion will depend either on

the posterior predictive distribution of the full process
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y y1,y
lð Þ
2 ¼

Z� �
y

����
����y1,y lð Þ

2 ,θ
� �

½θjy1,y lð Þ
2 �dθ, (1)

or directly on the posterior distribution of the model

parameters
h
θ
���y1,y lð Þ

2

i
. In principle, to evaluate the

design criterion for a given K lð Þ
2 , we need to measure the

process (i.e., observe y lð Þ
2 ), augment the existing data with

that measurement, and fit the statistical model to char-

acterize
h
θ
���y1,y lð Þ

2

i
and hence the posterior predictive

distribution
h
y
���y1,y lð Þ

2

i
. Thus, computing d lð Þ y1,y

lð Þ
2

� �
given new (predicted) data requires fitting the model to
the augmented data, which, in the case of modern Bayes-
ian hierarchical models, may be computationally
demanding. If the number of potential designs, L, is
large, the standard Bayesian optimal design procedure
becomes intractable.
However, we can further decompose the posterior dis-

tribution as

h
θ
���y1,y lð Þ

2

i
/

h
y lð Þ
2

���y1,θ
ih
θ
���y1

i
,

/
h
y lð Þ
2

���y1,θ
ih
y1
���θi θ

h i
,

(2)

where θjy1½ � / y1jθ½ � θ½ � is available from the original
model fit to y1. This natural decomposition of the
posterior distribution of θ makes clear that the first-
stage posterior distribution, ½θjy1�, serves as a prior
on θ in the second-stage analysis of the augmented
data (Hooten et al. 2019). In prior-proposal recursive
Bayes (PPRB), we also use ½θjy1� as the proposal dis-
tribution in a Metropolis-Hastings MCMC algorithm
to update the posterior distribution of θ given the
new data produced by a given design (Hooten et al.
2019).
At step k of the PPRB MCMC algorithm, we sample

a proposal θ ∗ð Þ ∼ ½θjy1�. We then accept that proposal
and set θ kþ1ð Þ ¼ θ ∗ð Þ with probability min 1, rð Þ, where

r ¼
h
y lð Þ
2

���θ ∗ð Þ,y1
ih
θ ∗ð Þ

���y1
i

h
y lð Þ
2

���θ k�1ð Þ,y1
ih
θ k�1ð Þ

���y1
i
h
θ k�1ð Þjy1

i
h
θ ∗ð Þ

���y1
i ,

¼
h
y lð Þ
2

���θ ∗ð Þ,y1
i

h
y lð Þ
2

���θ k�1ð Þ,y1
i ,

(3)

where allowing the original posterior distribution to
serve as both prior and proposal enables the cancellation
and results in a ratio that depends only on the condi-
tional likelihood of the new data. Note that, because we
often have a finite MCMC sample from the first model
fit (and thus a finite set of proposals, θ ∗ð Þ, for this stage),

we can pre-compute
h
y lð Þ
2

���θ ∗ð Þ,y1
i
for each design and

proposal before the second stage and in parallel (Hooten

et al. 2019). This pre-computation, together with the rel-
ative simplicity of the above Metropolis-Hastings ratio,
can lead to a substantial decrease in computation time
compared to running the full sampling algorithm for
every design. Code implementing PPRB for the follow-
ing examples is available in Data S1 (archived in Leach
2021) and Data S2 (archived in Eisaguirre 2021).

Generating potential future data

The above discussion assumes that y lð Þ
2 is known,

which, of course, it is not. In the case of Gaussian
models (e.g., Wikle and Royle 1999), the design criterion
d lð Þ depends only on K lð Þ

2 and the modeled dependence
structure, and thus new data are not required. In more
complex models, evaluating the design requires predic-
tions of the new data y lð Þ

2 (Wikle and Royle 2005). These
predictions can be readily generated by draws from the
posterior predictive (or imputation) distribution of y lð Þ

2
produced from the first stage model

y lð Þ
2

���y1
h i

¼
Z

y lð Þ
2

���y1,θ
h i

θjy1½ �dθ: (4)

We can then use a multiple imputation approach
(Rubin 1996, Scharf et al. 2017) to average the design
criterion over the imputation distribution such that

d lð Þ y1ð Þ ¼ R
d lð Þ y1,y

lð Þ
2

� �
½y lð Þ

2 jy1�dy lð Þ
2 ,

¼ E d lð Þ y1,y
lð Þ
2

� �
jy1

� � (5)

In practice, we can compute this expectation by first

obtaining samples, y lð Þ mð Þ
2 ∼ ½y lð Þ

2 jy1� for m ¼ 1, . . ., M,
from the first stage posterior predictive distribution. We
then fit the model to each of the M augmented data sets

y,y lð Þ mð Þ
2

� �
, obtain samples from each of the posterior

distributions
h
θ
���y1,y lð Þ mð Þ

2

i
using PPRB, and compute

the mean of the corresponding design criteria:

d lð Þ y1ð Þ ¼ 1
M

∑
m
d lð Þ y1,y

lð Þ mð Þ
2

� �
: (6)

The accuracy of the expectation will improve as M
grows larger, but often a relatively small M (on the order
of 10) will be sufficient (Rubin 1996).
The multiple imputation procedure enables us to

account for the uncertainty in the future data in the evalu-
ation of the design criterion. Alternatively, if accounting
for such uncertainty is not desired or necessary, we could
generate a single point estimate of future data by comput-
ing the posterior predictive mean (or median or mode, as

appropriate) of
h
y lð Þ
2

���y1
i
or assigning a single fixed fore-

cast of y lð Þ
2 from another source (e.g., expert opinion).
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Optimization

Given an ability to rapidly compute the design crite-
rion d lð Þ, the optimal design can be obtained by finding
the design that minimizes (or maximizes) d lð Þ. In cases
where the design space is relatively small, each design
can be evaluated and the global optimum selected. If the
design space is too large to evaluate every design, an
optimization routine may be required (e.g., an exchange
algorithm; Royle and Nychka 1998).

EXAMPLE: SIMULATED BINARY REGRESSION

Consider a situation in which we seek to predict the
occupancy of a particular species across a spatial domain
comprising 100 discrete units (e.g., plots or transects) over
which we measure a covariate (e.g., through remote sens-
ing), xi for i ¼ 1, . . ., 100 (Fig. 1b). Let y be a vector
comprising binary occupancy at all sites. An initial data
collection effort randomly samples 10 of these sites, pro-
ducing initial data set y1 ¼ K1y with covariates x1 ¼ K1x,
where K1 is a 10� 100 matrix of zeros and ones, with a
single one in each row identifying the sampled plot.
We model these data using binary regression, with a

Bernoulli likelihood and a probit link function (Φ�1, the
inverse CDF of a standard normal distribution). The
resulting full Bayesian model is as follows:

y1i ∼ Bernoulli pið Þ,
Φ�1 pið Þ ¼ β0 þ β1x1i,

β0 ∼ Normal 0, σ20
� �

,

β1 ∼ Normal 0, σ21
� �

:

(7)

We use the data augmentation and Gibbs sampling
approach of Albert and Chib (1993) to draw an MCMC
sample from the posterior distribution of the regression
coefficients (½βjy1�) and the posterior predictive distribu-
tion of occupancy across the study domain (½yjy1�). This
posterior sample could alternatively be generated using
other algorithms (e.g., HMC) or software (e.g., brms;
Bürkner 2017) without changing the following workflow.
The goal of the optimal design framework is to use this
initial data set and model output to select the next site
(of the remaining 90) to be sampled. That is, each of the
remaining 90 sites represent a potential design, indexed
by l, that corresponds to a 1� 100 design vector K lð Þ

2 that
has a single 1 in the position of the sampled site and pro-
duces new data y lð Þ

2 ¼ K lð Þ
2 y.

To select the optimal design, we first specify a design
criterion. Our goal is to predict occupancy. Thus we seek
the design that minimizes the total posterior predictive
variance given both the initial and new data

d lð Þ y1,y
lð Þ
2

� �
¼ ∑

100

i¼1
varðyijy1,y lð Þ

2 Þ, (8)

where varðyijy1,y lð Þ
2 Þ is the pointwise posterior predictive

variance calculated using the MCMC sample from

h
yi
���y1,y lð Þ

2

i
produced by PPRB. To account for the

uncertainty in predictions of the future y lð Þ
2 , we average

this design criterion over the imputation distributionh
y lð Þ
2

���y1
i
to obtain d lð Þ y1ð Þ. In the binary case, imputed

realizations y lð Þ mð Þ
2 can only take on values of 0 or 1,

enabling efficient computation of this expectation (see
Appendix S1).
Evaluating the design criterion requires sampling fromh
β
���y1,y lð Þ mð Þ

2

i
for all 90 designs and imputed future data

sets. Rather than fit the model to the entire data set

y lð Þ mð Þ
2 ,y1

� �
, we apply PPRB to use the existing output

from the initial MCMC algorithm (i.e., the β kð Þ drawn
from ½βjy1�). At step k of the second-stage MCMC algo-
rithm for design l and imputed data m, we implement
PPRB as follows:

1) Sample a proposal β ∗ð Þ ∼ ½βjy1� (i.e., selected randomly
with replacement from the first stage MCMC sample).

2) Compute the PPRB Metropolis-Hastings ratio

r ¼
h
y lð Þ mð Þ
2

���β ∗ð Þ
i

h
y lð Þ mð Þ
2

���β kð Þ
i : (9)

3) Accept the proposal β ∗ð Þ with probability min r, 1ð Þ:

Using the second-stage samples β kð Þ, we compute the
design criteria for each potential design (averaging over
the imputation distribution) and identify the optimal site
for the next sample (Fig. 1c, d). The expected design crite-
rion is largest (i.e., with the largest predictive variance) for
sites with more extreme covariate values (Fig. 1c). Despite
the fact that the inflection point (i.e., the x value where
p xð Þ ¼ 0:5) represents the largest Bernoulli variance, sam-
pling locations with covariate values slightly larger than
this inflection point produce the smallest total expected
prediction variance. The positioning of the optimal design
just off the inflection point highlights the fact that, even
in simple models, the optimal design is often not intuitive
and justifies the need for rigorous optimal design in ongo-
ing ecological monitoring. In more complex spatiotempo-
ral models, often with larger design spaces, it becomes
even more difficult to identify effective designs a priori
(Wikle and Royle 1999, 2005), further emphasizing the
need for PPRB and the speed with which it enables us to
evaluate a potentially large number of designs.

EXAMPLE: SPATIOTEMPORAL DYNAMICS

Sea otters (Enhydra lutris) are an apex predator of the
nearshore marine community of the North Pacific
Ocean and nearly went extinct at the turn of the 20th
century. Reintroductions, translocations, and legal
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protections allowed sea otters to recolonize much of
their former range (Williams et al. 2019). The return of
sea otters has influenced marine food webs, both directly
and indirectly, with impacts on commercially important
fisheries. Thus, information regarding the continued
growth and expansion of sea otters is critical for predict-
ing future expansion, understanding their role as a key-
stone species, and for informing natural resource
management (Tinker et al. 2019). Sea otters are surveyed
using aircraft over large spatial domains and flight time
is typically restricted by range and fuel capacity of air-
craft and operating conditions (Williams et al. 2017a).
Sampling designs must balance requisite data collection
with human safety, aircraft availability, and cost.
To estimate growth and colonization dynamics of sea

otters in Glacier Bay, Alaska, Williams et al. (2017b)

developed a mechanistically motivated reaction-
diffusion model known as ecological diffusion, embed-
ded within a Bayesian hierarchical framework with
data, process, and parameter levels (sensu Berliner
1996). This model was fit to sea otter aerial survey
counts (Esslinger 2019), with data and process models
specified as follows

Data Model : yt sið Þ ∼ Binomial nt sið Þ,ϕð Þ,
Process Model : nt sið Þ ∼ Poisson u si, tð Þð Þ,
∂u s, tð Þ

∂t
¼ ∂2

∂s21
þ ∂2

∂s22

	 

μ s, tð Þu s, tð Þ½ � þ γu s, tð Þ:

(10)

In Eq. 10, yt sið Þ represents sea otter count data at
locations si for i ¼ 1, . . . , J during time t, nt sið Þ is the
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FIG. 1. Initial data collection effort and evaluation of the optimal design for a binary regression model. (a) The initial estimated occu-
pancy probability p as a function of x, with the black line showing the posterior median and the gray ribbon showing the 95% credible inter-
val. The points show the data obtained from (b) an initial random survey of the study domain. In panel b, each square is a sampling plot
with measured covariate x indicated by the color of the fill. The points indicate the initial sites surveyed, with filled circles indicating the
organism was present and open circles indicating absence. Each of the remaining plots represent a potential design for the next survey. (c, d)
The computed design criteria for each of the 90 potential designs as a function of the x value at each plot (c) and mapped on the study
domain (d). The dashed line in panels a and c indicates the x value of the optimal plot and the white × identifies the optimal plot in panel d.
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true latent abundance of sea otters, and ϕ is the individ-
ual sea otter detection probability. The dynamic abun-
dance intensity process, u s, tð Þ, was governed by an
ecological diffusion PDE, with a constant instantaneous
Malthusian growth γ and motility μ s, tð Þ modeled as a
function of spatially varying covariates. See Appendix
S1 for the full model specification. The model described
in Eq. 10 was fit to baseline data, y1 collected for
t ¼ 1993, . . ., 2012, using a custom MCMC algorithm
(Williams et al. 2017b). We used our algorithm to obtain
three MCMC chains in parallel, with 50,000 draws per
chain plus 10,000 for burn in. This required approxi-
mately 5 h per chain, for a total of 15 CPU hours.
Following the optimal design framework, our goal

was to use the initial data y1 and corresponding model
output to inform the collection of transects to be sur-

veyed in a hypothetical 2013, producing new data y lð Þ
2 .

Rather than choosing a design criterion based on the
posterior predictive density as in the binary regression
example, in this example, we focused on the latent total
abundance intensity in 2013, u2013 ¼

R
S
u2013 sð Þds. Our

objective was to minimize the variance of the total inten-

sity d lð Þ y1,y
lð Þ
2

� �
¼ var

�
u2013

���y1,y lð Þ
2

�
, where varðu2013j

y1, y lð Þ
2 Þ is the predictive process variance calculated

using the MCMC sample from ½u2013jy1,y lð Þ
2 � produced

by PPRB. We used the multiple imputation approach
described above to average this design criterion over the

posterior predictive distribution of y lð Þ
2 using M ¼ 100

draws of y lð Þ mð Þ
2 ∼

h
y lð Þ
2

���y1
i
, such that

d lð Þ y1ð Þ ≈
1
M

∑
M

m¼1
varðu2013jy1,y lð Þ mð Þ

2 Þ: (11)

For each design l and imputed future data set m, we
implemented the PPRB MCMC algorithm as follows:

1) Sample a proposal n ∗ð Þ
2013,u

∗ð Þ
2013

� �
∼ ½n2013,u2013jy1�.

2) Compute the PPRB Metropolis-Hastings ratio

r ¼
h
y lð Þ mð Þ
2

���n ∗ð Þ
2013

i
h
y lð Þ mð Þ
2

���n kð Þ
2013

i : (12)

3) Accept the proposal n ∗ð Þ
2013,u

∗ð Þ
2013

� �
with probability

min r,1ð Þ:

From the resulting MCMC chains, we computed d lð Þ

for each candidate design. Given constraints associated
with aircraft range and availability, approximately 20
transects can be flown per day in Glacier Bay, resulting

in 170
20

� �
possible survey designs given the dimensions of

the survey area and the resolution of the data collection
methods (Williams et al. 2018). While it was not feasible
to assess all possible designs, the PPRB procedure
allowed us to compare many more than was previously
practical. Given that the ecological diffusion model
required approximately 15 CPU hours to estimate
parameters using an MCMC algorithm, previous opti-
mization routines that fit the model for each design using
MCMC would require 1500 CPU hours to assess just 1
design over 100 imputed data sets (Williams et al. 2018).
In contrast, the PPRB approach permitted us to com-
pute the design criterion of 1,000 designs (Fig. 2a) in
about 480 CPU hours, which we reduced to < 5 h of
run time by parallelizing evaluation over multiple CPUs.
The survey design that optimized our design criterion
(Fig. 2b) reduced the variance of the hypothetical 2013
sea otter abundance estimate by 38% over the average
random design.

DISCUSSION

Applying the principles of optimal design to make effi-
cient use of field resources requires methods that make
efficient use of computational resources. This is espe-
cially true for ecological studies in which Bayesian hier-
archical models are deployed. These models can capture
rich mechanistic information (Wikle and Hooten 2010)
but are often computationally demanding to fit. We pro-
posed the use of PPRB (Hooten et al. 2019) to alleviate
the computational burden and make evaluating a large
number of designs feasible. We demonstrated this
method using a binary regression model and highlighted
that optimal designs may not always be intuitive without
a comprehensive search of the design space (Wikle and
Royle 1999, 2005). Furthermore, we applied the proce-
dure to a complex Bayesian hierarchical model of sea
otter spatiotemporal dynamics and demonstrated the
substantial computational gains that PPRB produces
relative to fitting the entire model for every considered
design and possible data set.
The rapid and relatively extensive search of the design

space allowed us to identify a collection of transects for
a hypothetical 2013 sea otter aerial survey that would
produce a more precise estimate of the total sea otter
abundance in Glacier Bay than the average random
design. Given that sea otters are a keystone species
(Estes and Palmisano 1974) with a rapidly expanding
range and abundance in Glacier Bay (Williams et al.
2019), accurately estimating their abundance is crucial
for monitoring and conserving the nearshore ecosystem
in the face of environmental and anthropogenic changes
(Coletti et al. 2016, Tinker et al. 2019). We demon-
strated that the optimal design framework, by leveraging
existing knowledge of sea otter dynamics, learned
through the combination of existing survey data and the
mechanistic principles embedded in the reaction-
diffusion PDE, can help make monitoring data as useful
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FIG. 2. (a) Histogram of design criteria computed for 1,000 randomly selected sea otter survey designs. The mean is given by
the black line and the blue bar indicates the optimal survey design. Each design consisted of 20 transects to be flown over Glacier
Bay in southeastern Alaska. (b) Forecasted sea otter abundance intensity across Glacier Bay in 2013, u2013ðsÞ, and optimal hypo-
thetical survey design. Red lines correspond to the 20 transects representing the optimal design.
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and informative as possible (Nichols and Williams
2006).
The challenges inherent in monitoring sea otters in

Glacier Bay and across the North Pacific—costly data
collection, dynamic spatiotemporal processes, and the
need for quality data for conservation, management,
and inference—are emblematic of the challenges faced
throughout much of ecology. Both optimal design and
Bayesian hierarchical modeling offer potential solutions
to some of these challenges, and the use of PPRB allows
them to be coupled more easily. This coupling will help
to make the optimal design framework accessible to
larger monitoring efforts across broader spatial domains
and, in particular, may assist in the targeting of monitor-
ing efforts across the sea otter range in the North Pacific
(Eisaguirre et al. 2021).
Further, by reducing the computational burden of eval-

uating a given design, PPRB allows for greater flexibility
in implementing the other components of the iterative
optimal design framework, including the types of the data
collected, the choice of design criteria, and the optimiza-
tion framework. We focused on applications where the
goal was to choose the locations at which to collect a sin-
gle type of data, but the PPRB optimal design framework
could be extended to target sampling across multiple data
types (e.g., in integrated population modeling [Schaub et
al. 2007] or multispecies studies). Further, we demon-
strated two choices of design criterion based on predictive
variance (in the binary regression example) and the vari-
ance of latent derived quantities (in the sea otter exam-
ple). The choice of design criterion will depend on the
goals of a particular study and could include other com-
ponents, such as the costs of implementing a given design
(Williams and Brown 2020), the benefits of any connected
management actions (Williams and Brown 2020), or a
measure of the strength of preferential sampling implied
by a design (Diggle et al. 2010, Gelfand and Shirota
2019). Last, the approach we described can be enhanced
by additional optimization strategies. The speed gains
offered by PPRB may make the application of optimiza-
tion frameworks (e.g., exchange algorithms, Royle and
Nychka 1998) more feasible, and the identification of a
global optimum more likely.
As we have demonstrated in our examples and discus-

sion, recursive Bayesian methods offer to substantially
ease the computational burden of coupling optimal design
procedures with Bayesian hierarchical modeling. By facili-
tating this coupling, recursive Bayesian methods help close
the feedback loop between data collection and data analy-
sis, allowing the knowledge produced by Bayesian hierar-
chical modeling to inform monitoring efforts that improve
and accelerate ecological learning and inference.
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SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this article at http://onlinelibrary.wiley.com/doi/
10.1002/ecy.3573/suppinfo

OPEN RESEARCH

Novel code is provided as Supporting Information and archived on Zenodo. The code for the simulated data example is
archived with https://doi.org/10.5281/zenodo.5172768 and the code from the sea otter example is archived with https://doi.org/10.
5281/zenodo.5172817. The data used for the sea otter example are available from Esslinger (2019).
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