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Summary

1. Analyses of animal resource selection functions (RSF) using data collected from relocations

of individuals via remote telemetry devices have become commonplace. Increasing technologi-

cal advances, however, have produced statistical challenges in analysing such highly autocor-

related data. Weighted distribution methods have been proposed for analysing RSFs with

telemetry data. However, they can be computationally challenging due to an intractable nor-

malizing constant and cannot be aggregated (i.e. collapsed) over time to make space-only

inference.

2. In this study, we take a conceptually different approach to modelling animal telemetry data

for making RSF inference. We consider the telemetry data to be a realization of a space–time

point process. Under the point process paradigm, the times of the relocations are also consid-

ered to be random rather than fixed.

3. We show the point process models we propose are a generalization of the weighted distri-

bution telemetry models. By generalizing the weighted model, we can access several numerical

techniques for evaluating point process likelihoods that make use of common statistical soft-

ware. Thus, the analysis methods can be readily implemented by animal ecologists.

4. In addition to ease of computation, the point process models can be aggregated over time

by marginalizing over the temporal component of the model. This allows a full range of mod-

els to be constructed for RSF analysis at the individual movement level up to the study area

level.

5. To demonstrate the analysis of telemetry data with the point process approach, we analy-

sed a data set of telemetry locations from northern fur seals (Callorhinus ursinus) in the

Pribilof Islands, Alaska. Both a space–time and an aggregated space-only model were fitted.

At the individual level, the space–time analysis showed little selection relative to the habitat

covariates. However, at the study area level, the space-only model showed strong selection

relative to the covariates.

Key-words: animal telemetry, point process, resource selection, space–time, weighted distri-

bution

Introduction

Analyses of animal resource selection functions (RSF)

using data collected from relocations of individuals via

remote telemetry devices have become commonplace.

Technological advances, however, have produced statisti-

cal challenges in analysing such highly autocorrelated

data. There have been several recent proposals for making

statistical inference for RSFs from autocorrelated data.

Most of these proposals have been variations of the

weighted distribution (Patil 2002) approach (McDonald,

Manly & Raley 1990; Lele & Keim 2006; Christ, Ver

Hoef & Zimmerman 2008; Johnson et al. 2008; Forester,

Im & Rathouz 2009). However, see Hooten et al. (2010)

and Hanks et al. (2011) for alternatives to the traditional*Correspondence author. E-mail: devin.johnson@noaa.gov

© 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society

Journal of Animal Ecology 2013 doi: 10.1111/1365-2656.12087



weighted distribution. Johnson et al. (2008) illustrates that

the weighted distribution approach generalizes the notion

of resource selection, typically defined as habitat use rela-

tive to the proportion of habitat available, by considering

observed spatial locations as ‘habitat’ with availability

governed by a movement model and the previous location

of the animal. See Aarts, Fieberg & Matthiopoulos (2013)

for additional exploration of the notion of availability in

RSF studies. The weighted distribution approach makes

inference on selection by modelling animal use as a func-

tion of a movement model and an RSF. There are three

drawbacks to the weighted distribution approach, how-

ever. First, these methods can be computationally chal-

lenging due to an intractable normalizing constant.

Second, there is a dearth of software available to animal

ecologists for fitting these models. Finally, selection can

only be inferred at the level of individual movement. The

weighted distribution models are designed to model selec-

tion of the animal’s next location given the current loca-

tion. There is no straightforward way to aggregate over

time and model selection relative to the entire study area

while simultaneously accounting for temporal autocorrela-

tion. This may be desirable as often location times are of

no biological interest because they are a function of the

sampling rate programmed into the telemetry device by

the researcher. Throughout the remainder of the paper,

we will refer to aggregation over time to mean ignoring

the times of observation and modelling only the spatial

location of the points.

Spatial point processes have recently been proposed for

general analysis of presence–absence data (Warton &

Shepherd 2010; Aarts et al. 2012). Warton & Shepherd

(2010) proposed the spatial Poisson process as a solution

to the ‘pseudo-absence problem’ that also appears in

resource selection studies. The pseudo-absence problem

arises due to the fact that one can often determine which

spatial locations an animal has used, but it may be impos-

sible to know which locations were available for the ani-

mal to use and were passed over for the selected

locations. Early resource selection methods recognized

this fact and used a researcher-selected sample of loca-

tions (the availability sample) to compare with known

used locations (see chapter 5 of Manly et al. 2002). Con-

troversy concerning the interpretation of the estimated

parameters ensued due to the fact that inference was

based on how the researcher and animal each selected

their locations (Keating & Cherry 2004; Johnson et al.

2006; Beyer et al. 2010). Warton & Shepherd (2010) and

Aarts et al. (2012) illustrated, however, that availability

samples could be interpreted as quadrature points for

approximating integrals within RSF likelihoods. There-

fore, there is no case–control interpretation for the RSF

with respect to use and availability, and we are free to

select our availability points deterministically to best

approximate the point process likelihood. While the point

process likelihood presented by Warton & Shepherd

(2010) and Aarts et al. (2012) eliminates the availability

sampling problem for analysis of resource selection based

on a landscape snapshot of use, telemetry data can con-

tain substantial temporal autocorrelation that is not

accounted for in spatial point process models previously

used. Therefore, we propose the use of space–time point

process models to account for this high autocorrelation.

By using space–time point process models, we take a

conceptually different approach to analysing animal

telemetry data for making RSF inference. Instead of con-

sidering the locations to be essentially a bivariate time ser-

ies, as is the case with most movement-based weighted

distribution models, we consider the telemetry data to be

a realization of a space–time point process. The space–

time point process models event occurrences (e.g. animal

locations) in three dimensions: latitude, longitude and

time. Under the space–time point process paradigm, the

times of the relocations are also considered to be random

rather than fixed. We view this as a more realistic model

as there is often a random component to when telemetry

locations are received. Even when devices are programed

to record (and transmit) locations at specified times, there

are usually some locations that will not be received by

chance. These random components may be due to

hypothesized sources such as animal state (e.g. sleeping)

or habitat occupied (e.g. dense forest); however, this

information is often not known to the researcher, thus a

random process model of some kind is appropriate.

Another benefit of using space–time models for telemetry

data is that there is a theoretical basis for aggregating

data over time to examine study area level selection. In

fact, we will show that space–time point process models

are a generalization of the weighted distribution models

that Johnson et al. (2008) propose. Thus, even starting

with a different motivation, we end up back at essentially

the same place. However, by adding models for the arri-

val of location times, we can overcome the three main

drawbacks of the weighted distribution RSF telemetry

models: computational burden, lack of available software,

and inability to aggregate over time.

We begin our discourse with a review of the weighted

distribution approach and transition to development of

space–time point process models and demonstrate that by

modelling random times of location, we obtain a space–

time point process model from the weighted distribution

model. Following this, using the marginal intensity of the

locations in a space–time point process, we will develop

some methods for mitigating temporal dependence in

locations when using space-only Poisson process models

for RSF inference (Warton & Shepherd 2010; Aarts et al.

2012). For both versions we provide numerical approxi-

mations that allow model fitting with standard or readily

available statistical software. Finally, we demonstrate

space–time and space-only RSF inference by performing

each analysis on a data set of northern fur seal (Callorhi-

nus ursinus) telemetry locations in the Bering Sea off the

coast of Alaska. In the fur seal analysis, we illustrate that

the basic models developed earlier in the paper can be
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readily extended to accommodate more complex move-

ment such as central place foraging.

Materials and methods

weighted distribution models

The general form of a weighted distribution model for RSF infer-

ence is defined by the conditional distribution

guðs; tjh;HtÞ ¼ wðs; t; hwÞgaðs; tjha;HtÞR
A wðu; t; hw;HtÞgaðu; tjha;HtÞ du

¼ K�1
t wðs; t; hwÞgaðs; tjha;HtÞ;

eqn 1

where gu is the probability density of animal location (use distri-

bution or UD) at time t, w is the RSF, ga is the availability win-

dow based on the history, Ht, of locations up to time t, A is the

study area, and h ¼ ðhw; haÞ is a vector of parameters.

Given a set of telemetry locations, s1;:::; sn, recorded at times

t1;:::; tn, the log-likelihood function to be maximized is

LðhÞ ¼
Xn
i¼1

logfwðsi; tijhwÞgþ logfgaðsi; tijHti ;haÞg� log Ktif g:

eqn 2

To be more specific, one can take, say, the standard exponential

RSF, wðsi; tijHti Þ ¼ expfx0iag, and a Brownian motion motivated

availability window, gaðsi; tijHti Þ ¼ expf�bdi2D
�1
i =2g, where xi is

a vector of environmental variables measurable at location si at

time ti, a is a vector of resource selection coefficients, b controls the

spread of the availability window, di is the distance from si�1 to si,

and Di ¼ ti � ti�1. Substituting these specifics into (2) gives the

log-likelihood for a basic RSF model for telemetry data,

LðhÞ ¼
Xn
i¼1

x0ia� b d 2
i D

�1
i � logKti : eqn 3

Equation (3) is deceptively simple-looking except for the normal-

izing term that must be calculated for each observed location,

logKti ¼ log

Z
A
expfxðuÞ0a� bd 2

i ðuÞD�1
i g; eqn 4

where diðuÞ is the distance between u and si�1 for an location u in

A. One can see that models of this sort become very computa-

tionally demanding with custom coding necessary for parameter

estimation. Thus, these models are generally inaccessible to a

great majority of animal ecologists.

Some approximations have been proposed that aim to reduce

the computational burden for weighted distribution RSF models.

Initially, McCracken, Manly & Vander Heyden (1998) proposed

a design-based sampling estimate of Kt for each observation time.

Johnson et al. (2008) extended the design-based approximation

with a more general importance sampling-based estimator. Even

with this type of approximation, these models still remained out

of reach for general practice due to lack of available software for

implementing the methods.

space–time point process models

Space–time point processes have been used to model random

events such as earthquakes (Ogata 1998), wildfires (Peng,

Schoenberg & Woods 2005) and nesting of seabirds (Diggle,

Kaimi & Abellana 2010) where the data collected are the loca-

tions and times, (s, t), of these events. Schoenberg, Brillinger &

Guttorp (2002) present a basic overview of space–time point

process models and analysis. A space–time point process is

defined by its conditional intensity function kðs; tjHtÞ (Fishman

& Snyder 1976). In general terms, the conditional intensity gov-

erns the rate of event occurrences at location s and time t given

the history of event occurrences, Ht, up to time t. Mathemati-

cally, the conditional intensity can be defined as the limit of the

expected count of event occurrences in the cube

Bd ¼ ðsþ dsÞ � ðtþ dtÞ as d tends to zero, i.e.

kðs; tjHtÞ ¼ lim
d!0

E½NðBdÞjHt�=jBdj; eqn 5

where NðBdÞ is the number of events occurring in Bd.

The conditional intensity function is often broken into a

product of separate intensity functions representing different

components, say, purely spatial, purely temporal and space–

time interactions (Schoenberg, Brillinger & Guttorp 2002).

Using this approach, we can define a space–time point process

model for telemetry locations.

kðs; tjHtÞ ¼ k0ðtÞwðsÞgðs; tjHtÞ eqn 6

where k0ðtÞ represents the baseline rate of telemetry location

acquisition at time t, w(s) represents a purely spatial component

to location and gðs; tjHtÞ represents an interaction between spa-

tial and temporal aspects of the model. It is not coincidence that

w and g were chosen for the notation. If a space–time point pro-

cess model with conditional intensity (6) is adopted and we con-

dition on the observation times t1;:::; tn, we obtain (1) as the

conditional distribution of s1;:::; sn given the observation times

(Diggle, Kaimi & Abellana 2010). Thus, (6) represents the uncon-

ditional distribution of observed locations and times.

space–time point process inference

The general likelihood for a space–time point process over spatial

area A and time interval (0,T] is given by

LðhÞ ¼
Xn
i¼1

log kðsi; tijHti Þ �
Z
A

Z T

0

kðu; tjHtÞ dt du; eqn 7

where ðsi; tiÞ is the observed location and time of the ith event, A
is again the two-dimensional study area, and the period of inter-

est is [0,T ] (see Schoenberg, Brillinger & Guttorp 2002 and refer-

ences therein). Specifically, if we assume the Brownian

availability RSF model (3), with a constant baseline intensity

of locations (i.e. log k0ðtÞ ¼ a0), we obtain the log-intensity

function

log kðs; tjHtÞ ¼ xðsÞ0a� bdðsÞ2DðtÞ�1=2; eqn 8

where d(s) is the distance from s to the last observed location

prior to t, D(t) is the difference between t and the time of last

observation, and the covariate vector x now contains a one such

that an intercept (a0) is estimated. From this intensity function,

we subsequently obtain the likelihood

© 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society, Journal of Animal Ecology
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LðhÞ ¼
Xn
i¼1

x0ia� bd2i D
�1
i

� ��
Z
A

Z Di

0

exðuÞ
0
a�bdiðuÞ2d�1

dd du

� �
:

eqn 9

If location acquisition is not possible continuously through the

deployment (e.g. due to preprogrammed telemetry device sam-

pling schedules), the temporal integral becomes a sum over the

possible times with a0 becoming the log probability of location

acquisition at any of those times. It would appear that we have

traded several two-dimensional integrals for several more difficult

three-dimensional integrals and created an even more computa-

tionally burdensome model. That initial impression, however, is

incorrect.

In order to calculate likelihood values for estimation of spatial

Poisson process models, Berman & Turner (1992) proposed a

quadrature method that makes use of common statistical software

for fitting Poisson family generalized linear models (GLMs).

Their method can be directly extended to the space–time case by

choosing m quadrature points on multiple grids in time (indexed

by k) and space within time (indexed by j, k) plus the n observed

locations and times to produce the numerical approximation

LðhÞ �
X
j;k

qjkfzjk log kðsjk; tjjHtj Þ � kðsjk; tjjHtj Þg; eqn 10

where qjk is the volume of the cube surrounding the (j,k) quadra-

ture point and zjk ¼ 1=qjk if the (j,k) quadrature point belongs to

the set of observations and zjk ¼ 0 if the (j,k)th point is one of

the chosen grid points. Closer inspection of (10) reveals the

approximation to be proportional to a weighted Poisson likeli-

hood function with observations zjk and weights qjk. Thus, if

log kðs; tjHtÞ is a linear function of the parameters, any GLM fit-

ting software that allows noninteger Poisson observations can be

used for maximization. Both Warton & Shepherd (2010) and

Aarts et al. (2012) use this method for fitting spatial point process

models to animal presence–absence data. Recently, Simpson et al.

(2011) proposed an alternative version making use of Poisson

regression with offsets rather than weights.

After the quadrature data (i.e. zjk, qjk, sjk, tj and xjk) are cre-

ated, analysis of several models and/or individuals can proceed

quickly due to optimized GLM fitting routines in most statistical

packages [e.g. the glm() function in the open-source R statistical

software (R Development Core Team 2012)]. The same quadra-

ture data set is used for all model fitting. In our experience, even

when k is not linear in the parameters, maximization of (10) pro-

ceeds much faster than maximization of (2). The weighted distri-

bution likelihood requires a loop over sites within each time

because the log normalizing constant is needed, whereas (10) can

be evaluated in one vector operation.

mitigating temporal dependence in space-
only rsf analysis

The space–time models presented in the previous sections illus-

trate that temporal correlation in telemetry data can be taken

into account in a computationally efficient and practical way.

However, as noted by Fieberg et al. (2010), these models measure

selection at the level of individual movement, and broad-scale

trends over many individuals can be missed. Larger extent space-

only point process models such as those used in Warton &

Shepherd (2010) and Aarts et al. (2012) have the ability to com-

bine data from many individuals over large regions to examine

selection functions. In neither of those studies, however, were the

locations considered to be (or simulated to be) temporally corre-

lated. So, the question arises of whether or not we can use some

theoretical aspects of space–time models to develop practical

methods to mitigate the temporal correlation when analysing

telemetry data with space-only point processes. In this section,

we present a proposal which can be extended as warranted

depending on the biology of the species of study.

The marginal distribution for the spatial portion of a space–time

point process is a complex point process model with interacting

points. Moreover, the interaction term is also random. Therefore,

we propose considering a space-only Poisson process approxima-

tion for analysis of the spatial component. Following Illian et al.

(2012), we construct a covariate to help account for interaction

between points. In order to construct an appropriate covariate, we

use the fact that a space–time Poisson process (i.e.

kðs; tjHtÞ ¼ kðs; tÞ) has a marginal space-only process with inten-

sity function kðsÞ ¼ R T

0 kðs; tÞdt (Illian et al. 2008). The marginal

intensity function derived from (8) is given by

kðsÞ ¼ exðsÞ
0
a
Xn
i¼1

Z Di

0

e�bdiðsÞ2d�1

dd

¼ exðsÞ
0
a
Xn
i¼1

~GiðsÞ

¼ exðsÞ
0
aGðsÞ;

eqn 11

While ~GiðsÞ has no closed form solution, we can see that it is still

a kernel centred on observed location si�1 that is essentially the

average of normal kernels. Thus, the sum, G(s), is a smooth vari-

able kernel density function of the observed location. Thus, we

can construct a covariate from an unnormalized (i.e.R
u GðuÞdu ¼ n) variable kernel utilization distribution estimate to

serve as a surrogate for point interactions in the space-only anal-

ysis. Now, in order to model data pooled over h individuals, note

that a combination of Poisson processes is also a Poisson process

with intensity kðsÞ ¼ P
h khðsÞ. Thus, assuming an identical RSF

between individuals, we can obtain a pooled intensity from (11)

using kðsÞ ¼ exðsÞ
0
a
P

h GhðsÞ, where GhðsÞ is the variable kernel

density estimate for animal h.

With respect to inference, the Berman (10) or Simpson et al.

(2011) quadrature scheme could be used for a space-only model

as well. But, a simpler approach (Illian et al. 2012) is to use the

grid defined by xðsjÞ, evaluate each GhðsjÞ on the covariate raster

grid, count the total number of points over all animals, yj, within

each cell and model yj as a Poisson variable with log mean

log kj ¼ xðsjÞ0aþ b logG�ðsjÞ; eqn 12

where G�ðsÞ ¼ P
h GhðsÞ is our constructed covariate. We added

the coefficient b into the linear predictor even though it is not

present in k(s) above to help restore some uncertainty due to the

fact that the G�ðsÞ is random. Illian et al. (2012) also add a spa-

tially correlated random effect, g(s), to the model (12) in order to

capture other latent clustering effects not captured by the con-

structed cluster covariate. This is something we suggest and make

use of later in out fur seal analysis. With the spatial random

effect, it is necessary to find software that can analyse generalized

linear mixed models.

There is one small caveat in using the proposed Poisson pro-

cess approximation. Selection effects are contained in the G�ðsÞ

© 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society, Journal of Animal Ecology
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estimate. Thus, log G�ðsÞ may be collinear with x(s) obscuring a

inference. To remove the effects of selection within the utilization

distribution G�ðsÞ, we suggest using the residuals of log G�ðsÞ
regressed on x(s). By using the residuals, the constructed covari-

ate discounts observations close together in time, but not neces-

sarily in space. Two observations may be near each other in

space, but if there is a large time gap between them, the kernel

surface will be flatter underneath them (Fig. 1e). The following

section on northern fur seal selection illustrates how this method

can be used.

northern fur seal resource selection

In order to demonstrate the proposed point process methods, we

analysed data from a telemetry study of female northern fur seals

in the Pribilof Islands, Alaska. In this section, our goal is to not

only illustrate the methods with real data, but to show that these

models are very flexible and we can easily add terms to the model

to better fit the biology of our species as well as our method of

data collection. Here, we present two specific space–time and

space-only models, but we would like to impress upon the reader

how adaptable these models can be in various situations. In the

space–time model, we illustrate how we can make a dynamic

model in which movement changes over the length of deployment,

while the space-only analysis illustrates inference for pooled data

with selection measured relative to the study area as a whole.

During summer months, female northern fur seals are central

place foragers that alternate between foraging trips lasting several

days and remaining at the rookery to nurse pups (Gentry 1998).

The Pribilof population of fur seals has been declining c. 6–7%

per year for several decades (Towell, Ream & York 2006), neces-

sitating a better understanding of space use and habitat prefer-

ence for conservation needs. We were interested in assessing

resource selection at two different scales. First, using the space–

time models, we examined selection at the individual movement

scale. Following that analysis, we used the space-only point pro-

cess models to assess selection at the scale of our study area

(eastern Bering Sea continental shelf; see Fig. 1).

Fifteen adult female northern fur seals with dependent pups were

instrumented at rookeries on St. Paul Island, Alaska (57�1�N,

170�3�W), in early August 2010. Each fur seal was equipped with an

Mk10-F or Mk10-AF tag (Wildlife Computers, Redmond, WA,

USA), which use Fastloc GPS technology to record at sea locations

and have time–depth recorder capabilities. GPS locations were

recorded at 15-min intervals when the animal was on the surface or

on land. To facilitate instrument recovery, each female was also

equipped with a VHF tag (Advanced Telemetry Systems, Isanti,

MN, USA). Instruments were attached directly to the dorsal pelage

using quick-set epoxy. To remove erroneous locations, GPS loca-

tions were filtered based on a maximum transit rate of 3 m/s using

the algorithm described in Freitas et al. (2008; implemented via R

package argosfilter). Finally, to remove issues related to differing

deployment length between animals in a highly dynamic habitat

environment, we analysed data from only the first foraging trip for

each animal in this analysis so that the data could meaningfully

aggregated over time. We provide some discussion later concerning

data pooling in general. Locations are illustrated in Fig. 1(a).

We selected three habitat covariates in our study area for

which to asses resource selection (Fig. 1). The first is average net

primary productivity (NPP) for August 2010 (Behrenfeld &

Falkowski 1997; data available from http://www.science.oregon

state.edu/ocean.productivity/). Second, we obtained average sea

surface temperature (SST) for the month of August 2010 (avail-

able from http://oceancolor.gsfc.nasa.gov/). Finally, we included

walleye pollock (Theragra chalcogramma) number caught per unit

effort (CPUE) data from groundfish trawl surveys conducted by

the National Marine Fisheries Service, NOAA (data available at

http://www.afsc.noaa.gov/RACE/groundfish/survey_data/). Wall-

eye pollock are a primary prey species for northern fur seals. In

order to make all the covariates compatible, all habitat data were

projected to the same 9 km resolution grid (Fig. 1) using the R

statistical software with the sp, rgdal, gstat and raster packages.

Although this is not strictly necessary, this step greatly eases con-

struction of the quadrature data set.

In order to infer habitat importance at the scale of individual

movement, we fitted the space–time point process model (7) sepa-

rately to each animal using the space–time version of the Ber-

man–Turner method (10). The conditional intensity model fitted

was

log kðs; tjHtÞ ¼ xðsÞ0aþ b1jBðs; tÞ þ b2tþ b3drðsÞ þ b4drðsÞt;
eqn 13

where x(s) is the vector of spatial covariates and location s,

jBðs; tÞ ¼ �dðsÞ2DðtÞ�1=2 is the Brownian availability window,

D(t) is the time gap from t to the last observation, d(s) is the

distance from s to the last observed location and drðsÞ is the

distance from the rookery. In addition to the selection and

Brownian motion portions of the model, we added a ‘distance

from home’ portion, via drðsÞ, which is allowed to change

through time with an interaction term. This was added because

female northern fur seals are central place foragers that leave

the rookery and return to feed their pups at the end of their

trips. Thus, the animal moves away (i.e. repelled) from the

rookery at the beginning of the trip, but, is then attracted to

the rookery towards the end of the trip. A simple Brownian

availability would be insufficient to capture this aspect of their

movement (Hanks et al. 2011).

In order to specify space–time quadrature points ðsjk; tjÞ and

associated weights qjk in (10), we used the following method. First,

for the temporal portion, observed times were augmented with a

grid of hourly time points. For each of the time points, tj an inter-

val length lj ¼ ðtjþ1 � tj�1Þ=2 was calculated. For the spatial com-

ponent, we first calculated the empirical velocities for each of the

observed locations. Following this, we determined the maximum

velocity attained by the animal in each of the intervals defined by

the 0–20, 20–40, 40–60, 60–80 and 80–100 percentiles of the

observed time gaps in the location record. This was done to keep

the range of spatial grid points for time tj within reason if there is

a big time gap from the last known location. Animals can attain

large velocities for short distances and if just the overall maximum

velocity was used to define the jth grid, for large time gaps, it

would be unreasonably large. Next, for each tj, we calculated Dj,

the difference between tj and the time of the last observed loca-

tion. Then, Dj was classified according to the time gap percentile

ranges, and the maximum empirical velocity mj was chosen for

that range. Finally, we selected the smallest 4 km resolution spa-

tial grid sjk centred on the last observed location which contained

the circle with radius equal to mjDj. Going beyond this spatial

range is unlikely to benefit the numerical approximation because

the conditional intensity surface is c. 0 due to the Brownian avail-

ability window. We chose 4 km resolution for the quadrature

grids to try and capture some of the habitat variation for small
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scale movements near habitat grid (9 km resolution) boundaries,

as well as, the shape of the Brownian availability. Because our

spatial coordinates are in metres, each grid cell centred on sjk has

area ajk ¼ 40002. If tj corresponds to one of the observed times,

then there is one additional sjk associated with the observed

location. If that was the case, then ajk ¼ 40002=2 for both the

(a) (b)

(c) (d)

(e)

Fig. 1. Variables for resource selection analysis in lactating female northern fur seals. The study area depicted in each subplot is the

eastern Bering Sea shelf, off the coast of Alaska. Individual locations are shown in subplot (a). The distance variable (a) was used for

modelling movement away and back to the rookery in the individual space–time analysis via a time 9 distance interaction. In the space-

only analysis, distance was considered to be inversely related to availability. The other habitat variables, (b) net primary productivity, (c)

walleye pollock CPUE and (d) sea surface temperature, were investigated for selectivity during foraging trips.
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observed location and the grid cell containing the observed loca-

tion. Now for each quadrature point (sjk; tj), we have the weight

qjk ¼ ljajk which is equal to the volume of the cube containing

(sjk; tj). For each quadrature point (sjk; tj), we evaluated the

quadrature covariates xðsjkÞ, jBðsjk; tjÞ, dðsjkÞ, and drðsjkÞ. For

inference, we used the native R function glm() with the weights

argument equal to the vector of qjk.

In contrast to selection with respect to individual movement,

we also analysed the fur seal selection with respect to the study

area as a whole by using a space-only point process model. To

mitigate the effects of serial correlation of animal locations, we

used the Brownian motion–derived space-only model (11) as

inspiration but augmented it to make it possible to estimate the

parameters with readily available software. First, the space-only

intensity model fitted to the data set as a whole was

log kðsÞ ¼ xðsÞ0aþ b1 logG
�ðsÞ þ b2drðsÞ þ gðsÞ; eqn 14

where G�ðsÞ ¼ P15
h¼ 1 GhðsÞ, GhðsÞ is a variable kernel density

map constructed from all locations of the animal h, and g(s) is a

spatially correlated normal random effect. To obtain the individ-

ual kernel density maps, GhðsÞ, we placed a two-dimensional

independent normal kernel with bandwidth b ¼ 5510
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tiþ1 � ti

p
over each observed location si. Each kernel was evaluated on

each of the 9 km centroids of the habitat grid, s then summed at

each s to obtain individual kernel density maps, GhðsÞ. The cho-

sen bandwidth corresponds to a Brownian availability window

with 95% of the mass within 10�8 km of center for time gaps of

1 h. That is the displacement that would be observed if a seal

averaged a speed of 3 m s-1 for 1 h, the often assumed maximum

sustained speed in pinniped telemetry studies. We then calculated

the constructed covariate G�ðsÞ ¼ P15
h¼ 1 GhðsÞ. The log G�ðsÞ

surface was regressed against the habitat covariates to obtain the

residuals for use in the space-only analysis. Finally, we used an

intrinsic conditionally autoregressive (ICAR or CAR) spatial

model with rook neighbourhood structure for g(s) (Banerjee,

Carlin & Gelfand 2004).

We take the same inferential approach as Illian et al. (2012)

for estimating model parameters in the space-only model by using

the Poisson count approximation (12) and the R package INLA

to summarize the Bayesian posterior distribution of the parame-

ters. Due to the inclusion of the spatial random effect g(s), maxi-

mum likelihood inference is exceedingly difficult and we prefer a

Bayesian approach. It is also possible to perform this inference

via Markov Chain Monte Carlo (MCMC). The INLA package

uses numerical integration to perform the necessary calculations

and is virtually no more difficult than fitting a standard Poisson

GLM model. We used all default vague prior settings in INLA

for this analysis.

Results

The estimated selection coefficients and 95% confidence

intervals for the space–time analysis are presented in

Fig. 2 for each female. There appears to be no striking

pattern among all of the individuals with estimates of

selection coefficients on both sides of zero for every co-

variate. There does appear to be one outlying individual

that seemed to select high NPP locations. However, it is

uncertain due to the large confidence interval. We calcu-

lated population average estimates for each of the coeffi-

cients using averages weighted by the estimated variances.

These are (SE estimates in parentheses) NPP: �0�51
(0�20), SST: �0�15 (0�12) and Pollock field: �0�13 (0�12).
Thus, there seems to be evidence for negative selection of

high NPP at the population level; however, there does not

seem to be evidence for any population-level selection for

SST and pollock CPUE.

Table 1 gives the posterior median estimates for the

space-only study area scale selection analysis. There is sig-

nificant negative selection for both SST and NPP and posi-

tive selection for pollock CPUE. Figure 3(a) illustrates the

posterior median fitted values for the portion of the model

related to known habitat variables (log wðsÞ ¼ xðsÞ0a) that
is >0. These are preferential locations relative to the avail-

ability surface, log gðsÞ ¼ b1 logGðsÞ þ b2drðsÞ þ gðsÞ.
Note, we have placed g(s) in the availability portion of the

model, but it is possible that it also contains selection

effects of latent habitat variables for which we are unaware.

That being the case, we prefer to place this term in g(s) and

denote w(s) to be the RSF of known habitat variables. Fig-

ure 3(b) shows the posterior median availability surface.

Discussion

In this paper, we proposed practical methods for making

RSF inference at two different scales while accounting for

serial correlation in telemetry locations. Previous weighted

distribution methods, while well motivated, have some

drawbacks that we have addressed with the use of point

process modelling methods. Although, developed from a

different paradigm, the space–time point process model is

simply a generalization of the weighted distribution model

of Johnson et al. (2008) created by modelling times of

observations in addition to the locations themselves.

Using a data set from a northern fur seal telemetry study,

we illustrated that this method can be readily used on

multiple animals due to the computational savings and

available software. Code written in R to build the quadra-

ture data for all animals took <10 min to run and each

GLM model completed the fitting process in under a

minute.

The first issue with utilizing weighted distribution mod-

els for selection inference is that they are computationally

expensive, currently requiring custom likelihood coding

and optimization. By using space–time point process mod-

els with the Berman quadrature method, only quadrature

points and weights need to be calculated using a custom

method. Once these are determined, however, any number

of models with different covariate combinations can be

quickly analysed with standard GLM software. In fact,

models that contain nonparametric functions of the cova-

riates can be fit with the R package mgcv. We investi-

gated such models for the fur seal data, but determined

that those nonparametric functions were unnecessary.

And, we determined this very quickly and dismissed those

models using the built-in cross-validation selection proce-
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dure within MGCV. The level of coding to fit a nonpara-

metric weighted distribution model would be a large

impediment to many animal ecologists.

Spatio-temporal scaling is another issue for which

weighted distribution models are inflexible. If selection at

the level of individual movement is all that is of interest,

then the weighted distributions can work well for estimat-

ing selection while accounting for autocorrelation. How-

ever, weighted distribution models cannot be rescaled or

aggregated over time because fixed and known location

times are one of the model assumptions. The point process

approach does not condition on known times and therefore

has the ability to scale from individual movement all the

way to a completely spatial model where time is aggregated.

We conjecture that the vast majority of the envisioned

space–time models will not have closed form solutions for

the G(s) term that results from temporal aggregation, the

point process framework itself provides continuity for

building models along the spectrum of scales. There are few

methods that provide the analyst the ability to choose the

temporal scale of inference postdata collection while also

accounting for autocorrelation. At the present time, we are

only aware of one other (Hooten et al. 2012).

In analysing the fur seal data, we have shown that

depending on the spatial scale in question, there can be

differences in selection. This comes as no surprise and has

been previously noted. Johnson (1980) describes four hier-

archical levels of selection for an animal: (i) geographical

range, (ii) home range, (iii) habitat within home range

and (iv) structures within habitats. Depending on the biol-

ogy of the animal in question, there may be strong selec-

tion at higher levels but not lower levels in that hierarchy.

While examining the individual tracks from the fur seal

data, we noted that even animals that had a negative

selection coefficient for pollock CPUE tended to have

tracks fully contained in higher pollock CPUE regions rel-

ative to the study area as a whole. This represents the big-

ger picture that Fieberg et al. (2010) note can be missed

(Aarts, Fieberg & Matthiopoulos 2013). The fact that

there is little or no selection at the movement level, and

strong selection at the study area level implies that the fur

seals are making selections at a larger spatial and tempo-

ral extent than what is immediately around them while

they are foraging. Perhaps memory or previous experience

tells them where to go before they leave the rookery and

they make very few decisions en route along that precon-

ceived path. Call et al. (2008) have noted that female fur

seals can follow very similar paths on subsequent foraging

trips as well as paths similar to other females from the

same rookery.

We leave the reader with some discussion on the

open topic of pooling individuals to make population-

level inference. In the space–time analysis of individuals,

population-level inference was made via weighted aver-

ages of coefficients, while in the space-only analysis a

single model was fitted to pooled data. Thus, a com-

mon RSF is assumed for the space-only analysis (i.e. a

is the same for all animals). This is not the case for

space–time analysis as the weighted average estimator

estimates the population average in the presence of

uncertainty. Here, we used a simple weighted average to

obtain population inference, but certainly, a more com-

plex summary of individual estimates could be used

(e.g., Hanks et al. 2011). However, in order for the

Fig. 2. Resource selection coefficient estimates for space–time

point process analysis. Points represent coefficient estimates for

each of the 15 individuals and error bars are 95% confidence

intervals. The habitat variables examined in the model were (a)

log net primary productivity, (b) sea surface temperature and (c)

pollock CPUE0:25. The dotted horizontal line is placed at zero for

orientation to no selection.

Table 1. Space-only analysis selection coefficient estimates

Mean SD Lower 95% CI Upper 95% CI

Intercept 45�39 1�65 42�22 48�68
NPP �3�22 0�18 �3�58 �2�87
SST �3�67 0�11 �3�89 �3�45
pollock field 3�14 0�08 2�98 3�30
logG�ðsÞ 1�67 0�04 1�60 1�75
distance �0�08 0�005 �0�08 �0�07

The first and second columns are the estimated posterior means

and standard deviations. The third and fourth columns are the

lower and upper bounds of the 95% Bayesian credible intervals.

SST, sea surface temperature; NPP, net primary productivity.
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weighted average to be interpretable, the individual esti-

mates of a must be compatible over the deployments.

This is the main reason that we restricted our fur seal

analysis to the first trip for each individual. As the

summer progressed, the habitat changed in ways which

selection is most likely not compatible to that earlier in

the season. Thus, to analyse the full data set for all

animals over their entire deployment length, separate

models should be fit to those periods for which the

researcher believes the selection process is consistent

between animals. This can be accomplished in the

space–time models via interaction terms between the

habitat variables and time variables. In the space-only

analysis, the easiest method would be to analyse sepa-

rate data sets for each period of interest, however, Bell

& Grunwald (2004) provide some methodology for

analysing replicated point patterns that could be used

in a joint analysis over all periods. It is important to

note for both space–time and space-only methods as

long as selection is compatible over the union of all

deployment times, both methods make adjustments to

account for an unequal amount of data between indi-

viduals. In the space–time model, this is accomplished

via differing standard errors between individuals, while

in the space-only model, the calculated G(s) surface

summed over individuals accounts for apparent high use

in a particular area due to a long deployment of an

individual. In this sense, the G�ðsÞ surface serves as an

offset in the Poisson regression. In addition, it is also

possible to fit the space-only model to each individual

and use a weighted combination if that is desired.
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