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1  |  INTRODUC TION

Joint species distribution models (JSDMs, Pollock et  al.,  2014) 
have emerged as a powerful statistical framework for analysing 

multivariate abundance data. Some of their primary applications 
include learning how species communities are driven by environ-
mental and habitat predictors, model-based ordination to visualise 
patterns in community composition and quantifying the relative 
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Abstract
1.	 Joint species distribution models (JSDMs) are a popular method for analysing 

multivariate abundance data, with important applications such as uncovering 
how species communities are driven by environmental processes, model-based 
ordination to visualise community composition patterns across sites and variance 
partitioning to quantify the relative contributions of different processes in shap-
ing a species community.

2.	 One issue that has received relatively little attention in the study of joint species 
distributions is that of spatial confounding: when one or more of the environmen-
tal predictors exhibit spatial correlation, and spatially structured random effects 
such as spatial factors are also included in the model, then these two components 
may be collinear with each other.

3.	 Through a combination of simulations and case studies, we show that if not man-
aged properly, spatial confounding can result in misleading inference on covariate 
effects in a spatially structured JSDM, along with difficulties in interpreting ordi-
nation results and incorrect attribution of variation to environmental processes in 
a species community.

4.	 We present one approach to treat spatial confounding called restricted spatial 
factor analysis, which is designed to ensure that the covariate effects retain their 
full explanatory power, and ordinations constructed using the spatial factors ex-
plain species covariation beyond that accounted for by the measured predictors. 
We encourage ecologists to consider the inferences they seek to make from spa-
tially structured JSDMs and to ensure that the covariate effects and ordinations 
they estimate and interpret are aligned with their scientific questions of interest.
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contributions of environmental versus biotic effects in shaping spe-
cies assemblages (Ovaskainen & Abrego, 2020; Schliep et al., 2018; 
Thorson et al., 2016; van der Veen et al., 2023; Warton et al., 2015).

This article focuses on applying JSDMs to spatial multivariate 
abundance data that arise when the sites are spatially indexed (e.g. 
by longitude and latitude). Indeed, the majority of data collected in 
community ecology are spatially, and possibly also temporally, in-
dexed. One motivating example we consider relates to presence-
absence records for 45 butterfly species collected at over 2500 
locations across Great Britain (Asher et al., 2001). Along with species 
records at each location, we have three environmental covariates: (1) 
the mean annual number of growing degree days above 5 degrees 
Celsius, (2) the percentage of each grid cell covered by broadleaved 
woodland and (3) the percentage of each grid cell covered by co-
niferous woodland. An important feature of these covariates, which 
is also characteristic of many spatial multivariate abundance data-
sets, is that they exhibit a noticeable spatial pattern (e.g. the number 
of growing degree days presents a strong latitudinal gradient; see 
fig.  2 in Ovaskainen et  al.  (2016) and the application results from 
Section 5).

Spatial multivariate abundance data often display evidence of 
spatial autocorrelation both within a species and between species. 
To account for such dependence, spatially structured JSDMs have 
been developed, with the most commonly used instance of these 
being spatial factor analysis (SFA), also known as spatial latent vari-
able models. Such models rose to prominence with the work of 
Thorson et al.  (2015) and Ovaskainen et al.  (2016), and since then 
several variations of SFA have been developed (e.g. Hui et al., 2023; 
Shirota et al., 2019; Thorson et al., 2019; Tikhonov et al., 2020). In 
SFA, a small number of spatially structured latent factors are in-
cluded to account for residual spatial correlations both within and 
between species. These spatial factors are often interpreted as a set 
of unobserved, spatially structured covariates, with the correspond-
ing loadings representing the species-specific responses to these. 
By making the latent factors spatially structured, as opposed to the 
original formulation of JSDMs in Pollock et  al.  (2014) and Warton 
et  al.  (2015) where the factors were assumed to be independent 
across sites, it allows two species to be correlated even if they are 
observed at different spatial locations.

While SFA and spatially structured JSDMs more generally have 
grown in popularity for modelling spatial multivariate abundance 
data, one issue that remains underappreciated in this context is 
that of spatial confounding. Spatial confounding (a term coined by 
Hodges & Reich, 2010) refers to the phenomenon where spatially 
structured random effects, in this case the spatial factors, become 
collinear with one or more covariates included in the model that are 
also spatially varying (e.g. the number of growing degree days in the 
Great Britain butterfly data). Analogous to multicollinearity in other 
regression settings, spatial confounding has the potential to produce 
misleading interpretations and inferences in spatially structured 
JSDMs.

In the case of a single response (e.g. a single species distribution 
model), spatial confounding is a well-studied but unsettled issue in 

the literature and continues to remain an active area of research and 
discussion. We refer the reader to Hanks et al. (2015) and Mäkinen 
et  al.  (2022) for overviews of spatial confounding in the context 
of single response regression models; Khan and Berrett  (2023) 
and Dupont et  al.  (2023) for more general statistical reviews; and 
Paciorek  (2010), Hughes and Haran  (2013), Hefley et  al.  (2017), 
Thaden and Kneib (2018), Khan and Calder (2022), Zimmerman and 
Ver Hoef  (2022), Dupont et al.  (2022) and Hui and Bondell  (2022) 
among others for research into the consequences of, and methods 
for, alleviating spatial confounding.

For SFA and spatially structured JSDMs, spatial confounding is 
a much less studied issue. Shirota et al.  (2019) noted the presence 
of spatial confounding and its implications for the interpretation of 
covariate effects in their JSDM developments. Lany et  al.  (2020) 
compared various types of stacked and spatial JSDMs, arguing for 
the use of non-spatial or independent JSDMs for evaluating hy-
potheses about species-environment relationships (see also Khan & 
Berrett, 2023; Mielke et al., 2020; Zimmerman & Ver Hoef, 2022). 
Most recently, Van Ee et  al.  (2022) discussed the related problem 
of community confounding in JSDMs, where (even) in a non-spatial 
setting, the latent factors and covariate effects can compete with 
each other to explain species responses.

In this article, we highlight the issue of spatial confounding in 
spatially structured JSDMs; particularly in the context of SFA. Using 
a combination of simulations and case studies, we demonstrate that, 
when present, spatial confounding means the regression coeffi-
cients may only capture part of the explanatory power of spatially 
structured covariates. This so-called unpartitioned effect (Hui & 
Bondell,  2022) may or may not be what practitioners are actually 
interested in and without careful consideration may be misinter-
preted. We further show that spatial confounding has implications 
for other common types of inferences drawn from SFA not examined 
so far in the literature, including misleading quantification of the rel-
ative contributions of covariate effects versus spatial factors in driv-
ing covariation in a species community and ambiguous results arising 
from model-based ordinations formed using the spatial factors.

To treat spatial confounding, we investigate the use of restricted 
spatial factor analysis (RSFA), building on the ideas of Hodges and 
Reich  (2010), Shirota et  al.  (2019) and Van Ee et  al.  (2022). RSFA 
constrains the spatial factors to be uncorrelated with the covari-
ates, including the intercept. This ensures that the covariates main-
tain their full explanatory power, estimating what we refer to as a 
partitioned effect instead. Put another way, RSFA constructs the 
spatial factors to more authentically represent the residual spatial 
covariation both within and between species, beyond what can be 
explained by the (spatially structured) covariates. In doing so, this 
also seeks to resolve ambiguity in the interpretation of the results 
of variance partitioning and model-based ordination from a spatially 
structured JSDM.

It is important to emphasise that RSFA is only one approach to 
address spatial confounding. There are other approaches to treat 
spatial confounding, which focus on capturing a different covariate 
effect to RSFA, say, through a different adjustment on the response 
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and/or the spatially structured covariates (e.g. Dupont et al., 2022; 
Marques et  al.,  2022; Prates et  al.,  2019; Thaden & Kneib,  2018), 
although to our knowledge none of these have been adapted to 
the multivariate abundance data setting. We do not view RSFA 
as a panacea for all spatial multivariate abundance data analysis. 
Instead, we aim to raise attention to the issue of spatial confounding 
in JSDMs: ecologists should integrate the question of whether to 
adjust for spatial confounding into part of their model-building pro-
cess (through RSFA or by other means), ensuring that the models and 
methods they use are consistent with the effects, inferences and 
ordinations they want to perform and interpret.

The remainder of this article is structured as follows. We begin 
in Section 2 by reviewing spatial factor analysis and introducing the 
idea of restricted spatial factor analysis. In Section 3, we discuss the 
impacts of spatial confounding on several key applications of spa-
tially structured JSDMs, contrasting the results produced from SFA 
and RSFA. In Section 4, we present results from a numerical study 
demonstrating these impacts in finite samples and how they can 
vary in severity depending on the strength of collinearity between 
the observed and unobserved covariates, and on the relative spatial 
scale of both. We follow this up with two case studies in Section 5 
using the Great Britain butterfly data along with a dataset compris-
ing count records of zooplankton communities from the Southern 
Ocean Continuous Plankton Recorder (SOCPR) survey (Hosie 
et  al.,  2003), to illustrate the differing results or sometimes lack 
thereof that can arise from applying SFA and RSFA in the presence of 
spatial confounding. Finally, we conclude with some general remarks 
in Section 6. The data from both case studies are publicly available, 
while the code for reproducing the simulation study and both case 
studies are archived at Hui et al.  (2024), noting we used maximum 
approximate likelihood estimation via template model builder (TMB, 
Kristensen et al., 2016) to fit all the models in this article.

2  |  SPATIALLY STRUC TURED JSDMs

Let yij denote the recorded response for species j = 1, … , J at 
site i = 1, … ,N, where each site is indexed by a spatial coordi-
nate (e.g. latitude and longitude). In addition to the response, let 
xi =

(

xi1, … , xiP
)⊤ denote a set of P covariates measured at site i , 

where xi1 = 1 to represent an intercept term.

2.1  |  Spatial factor analysis

We first review spatial factor analysis (SFA), otherwise known as 
a spatial latent variable model (Ovaskainen et  al.,  2016; Thorson 
et  al.,  2015). As discussed in Section  1, a number of variations to 
SFA have been proposed, and the developments on spatial con-
founding below will carry over to these variations. For ease of 
presentation, however, we focus on the established form of SFA as 
follows. Let ui =

(

ui1, … , uiK
)⊤ denote a vector of K ≪ J latent fac-

tors for site i . For model-based ordination, it is common to select 

K = 1 to 3 to facilitate visualisation (e.g. van der Veen et al., 2023; 
Warton et  al.,  2015), although for other applications of SFA, this 
may be larger. Conditional on ui, the responses yij are assumed to be 
independent observations from a specified distribution, examples 
of which include the Bernoulli distribution for presence-absence 
responses, the negative binomial or zero-inflated/hurdle count dis-
tributions for overdispersed count responses and the Tweedie distri-
bution for biomass responses (Ovaskainen & Abrego, 2020; Stoklosa 
et al., 2022). The mean of the response, denoted here as �ij, is mod-
elled as g

(

𝜇ij

)

= 𝜂ij = x⊤
i
� j + u⊤

i
�j, where g( ⋅ ) is a known link func-

tion (e.g. the logit link for presence-absence responses), � j denote 
species-specific regression coefficients corresponding to the covari-
ates, and �j denote species-specific loadings for the latent factors. 
Note the � j are sometimes treated as random effects that are shrunk 
toward a common distribution (or equivalently, assigned a hierarchi-
cal prior distribution, Pollock et al., 2014; Ovaskainen et al., 2016; 
Ovaskainen & Abrego,  2020); this is useful to borrow strength 
across species when modelling environmental relationships and also 
stabilises model fitting because it induces a form of regularisation.

To facilitate the developments below, we write the SFA model in 
matrix form as follows. We let X denote the N × P matrix of covari-
ates formed by stacking the xi as row vectors and similarly define 
U as the N × K latent factor matrix formed from stacking the latent 
factors ui. Next, we let B denote the J × P matrix of regression coef-
ficients formed from stacking the � j , and � denote the J × K loading 
matrix formed from stacking the loadings �j. We can then write the 
SFA model as

where � denotes an N × P mean matrix with the (i, j)th element equal to 
�ij and g( ⋅ ) is applied element-wise to �.

As opposed to standard, independent factor analytic models 
where the elements of U are assumed to be independent of each 
other (Warton et al., 2015), the latent factors in SFA are assumed to 
be spatially structured. Let 

(

u1k , … , uNk
)⊤ denote the N-dimensional 

vector representing the kth column of U. Then in SFA, this vector 
is commonly modelled as a multivariate normal distribution with a 
zero mean vector and a covariance matrix parametrised by a spa-
tial correlation function. As an example, consider two sites i  and i′

, and suppose the geographic distance between them is denoted by 
dii′ . Then, we can specify an exponential spatial correlation function 
(e.g. Ovaskainen & Abrego, 2020; Ovaskainen et al., 2016), such that 
Cor

(

uik, ui�k
)

= exp
(

−dii� ∕�k
)

, where 𝜃k > 0 is a scale parameter gov-
erning the strength of the spatial correlation for the kth factor. A 
more flexible structure replaces the exponential form by a Matérn 
correlation function (e.g. Thorson et al., 2015), while further exten-
sions of this were reviewed in Section 1.

2.2  |  Restricted spatial factor analysis

In SFA, spatial confounding can arise when the spatially structured 
latent factors exhibit some degree of collinearity with one or more 

(1)g(�) = XB
⊤
+ U�

⊤
,

 2041210x, 2024, 10, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14420 by U
niversity O

f T
exas L

ibraries, W
iley O

nline L
ibrary on [02/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  1909HUI et al.

measured/observed covariates. This can occur despite the fact 
the spatial factors are assumed to be independent of the covari-
ates: for a given dataset, any two columns of U and X may exhibit 
non-negligible finite sample correlations with each other (Hanks 
et al., 2015; Mäkinen et al., 2022). We present examples of this in 
both the simulation study and our two case studies on the Great 
Britain butterfly and zooplankton SOCPR survey data; in particular, 
from a fitted SFA we can compute the empirical correlation between 
each of the measured covariates and predicted spatial factors as 
one measure of the degree of spatial confounding present in spa-
tial multivariate abundance data (see also Hefley et al., 2017; Yuan 
et  al.,  2017; Schulz et  al.,  2020, for related ideas). It is also worth 
pointing out the finite sample correlations between the columns X 
and U, and hence the presence and extent of spatial confounding, 
is not guaranteed to diminish as the number of sites sampled N in-
creases; see Appendix A for further discussion of this point.

Next, we introduce one approach to manage spatial confound-
ing, which we refer to as restricted spatial factor analysis (RSFA). Put 
simply, RSFA treats spatial confounding by constructing the spatial 
factors such that they are always uncorrelated with the measured 
predictors. To introduce this approach in detail, we first review 
the concept of projection and residual projection matrices. Let 
P = X

(

X
⊤
X
)−1

X
⊤ denote the N × N projection matrix formed from 

the matrix of covariates X. Statistically, P projects a N-dimensional 
vector onto the space spanned by the covariates (i.e. the column 
space of X). For example, given the ordinary least squares esti-
mates �� =

(

X
⊤
X
)−1

X
⊤
y for some vector of responses y, we can 

write the corresponding fitted values as ŷ = X�̂ = Py (i.e. it trans-
forms the responses to fitted values). Next, let IN denote the N × N 
identity matrix. Then, the residual projection matrix of X is given by 
P
⊥
=
(

IN − P
)

, named as such because it transforms the responses in 
a linear regression model to residuals, �r = y − X�� =

(

IN − P
)

y = P
⊥
y. 

Importantly, it is straightforward to show X⊤
�r = X

⊤
P
⊥
y = 0, meaning 

the residuals are uncorrelated with the covariates.
In RSFA, we constrain the spatial factors to be uncorrelated 

with (also referred to as orthogonality) the measured predictors by 
using the residual projection matrix defined above. Specifically, left-
multiplying the matrix U from Equation (1) by P

⊥
, we obtain

where U∗ refers to an N × K matrix of restricted spatial factors, and 
B
∗ =

(

�
∗
1
, … ,�∗

J

)

 denotes the J × P matrix of regression coefficients 
which RSFA estimates. Note the dimensions of B and B∗ are both J × P , 
and likewise the dimensions of U and U∗ are both J × K. More impor-
tantly, we have X⊤

U
∗ = X

⊤
P
⊥
U = 0, and so the spatial factors and 

covariates are restricted to be uncorrelated in RSFA. This exemplifies 
how RSFA treats spatial confounding: whereas in SFA the columns of U 
and X may be correlated with each other, in RSFA they are constrained 
to be uncorrelated. The loading matrix � is the same in both SFA and 
RSFA.

As an aside, note that it is not necessary to construct the resid-
ual projection matrix and RSFA based on all the covariates. Instead, 

we may choose to group covariates (columns of X) into those we 
desire to be uncorrelated of the spatial factors, and the remainder 
of which no restriction is placed on them. We can then construct 
P
⊥
 and hence the restricted spatial factors U∗ in Equation (2) based 

only on the former group, and doing so treats spatial confounding 
based only on a subset of the measured covariates. For ease of pre-
sentation however, we focus on the case where all covariates are 
constrained as presented in Equation (2).

At first glance, it appears as if RSFA and SFA are distinct models. 
In fact, Equations  (1) and (2) are reparametrisations of each other. 
That is, we can start with SFA and then add and subtract the quan-
tity PU�⊤ to the right-hand side of (1) to obtain

where 
(

B
∗
)⊤

= B
⊤ +

(

X
⊤
X
)−1

X
⊤
U�

⊤ and the last line is exactly the 
RSFA model in Equation (2). One immediate consequence of the above 
result is that RSFA is straightforward to implement. For instance, in 
both our simulation and case studies where all models were esti-
mated using maximum approximate likelihood estimation via TMB 
(Kristensen et al., 2016), RSFA requires only a few additional lines of 
code in addition to that used to fit SFA to extract the estimates of B∗ 
and U∗ (see also Hanks et al., 2015, for estimation using Markov Chain 
Monte Carlo).

Because SFA and RSFA are reparameterisations of each other, 
this implies that Equations  (1) and (2) will produce the same fitted 
values and maximised likelihood (or deviance) values. This is anal-
ogous to multicollinearity in standard regression settings, where 
fitted values and point predictions are not affected by the degree 
of collinearity between measured covariates. More importantly, as 
noted by Hanks et al. (2015), it means we cannot apply standard in-
ference tools such as residual diagnostics or information criteria to 
select between SFA and RSFA. We do not view the inability to use 
model selection tools as a drawback however; instead, it compels 
practitioners to proactively think about the model assumptions and 
interpretations underlying the construction of their spatial JSDM.

To conclude this section, we highlight that because spatial con-
founding can arise when one or more spatial factors are correlated 
with the measured covariates, then a naive but straightforward 
alternative to RSFA for managing spatial confounding is to forgo 
the use of spatially structured factors in the first place, instead 
favouring independent factor analysis as in Warton et al.  (2015). 
Indeed, due to the possibility of spatial confounding, Lany 
et al. (2020) made a case for use of the independent factor anal-
ysis if the goal of the analysis is specifically to assess hypotheses 
about species-environment relationships, and even if the multivar-
iate abundance data are known/found to be spatially structured. 
On the other hand, there is well-established research advocating 
for the use of spatial random effects whenever spatial correlation 
is detected in the residuals of the data, to ensure that valid hy-
pothesis tests and uncertainty quantification can be performed 

(2)g(�)=X
(

B
∗
)⊤

+P
⊥
U�

⊤=X
(

B
∗
)⊤

+U∗
�

⊤
,

(3)

g(�)=XB
⊤+PU�⊤+

(

IN−P
)

U�
⊤

=X

(

B
⊤+

(

X
⊤
X
)−1

X
⊤
U�

⊤

)

+P
⊥
U�

⊤

=X
(

B
∗
)⊤

+U∗
�

⊤
,
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(Dormann et al., 2007). Moreover, Hui et al.  (2022) showed that 
SFA almost always performs better than assuming independence 
in the latent factors when predicting community composition at 
new spatial locations, In Section  4, we also demonstrate using 
simulations that independent factor analysis performs consis-
tently worse than both SFA and RSFA for recovering a spatially 
correlated unobserved covariate.

3  |  IMPAC TS OF SPATIAL CONFOUNDING

In this section, we discuss the impacts of spatial confounding for 
multivariate abundance data by comparing the inferences aris-
ing from SFA versus RSFA models in Equations  (1) and (2), respec-
tively. We focus on three predominant usages of spatially structured 
JSDMs in ecology: Quantifying the effects of measured covariates 
on community composition, assessing the relative contributions 
of measured covariates versus residual processes in driving spatial 
covariation in the community and model-based residual ordination. 
While there are other reasons why spatially structured JSDMs are 
applied (e.g. for recovering species networks and interspecies asso-
ciations; Astarloa et al., 2019; Haak et al., 2020), many of these are 
related and will be impacted by spatial confounding similarly to the 
three inferences detailed above.

3.1  |  Covariate effects

The covariate effects B and B∗ from the SFA and RSFA models re-
spectively can differ substantially in the presence of spatial con-
founding. In SFA, the potential collinearity between the covariates 
X and spatial factors U in Equation (1) means part of the explanatory 
power of the former may be absorbed by the inclusion of the latter. 
This is analogous to standard regression settings, where, upon in-
cluding a new covariate that is collinear with one or more covariates 
already in the model, this ‘soaks up’ part of the explanatory power 
the already included covariates had, and the interpretation of all co-
variate effects must be adjusted accordingly (Graham, 2003). With 
this in mind, we can interpret B as an unpartitioned covariate effect 
because the spatial factors U are not decomposed into components 
relating to, and residual to, the covariates X.

By contrast, for RSFA in Equation  (3), there is an explicit par-
titioning of the spatial factors into two components: PU, which is 
the projection of the spatial factors onto the space spanned by the 
covariates, and P

⊥
U, which is the residual component of the spatial 

factors that cannot be explained by the covariates. The first part is 
combined with B to form the so-called partitioned covariate effect B∗ . 
The idea of estimating a partitioned effect is not new, for instance, 
the concept of partial regression plots in linear models (Velleman 
& Welsch, 1981) is based on the same idea. More importantly, for 
understanding the effect of the covariates on species responses, the 
partitioned effect (re)incorporates the explanatory power that was 
lost due to the spatial factors absorbing this. That is, we manage the 

collinearity arising from spatial confounding by moving the portion 
of residual spatial correlation (both within and between species) that 
can be explained by the covariates, back into the covariate compo-
nent itself. What remains is the component U∗

�
⊤, which is a more 

authentic representation of the residual covariation in the model: it 
is the component left over accounting for the full explanatory power 
of the covariates.

To summarise, when seeking to quantify how species distribu-
tions are related to physical and environmental habitat, spatial con-
founding can cause part of what the covariates can explain about 
the response to be inadvertently contained in these spatial factors. 
RSFA estimates partitioned coefficients B∗ which attempts to cor-
rect this, and thereby quantify the full association between the co-
variates and the species response. As shown in Hanks et al. (2015) 
and Khan and Calder (2022) among others, as well as in Section 4, if 
we are interested in one type of effect (either partitioned or unpar-
titioned) but estimate and make inference on the other, then it may 
result in biased estimates and erroneous inference.

3.2  |  Between-species correlations and variance 
partitioning

In Section  2.1, we show that by imbuing the latent factors in 
Equation (1) with an explicit spatial structure, SFA allows for spatial 
correlations both within and across species. For instance, assuming 
an exponential spatial correlation function, the residual covariance 
between species j, j� = 1, … , J at spatial coordinates i, i� = 1, … ,N 
can be shown to be

Cov
�

�ij, �i� j�
�

=
∑K

k=1
�jk�j�kexp

�

−dii� ∕�k
�

, where dii′ is the 
geographic distance between locations i, i′, and 𝜃k > 0 is a 
scale parameter governing the strength of the spatial cor-
relation for the kth factor. Compare this now to what arises 
from RSFA, where from Equation  (2) we can show that 
Cov

�

𝜂ij, 𝜂i� j�
�

=
∑K

k=1
𝜆jk𝜆j�kCov

�

U∗
ik
,U∗

i�k

�

=
�

P
⊥

�⊤

i

�

∑K

k=1
𝜆jk𝜆j�kRk

�

�

P
⊥

�

i�
 , 

where 
[

P
⊥

]

i
 denotes the ith row in the residual projection matrix P

⊥
, 

and Rk is an N × N matrix whose elements are given by exp
(

−dii� ∕�k
)

. 
Upon converting both quantities to correlations, we obtain:

When spatial confounding is present, Equation (4a) may no lon-
ger accurately represent the residual between-species spatial cor-
relation because it has absorbed a portion of the between-species 
covariation attributable to the measured spatially structured co-
variates. That is, the estimated values from using (4a) may instead 
resemble between-species correlations arising from the measured 

(4a)SFA:Cor
�

�ij, �i� j�
�

=

∑K

k=1
�jk�j�kexp

�

− dii� ∕�k
�

�

∑K

k=1
�
2
jk

�

∑K

k=1
�
2
j�k

,

(4b)

RSFA:Cor
�

𝜂ij, 𝜂i� j�
�

=

�

P
⊥

�⊤

i

�

∑K

k=1
𝜆jk𝜆j�kRk

�

�

P
⊥

�

i�

�

�

P
⊥

�⊤

i

�

∑K
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𝜆
2
jk
Rk

�

�

P
⊥

�

i

�

�

P
⊥
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�

∑K
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𝜆
2
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P
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covariate component of SFA, XB⊤. Arguably, a more accurate repre-
sentation of the residual spatial correlation between species instead 
arises from Equation (4b). Although straightforward to compute, this 
formula is noticeably more difficult to interpret: The residual cor-
relation between two species at any two different spatial locations 
in RSFA depends on both the measured covariates at all N spatial lo-
cations and the entire spatial correlation matrix Rk. Even when i = i�, 
it is straightforward to see the residual correlation between any two 
species at the same site does not change with spatial location in SFA. 
But in RSFA, the residual correlation at any given site depends on 
all other sites through the measured covariates X, and the pairwise 
distances dii′ contained in Rk.

The fact that Equation  (4b) depends on the residual projection 
matrix precisely captures the concept of what the residual spatial 
correlation between two species means. We can draw an analogy 
with linear regression, where we recall the residuals are given as 
�r = P

⊥
y. If the responses are assumed to be independent observa-

tions with error variance �2, then the covariance between any two 
residuals is given by Cov

(

�ri ,�ri�
)

= 𝜎
2
[

P
⊥

]⊤

i

[

P
⊥

]

i�
, which is a special 

case of Equation (4b). This analogy suggests RSFA presents a more 
authentic calculation of the residual spatial correlation both within 
and between species in the presence of spatial confounding: it is 
the correlation remaining after accounting for the full explanatory 
power of the covariates.

The differing calculations of the residual spatial correlations be-
tween SFA and RSFA have implications when it comes to variance 
partitioning, which is a common form of inference when applying 
JSDMs (Hui et al., 2023; Ovaskainen et al., 2016). That is, we can 
construct measures for the relative proportion of variation ex-
plained by the measured covariates versus the spatial factors (i.e. 
the residual variation) for SFA, this variance partitioning is typically 
done in terms of the unpartitioned effects XB⊤ and U�⊤. However, 
in the presence of spatial confounding, such variance partitioning 
may be misleading because a portion of the variation that can be 
explained by the measured covariates will instead be attributed to 
the variation explained by the spatial factors. This is exemplified by 
the Great Britain butterfly data analysis where, in their application, 
Ovaskainen et al. (2016) noted that the overall amount of variation 
attributed to the measured covariates actually reduced when spatial 
factors were included in the model. We also observed this in our 
analysis of the same dataset in Section 5. This is emblematic of how 
spatial confounding can result in unexpected changes in variance 
partitioning.

In RSFA, the variance partitioning is performed in terms of the 
partitioned effects X

(

B
∗
)⊤ and U∗

�
⊤. By doing so, the variation at-

tributed to the former quantity seeks to capture the full extent to 
which the variation in the response can be explained by the mea-
sured covariates, including the spatial variation in the response that 
can be captured by the spatial variation in the predictors, while the 
proportion of variation attributed to U∗

�
⊤ better reflects the actual 

component of variation in the species community, which cannot be 
attributed to measured covariates.

3.3  |  Residual ordination

One key application of factor analytic models in community ecol-
ogy is residual ordination, that is a low-dimensional graphical rep-
resentation of residual between-species covariation (van der Veen 
et al., 2023; Warton et al., 2015). For SFA, this involves constructing 
a scatterplot of the estimated spatial factors (columns of U), which 
may be interpreted as a set of unmeasured covariates or community 
composition gradients.

In the presence of spatial confounding, such residual ordinations 
from SFA need to be carefully interpreted. Consistent with the discus-
sions in Sections 3.1 and 3.2, because the spatial factors may absorb 
some of the explanatory power of the measured covariates, then an or-
dination formed from the columns U in Equation (1) may not reflect the 
notion of a residual ordination per se. Instead, the ordination represents 
a combination of the spatial covariation within and between species not 
accounted for by the measured covariates, plus a component that is at-
tributable to the measured covariates themselves. Put another way, the 
estimated community composition gradients from SFA may resemble 
(exhibit some correlation with) the measured covariates themselves; see 
the simulations and case studies in Sections 4 and 5, respectively, for 
empirical evidence of this. This means an ordination of them can, due 
to spatial confounding, bear similarity to simply plotting the measured 
covariates as a function of their spatial locations.

If the statistical analysis aims to construct an ordination that 
more authentically represents spatial covariation in addition to 
that explained by measured covariates, then one should consider 
fitting RSFA and plotting the restricted spatial factors U∗. From 
Equation (3), these spatial factors are, by construction, a term that 
is uncorrelated with the measured covariates, and represents what 
remains after accounting for the full explanatory power of the co-
variates (as quantified by B∗). In turn, ordination of the U∗ more accu-
rately reflects the idea of a residual ordination: a set of community 
composition axes representing species covariation not attributable 
to the included covariates.

3.4  |  Degree of impacts

In the case of a single response, extensive research has been done on 
the relationship between the degree of spatial confounding and the 
relative spatial scales of the measured versus the unobserved covari-
ates (which are approximated by the spatially structured random ef-
fects; see Mäkinen et al., 2022; Paciorek, 2010) and references therein. 
With multivariate abundance data and SFA, this relationship is more 
complex because each spatial factor (column of U) acts as a separate 
random effect typically with its own spatial scale. Indeed, in many ap-
plications of SFA, the aim is to capture the residual spatial correlation 
between and within each species at multiple spatial scales (Ovaskainen 
et al., 2016; Thorson et al., 2016). As such, the possibility of spatial 
confounding arising is expected to be even greater with multivariate 
abundance data and spatially structured JSDMs.
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The degree of spatial confounding for a given covariate (column 
of X) will also depend on how its spatial scale compares in relation to 
the estimated spatial scales of all the latent factors. In particular, we 
show via simulation in the next section that spatial confounding will 
generally be more prominent in SFA when the measured covariates 
are comparably coarse-scaled and spatially smooth (i.e. the spatial 
range of the observed covariate is larger than any unobserved pre-
dictors that the spatial factors are trying to capture). Conversely, if 
the measured covariates are fine-scaled (i.e. their spatial range is less 
than that of any unobserved predictors that the spatial factors are 
trying to capture) then spatial confounding is less likely to arise and/
or have less impact on estimation and inference when applying SFA 
(this can arise, for instance, by using downscaled microclimate co-
variates, Lembrechts et al., 2019). Note similar conclusions regarding 
the importance of scale have been obtained previously in the con-
text of a single response regression model by Paciorek  (2010) and 
Mäkinen et al. (2022).

4  |  SIMUL ATION STUDY

We performed a simulation study to investigate the impacts of 
spatial confounding discussed above, comparing the performance 
of independence factor analysis, SFA in Equation  (1) and RSFA 
in Equation (2) in terms of estimation and inference on covariate 
effects and residual ordination. Note we only consider models 
involving latent factors: as mentioned previously, some have rec-
ommended the use of models that do not explicitly account for 
residual between-species correlations, that is, stacked species dis-
tribution models, when the aim is purely to quantify the effects of 
measured covariates. However, given that stacked species distri-
bution models do not facilitate inferences such as model-based 
ordinations, then we do not include such a model for comparison 
here.

The full details of the simulation design are provided in Appendix B, 
but to summarise, we adapted the design of Dupont et al. (2022) and 
simulated spatial multivariate abundance data from a model with 
N = 400 spatial locations, J = 10 species, one measured covariate 
and two unmeasured covariates. The single measured covariate was 
constructed using the form xobs = 0.5f + �, where f denotes a spatial 
field formed via a set of spatial basis functions (Hui et al., 2023; Tzeng 
& Huang,  2018) and accompanying normally distributed weights, 
and the elements of � =

(

ϵ1, … , ϵN
)⊤ are independent fine-scaled 

normally distributed error terms. Meanwhile, the two unmeasured 
covariates were constructed using the form xunobs,1 = − C0f − f1 and 
xunobs,2 = − C0f + f2, where C0 is a constant and f1 and f2 are spatial 
fields built similarly to, but independently of, f and of each other. 
We let  denote the N × 4 matrix where the first column is a vector 
of ones representing an intercept term, while columns two to four 
comprise xobs, xunobs,1 and xunobs,2, respectively. We then constructed 
the mean model g(�) = ℬ

⊤ where ℬ is an J × 4 matrix of species-
specific regression coefficients whose elements are generated from 
a normal distribution with mean and variance given in Appendix B. 

Finally, we simulated spatial multivariate abundance data with J = 10 
species using this mean model and considering three response types: 
(1) presence-absence records; (2) overdispersed counts; and (3) bio-
mass (non-negative continuous) responses.

In the above set-up, the constant C0 controls the degree of collin-
earity between the measured and unmeasured covariates and hence 
the severity of spatial confounding in the data generation process. 
We set C0 = 0,0.5,1, where C0 = 0 corresponds to negligible spa-
tial confounding. Furthermore, to assess how the impact of spatial 
confounding varies depending on the spatial scale of xobs relative to 
xunobs,1 and xunobs,2, we examined two settings depending on whether 
f was a coarse-scaled spatial field and f1 and f2 are both fine-scaled 
spatial fields, or vice versa; see Appendix B for details. For each com-
bination of response type, the value of C0 and whether xobs was a 
coarse- or fine-scaled spatial covariate, we simulated 200 datasets.

For each simulated dataset, we assumed only xobs (i.e. the first 
two columns of ) were observed and proceeded to fit independent 
factor analysis, SFA and RSFA assuming K = 2 latent factors. In this 
way, when C0 ≠ 0 the true effect of the measured covariate (i.e. its 
full explanatory power) is defined as the effect given by xobs and a 
corresponding portion given by xunobs,1 and xunobs,2 (due to them shar-
ing the spatial field f). Analogously, the true residual spatial covari-
ation is given by the portion of xunobs,1 and xunobs,2 not attributable 
to the measured covariate (i.e. the portion due only to f1 and f2). For 
each fitted model, we assessed performance by comparing the es-
timated matrix of regression coefficients to the above-defined true 
covariate effect and by comparing the two predicted latent factors 
to the above-defined true residual variation.

We provide results for the case of presence-absence responses, 
while results for overdispersed counts and biomass responses present 
similar trends to those seen below and are given in Appendix B. When 
C0 = 0 and there is negligible spatial confounding, all three methods 
perform well in terms of absolute bias, root mean squared error (RMSE) 
and coverage probability of corresponding 95% confidence intervals 
for the true covariate effects (Figure 1). However, as C0 and the degree 
of spatial confounding increased, the performance of SFA noticeably 
deteriorates because it fails to capture the full explanatory power of 
the measured covariate, instead estimating the unpartitioned effect B 
(consistent with the discussion in Section 3.1). By contrast, both inde-
pendent factor analysis and RSFA (which estimates B∗) are more suc-
cessful at quantifying and performing inference on the full association 
between the covariates and the species response. When comparing 
the left and right columns of Figure 1, we see that the consequences 
of spatial confounding are more severe for SFA when the measured 
covariate is coarse-scaled (i.e. spatially smooth), relative to the unmea-
sured covariates; this is consistent with the discussion in Section 3.4. 
In Appendix B, we also present results on the average width of the 
confidence intervals, from which we note that RSFA tends to have 
generally narrower intervals compared to independent factor analysis, 
while the intervals for SFA are typically the widest even though they 
have the worst coverage probability as C0 increased.

Spatial confounding also had an impact on the recovery of the true 
residual spatial covariation, which directly affects variance partitioning 
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and residual ordination. The recovery of the spatial variation was as-
sessed by computing the Procrustes error between the predicted la-
tent factors and the true residual spatial variation (as given by f1 and f2

), where the Procrustes error can be thought of as the sum of squared 
differences between the predicted latent factors and the true resid-
ual spatial variation, after rotating and scaling the former so that it is 

F I G U R E  1  Simulation results for the estimated regression coefficients, comparing independent factor analysis, SFA and RSFA in the case 
of presence-absence responses. The left and right columns correspond to xobs being a coarse- and fine-scaled spatial field relative to xunobs,1 
and xunobs,2, while performance was assessed in terms of absolute bias (top row), root mean squared error (RMSE; middle row) and empirical 
coverage probability of 95% confidence intervals across 200 simulated datasets. In each panel, the performance of each method is plotted 
against C0, where each method is represented by a different (coloured) boxplot constructed based on J = 10 species.
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as similar in shape as possible to the latter (see Borcard et al., 2011, 
for technical details). The impact was most noticeable when the mea-
sured covariate was spatially smooth and when C0 = 1 , where we see 
RSFA (which estimates U∗) tended to perform better in terms of the 
Procrustes error (left half of Figure 2). When C0 and the degree of spa-
tial confounding was small, SFA and RSFA performed similarly in terms 
of estimating the latent factors. Likewise, and similar to Figure 1, when 
the measured covariate was fine-scaled compared to the unmeasured 
covariates, the impact of spatial confounding was greatly reduced. 
Independent factor analysis consistently performed the worst in terms 
of recovering the residual spatial variation; this is attributed to the fact 
that it fails to explicitly account for spatial correlations in the residual 
terms and so suffers from model misspecification. Finally, as mentioned 
in Section 2.2, one simple method of assessing the degree of spatial 
confounding in a given dataset is based on computing the correlations 
between the measured covariates and predicted factors. This is exem-
plified in the right half of Figure 2, which plots the maximum Pearson 
correlation between xobs and f1 and f2. Consistent with the results seen 
above on its impacts, the extent of spatial confounding was most se-
vere when the measured covariate was spatially smooth and C0 = 1: the 
median correlation between the predicted latent factors from SFA and 
the observed covariate exceeded 0.8. Interestingly, when C0 = 0 there 
were still non-negligible correlations between the latent factors from 
SFA and the observed covariate: this is due to finite sample correlations 
that may still arise between the spatial fields f and f1 and f2 as discussed 
at the beginning of Section  2.2. The correlations were substantially 
reduced for SFA when the measured covariate was spatially more 

fine-scaled than unobserved covariates. In contrast, both independent 
factor analysis and RSFA exhibited negligible correlations between the 
latent factors and the measured covariates, where the latter occurs by 
construction as seen in the form of (2).

Overall, this simulation study improves our understanding of the 
impacts of spatial confounding on JSDMs: if the aim of the analysis is 
to perform inference on the full explanatory effect of response due to 
measured covariates and have the latent factors more accurately repre-
sent residual covariation not explained by these measured covariates, 
then RSFA is typically more successful at achieving this compared to SFA 
and independent factor analysis. However, the degree of impact of spa-
tial confounding varies greatly depending on the relative spatial scales of 
measured versus unmeasured covariates (see also Mäkinen et al., 2022; 
Paciorek, 2010), and the extent to which the latter contains a portion 
of the spatial variation that can be captured by the latter. Finally, we 
performed additional simulations at the larger sample size of N = 1000, 
with results (not shown) overall exhibiting very similar trends to those at 
N = 400 and demonstrating that the consequences of spatial confound-
ing in the simulation design do not diminish even with more data.

5  |  C A SE STUDY—GRE AT BRITAIN 
BUT TERFLY DATA

We provide two case studies illustrating the impacts of spatial 
confounding on statistical analysis in multivariate abundance data, 
comparing the results obtained from SFA to those obtained using 

F I G U R E  2  Simulation results for the predicted latent factors, comparing independent factor analysis, SFA and RSFA in the case of 
presence-absence responses. Performance was assessed in terms of Procrustes error between the predicted latent factors and true residual 
spatial variation (effectively scaled versions of f1 and f2 ; left half), and the maximum Pearson correlation between the two predicted 
latent variables and the xobs. Within each half, the left and right columns of each panel correspond to xobs being a coarse- and fine-scaled 
spatial field relative to xunobs,1 and xunobs,2, while in each panel, the performance of each method is plotted against C0, where each method is 
represented by a different (coloured) boxplot constructed based on the 200 simulated datasets.
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an independent factor analysis (i.e. using the non-spatial latent vari-
able model Warton et al., 2015) and RSFA. Indeed, results from the 
simulation study in the preceding section suggest the importance of 
performing sensitivity analysis between SFA, RSFA and independ-
ent factor analysis, to assess the severity of spatial confounding. 
For brevity, in this section we focus only on the Great Britain but-
terfly presence-absence data; results from our application to count 
records of zooplankton from the SOCPR survey are presented in 
Appendix D.

The Great Britain butterfly dataset we consider in this case study 
comprises presence-absence records of J = 45 species collected at 
N = 2609 sites spanning Great Britain. The recorded prevalence 
across the 45 species ranged from 0.067 to 0.963, with an average 
of 0.487. More information about the data collection process can be 
found at Asher et al. (2001), while Ovaskainen et al. (2016) used it 
to demonstrate an application of SFA. The data were subsequently 
used and made publicly available as part of Wilkinson (2018).

Figure 3 presents spatial maps of three covariates available for 
this dataset (all standardised to have mean zero and variance one). 
Note the prominent smooth latitude gradient of growing degree days 
(GDD; left panel) and to a lesser extent the percentage of coniferous 
woodland (right panel). Based on Section 3.4 and the empirical re-
sults from Section 4, this suggests that spatial confounding may pose 
a problem when applying SFA, and care needs to be taken when in-
terpreting results from such a fitted model. Figure 4 presented the 
estimated regression coefficients based on applying SFA, RSFA and 
independent factor analysis, all assuming linear effects of the three 
covariates and K = 2 factors. Across all three predictors and 45 spe-
cies, RSFA and independent factor analysis produced broadly simi-
lar estimates of the covariate effects, while the estimates from SFA 

differ greatly from these two models and tended to be attenuated 
toward zero. We stress that such attenuation is not always expected 
to occur when spatial confounding is present Paciorek  (2010) and 
Khan and Berrett  (2023), but the fact the estimated values differ 
greatly between B in SFA and B∗ in RSFA suggests that, consistent 
with the findings from Section 4, the former is being impacted by the 
collinearity between the measured covariates and the spatial factors 
and that it is important to decide whether the interest lies in the 
unpartitioned versus the partitioned effects.

The impact flows into inference on the covariate effects, where 
in Table 1 we observe that, across all three predictors, the propor-
tion of species judged to have statistically significant effects (based 
on whether the corresponding 95% confidence intervals excludes 
zero or not) is considerably lower for SFA compared to RSFA and 
independent factor analysis; see also Appendix C for caterpillar plots 
of the confidence intervals. This is consistent with the discussion in 
Section 3.1, where part of the explanatory power of the measured 
covariates is being absorbed by the spatial factors in the presence of 
spatial confounding. The partitioned effects in RSFA attempt to treat 
this: by reincorporating the full explanatory power of the covariates, 
this generally leads to a greater number of statistically significant 
effects when performing inference on B∗ versus B. Equivalently, we 
can view as being that if the focus is on partitioned effects, then 
SFA can fail to provide valid inference on this; see also the results on 
coverage probability in Figure 1 of the simulation study.

When we examine variance partitioning from the three models 
on a per-species basis, we observe that independent factor analysis 
and RSFA are, again, more similar to each other compared to the 
results from SFA (Figure 5). For instance, in SFA the three covariates 
explain less than 25% of the variation across most species, compared 

F I G U R E  3  Spatial plots of the three covariates (from left to right: Mean annual number of growing degree days above 5°C, percentage of 
broadleaved woodland, percentage of coniferous woodland) in the Great Britain butterfly data.
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F I G U R E  4  Tile plots of the J = 45 estimated species regression coefficients and three measured covariates (mean annual number of 
growing degree days above 5°C, percentage of broadleaved woodland, percentage of coniferous woodland) in the Great Britain butterfly 
data, estimated using independent factor analysis, SFA and RSFA.
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with the independent factor analysis where the covariates tend to 
explain more than 50% of the variation. This result is in agreement 
with the expected consequences of spatial confounding highlighted 
below Equations (4a) and(4b) when it comes to the true residual spa-
tial covariation and its relative role in explaining species responses. 
RSFA is partly able to recover the variance partitioning results seen 
in the independent factor analysis, although we note the restricted 
factors tend to explain slightly more in RSFA compared to their 
counterparts in independent factor analysis. This may be attributed 
to the U∗ retaining some spatial structure due to their construction 
from U (see Equation 3). In doing so, they can more successfully cap-
ture residual spatial correlations within and between species that 
cannot be accounted for by the measured covariates.

Finally, Figure 6 presents the estimated values of the two latent 
factors as a function of spatial location. Both estimated spatial fac-
tors from SFA (columns of U) exhibit a noticeable latitude gradient 
reminiscent of that of growing degree days, in agreement with the 
expected impacts of spatial confounding on residual ordination (see 
Section 3.3) and the simulation results from Figure 2. This is con-
firmed when we compute the Pearson correlation between each 
covariate and the predicted spatial factors, which shows that both 
spatial factors from SFA are strongly correlated with growing de-
gree days (correlations of 0.819 and −0.635, respectively). There is 
also some correlation with the two other covariates, although to a 
lesser extent; see Appendix C for complete results including residual 
ordination plots where points are coloured by the covariate values. 
By contrast, the estimated factors from independent factor analysis 
present close to zero correlation with the three covariates, while the 
corresponding correlations from RSFA are exactly zero, as expected. 
In fact, if we compare the spatial maps of the estimated factors 
from independent factor analysis and RSFA (left and right columns 
of Figure 6), we observe that the first factor exhibits similar trends 
between the two models. Note however that the factors from RSFA 

are spatially smoother than from independent factor analysis: This is 
consistent with the results from Figure 5 and can be explained by the 
fact that while the columns of U∗ are restricted to be orthogonal to 
X, they still retain spatial structure due to their construction from U
; see also Figure 2 in the simulation study where independent factor 
analysis performed poorly due to their failure to explicitly account 
for spatial correlation in the residual covariation.

In Appendix D, we present a second case study comparing inde-
pendent factor analysis, SFA and RSFA on count records of J = 15 
zooplankton species recorded across N = 579 locations using ves-
sels traversing the Indian sector of the Southern Ocean. Overall, the 
results of this application again demonstrate the impacts of spatial 
confounding on quantifying covariate effects, variance partitioning 
and residual ordination, although the differences between SFA and 
RSFA are less dramatic compared with the results seen above for the 
butterfly data.

6  |  DISCUSSION

Through a simulation study and two case studies, we have demon-
strated the consequences of spatial confounding on three key ap-
plications of joint species distribution modelling, namely inferences 
and interpretations on covariates effects, quantifying between-
species correlations and variance partitioning, and model-based 
residual ordination. We presented one approach to treating spatial 
confounding called restricted spatial factor analysis, which seeks 
to purposefully adjust the spatial factors so that they remain un-
correlated with the covariates. Simulation results suggest RSFA is 
relatively successful at achieving this and thus is arguably more 
in alignment with the intention of why the spatial random effects 
were included originally. Note although we fit the SFA and RSFA 
models via maximum approximate likelihood estimation using TMB 
(Kristensen et al., 2016), which is available at Hui et al. (2024), there 
are a number of existing JSDM packages in the literature employing 
either likelihood-based or Bayesian estimation that could be used 
to obtain results for RSFA from an already fitted SFA model (e.g. 
post-hoc processing of MCMC samples). This should facilitate as-
sessments of spatial confounding and sensitivity analysis between 
SFA and RSFA models (although see the work of Hefley et al., 2017; 
Mäkinen et  al.,  2022; Marques & Wiemann,  2023, regarding the 
role of the prior distribution/hierarchical structure on the severity 
of spatial confounding).

In Section 3.3, we focused on the impacts of spatial confound-
ing on residual ordination and its interpretation. However, these 
impacts also extend to the case of model-based unconstrained ordi-
nation (another major usage of JSDMs, Warton et al., 2015; van der 
Veen et al., 2023) when X contains only an intercept term and B re-
duces a set of species-specific intercepts. In this setting, spatial con-
founding can cause the unconstrained ordination from SFA to have 
a non-zero location, while RSFA makes an adjustment to ensure the 
unconstrained ordination is centred around the origin (consistent 
with how we expect the latent gradients representing community 

TA B L E  1  Proportion of statistically significant results (based 
on whether 95% Wald confidence intervals exclude zero or not) 
for each of the three measured covariates (mean annual number 
of growing degree days above 5°C, percentage of broadleaved 
woodland, percentage of coniferous woodland) and three models 
fitted to the Great Britain butterfly data.

Covariate Model

Prop. of 
significant 
results

GDD Independent 0.978

SFA 0.733

RSFA 0.956

Broadleaved woodland Independent 0.956

SFA 0.511

RSFA 0.956

Coniferous woodland Independent 0.378

SFA 0.244

RSFA 0.667
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composition to be set up). We illustrate an example of this using the 
Great Britain butterfly data in Appendix E.

As discussed in Section 1, RSFA is by no means the only method 
to treat spatial confounding. For single response models, some au-
thors have argued against ‘restricted-like’ approaches due to poten-
tial issues with inflated Type I errors when assessing covariate effects 
(Khan & Calder, 2022; Zimmerman & Ver Hoef, 2022), although our 
simulation design did not find particularly strong evidence of this, 
and there are potential remedies to this drawback based on adjust-
ing the standard errors (Hanks et  al.,  2015; Hui & Bondell, 2022). 
One reason why we view RSFA as being an appropriate practical 
solution to spatial confounding is that it still facilitates many of the 

statistical inferences ecologists want to obtain from fitting JSDMs 
with little additional burden: As noted at the beginning of Section 4, 
stacked species distribution models do not allow for model-based 
ordination or variance partitioning. Also, while they have yet to 
be adapted to spatial multivariate abundance data, we expect that 
other methods to treat spatial confounding such as the approaches 
of Thaden and Kneib  (2018), Dupont et  al.  (2022) and Marques 
et al. (2022) will encounter challenges when it comes to producing/
interpreting ordinations, between-species correlations and variance 
partitioning, and/or require the ecologist to model the spatial struc-
ture of xi as well (which is not something we typically want to under-
take). More broadly, as we discussed below Equation  (3), because 

F I G U R E  5  Variance partitioning for the J = 45 species in the Great Britain butterfly data, using independent factor analysis, SFA and 
RSFA. The species are ordered by the amount of variation explained by the three measured covariates in SFA.
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spatial confounding is analogous to correlation between measured 
covariates, then similar to multicollinearity as a whole it is not always 
evident how to treat spatial confounding. Thus, currently there is a 
lack of universal rules that can guide the management of spatial con-
founding. This is especially relevant here given RSFA treats spatial 
confounding by imposing orthgonality between the spatial factors 
and measured covariates, which is a contentious constraint (see also 
the discussion by Papadogeorgou, 2022).

Finally, in many applications of spatially structured JSDMs, 
practitioners want to incorporate more than just linear effects of 

the measured covariates to account for complex non-linear species-
environmental relationships or incorporation of additional infor-
mation such as traits (e.g. Niku et al., 2021). The presence, impact 
and way of treating (through RSFA) spatial confounding we have 
discussed in this article still applies in these settings. However, addi-
tional research is needed given many of these more flexible methods 
usually also involve some degree of penalisation to avoid overfit-
ting/oversmoothing; how spatial confounding impacts the choice of 
smoothing and tuning parameter selection is much less understood 
(see Dupont et al., 2022, for a connected discussion). Related to this, 

F I G U R E  6  Spatial plots of the K = 2 latent factors for the Great Britain butterfly data, estimated using independent factor analysis, SFA 
and RSFA.
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Hoeting et al. (2006) and Hoeting (2009) among others have shown 
that ignoring spatial correlation can have detrimental consequences 
(e.g. underfitting and higher prediction errors) on the variable selec-
tion of covariates. However, the impact of spatial confounding on 
the performance of formal model selection tools in JSDMs remains 
under-explored: (see for instance the results from Appendices A and 
B, as well as Hefley et al., 2017; Yang et al., 2023, for related discus-
sions in the context of a single response).
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