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Abstract: Simultaneous autoregressive (SAR) models are useful for accommodating
various forms of dependence among data that have discrete support in a space of
interest. These models are often specified hierarchically as mixed-effects regression
models with first-moment structure controlled by a conventional linear regression term
and second-moment structure induced by correlated random effects. In their general
form, SAR models resemble conditional autoregressive (CAR) models, and can be made
equivalent but are often parameterized differently. Importantly, SAR models can be
specified by simultaneously regressing a discrete spatial process on itself. Thus, they allow
one to construct statistical models for processes with directional graphical properties that
pertain to data generating mechanisms. Most commonly SAR models have been used
to account for structure among data with areal spatial support in applications involving
ecology, epidemiology, sociology, and environmental science.

1 Introduction

In the statistical analysis of autocorrelated data, autoregressive (AR; see Autoregressive–Moving Average
(ARMA) Models) models are among the most commonly used in spatial and temporal statistics for their
beneficial properties and ease of specification. AR models account for dependence in a data set and/or
process by explicitly accommodating the relationships among observations in a space of interest. The space
of interest is often the support of the data or process in the spatial or temporal domain. Thus, statistical
AR models are customized for specific types of support, either continuous or discrete.

In the spatial context, an example of a continuous process (see Geostatistics) is an ambient temperature
field that exists everywhere in a study area (even though it is only measured at a finite set of locations).
By contrast, a discrete spatial process exists at a countable set of points or regions. An example of a discrete
spatial process is disease incidence in predefined geographic regions. AR models for processes that have
discrete spatial support are often referred to as lattice or areal data models[1]. These AR models are specified
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from two different perspectives and are referred to as conditional autoregressive (CAR; see Conditional
Autoregressive (CAR) Model) models and simultaneous autoregressive (SAR) models[2]. SAR models are
the focus of this exposition.

We introduce SAR models in a classical mixed model framework. Consider a data set 𝐲 ≡ (y1, … , yn)′
that arises from a data generating process comprised of both first-moment (mean) and second-moment
(covariance) structure. Assuming linear relationships with a set of covariates 𝐱i for i = 1, … , n, additivity
of components, and separability of the first- and second-moment structure, we can write a statistical AR
model jointly as

𝐲 = 𝐗𝜷 + 𝐳 + 𝜺 (1)

where the n × p matrix 𝐗 consists of the p × 1 covariate vectors 𝐱′i , for i = 1, … , n, on the rows and
the coefficient vector is 𝜷 ≡ (𝛽0, … , 𝛽p−1)′. In Equation (1), the first-moment structure is determinis-
tic and accommodated by the linear predictor 𝐗𝜷 , which results in a regression model. If we specify
𝜀 as an unstructured error vector with mean E(𝜺) ≡ 𝟎 and covariance as Cov(𝜺) ≡ 𝜎2

𝜀𝐈 as in traditional
linear regression models (see Linear Regression), this leaves the n × 1 random vector 𝐳 in Equation (1)
to accommodate the AR structure in 𝐲 and its presence results in a mixed model (i.e., containing both
fixed and random effects). The difference between AR models and conventional mixed effects regression
models is in how we specify the stochasticity for 𝐳. In AR models, we typically rely on Gaussian assump-
tions for 𝐳 and specify the mean as E(𝐳) ≡ 𝟎 and covariance as Cov(𝐳) ≡ 𝚺z. While CAR and SAR models
both assume this form of second-moment dependence, the covariance for the SAR model is generally
specified as

𝚺z ≡ 𝜎2
z (𝐈 − 𝐁)−1𝛀(𝐈 − 𝐁′)−1 (2)

where the variance component 𝜎2
z controls the variation in the correlated random effect 𝐳, the n × n

diagonal matrix 𝛀 has positive values as diagonal elements, and the n × n matrix 𝐁 accounts for the
second-moment dependence in the process[3]. Commonly, the matrix 𝛀 is set to be the identity matrix 𝐈
which results in the simplified form of SAR covariance

𝚺z ≡ 𝜎2
z ((𝐈 − 𝐁)(𝐈 − 𝐁′))−1 (3)

The mixed model specification in Equation (1) includes a structured random effect (𝐳) and an unstruc-
tured error term (𝜺). If we omit the structured random effect 𝐳, the model in Equation (1) reduces to the
conventional linear regression model with only fixed effects. If we omit the unstructured errors 𝜺, then
we are left with a SAR model that contains only structured second-order dependence in addition to the
first-moment effects. In mixed model specifications, normality is often assumed for 𝐳 and 𝜺 because it
facilitates implementation and inference.

2 Simultaneous Dependence

The dependence induced in the process by the covariance model in Equation (3) may not be immediately
intuitive. However, some have found it helpful to consider a constructive approach for building a SAR
covariance matrix. One approach for building a SAR model involves regressing the random effects in 𝐳
on themselves simultaneously (hence the name). Using this constructive approach to formulating the SAR
model, we have

𝐳 = 𝐁𝐳 + 𝜼 (4)

where 𝜼 has mean E(𝜼) ≡ 𝟎 and covariance Cov(𝜼) ≡ 𝜎z𝐈. Subtracting 𝐁𝐳 from both sides of Equation (4)
results in 𝐳 − 𝐁𝐳 = 𝜼, which, after some algebra, results in (𝐈 − 𝐁)𝐳 = 𝜼. This implies that 𝐳 = (𝐈 − 𝐁)−1𝜼
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if the matrix 𝐈 − 𝐁 is invertible (Refs 1, 4 which may not always be the case). Thus, because 𝜼 has
mean E(𝜼) ≡ 𝟎 and covariance Cov(𝜼) ≡ 𝜎2

z 𝐈, 𝐳 also has mean E(𝐳) = 𝟎, but has covariance Cov(𝐳) =
𝜎2

z (𝐈 − 𝐁)−1((𝐈 − 𝐁)−1)′ which can be rewritten as the covariance in the SAR model Equation (3).

3 Parameterizing SAR Dependence

The SAR covariance matrix is often written generically as 𝚺z ≡ 𝜎2
z ((𝐈 − 𝐁)(𝐈 − 𝐁′))−1 as in Equation (3).

However, if fully parameterized, the SAR dependence matrix 𝐁 contains n2 elements and increases with
the size of the data set (or cardinality of the discrete support). Thus, to reduce dimensionality of the
inverse statistical problem, the dependence matrix is often parameterized as 𝐁 = 𝜌𝐖, where 𝜌 controls the
amount of dependence and the n × n matrix 𝐖 is defined a priori in a way that accounts for hypothesized
relationships among areal units in the support. The matrix 𝐖 is commonly referred to as a neighborhood
or proximity matrix and is binary with zeros on the diagonal and ones on the off-diagonal elements that
indicate a possible relationship among areal units. For example, in a scenario with 5 areal units consecu-
tively indexed and symmetric relationships among only consecutive indices, 𝐖 is the 5 × 5 matrix

𝐖 =

⎛⎜⎜⎜⎜⎜⎝

0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎠
(5)

Note that the proximity matrix in Equation (5) contains all zeros on the diagonal implying that there are
no self relationships for individual areal units in this example.

Proximity matrices associated with SAR models need not be symmetric (although 𝐖 happens to be
symmetric in Equation (5)). This is in contrast with those used in CAR models and results from the form
of covariance used in Equation (3). In the SAR covariance that is based on a proximity matrix, we have the
term (𝐈 − 𝜌𝐖)(𝐈 − 𝜌𝐖′) and, while (𝐈 − 𝜌𝐖) may not be symmetric, the product will be symmetric. This
highlights another fundamental difference between SAR and CAR models. That is, in SAR models, we
allow for dependence using a square root of the precision matrix associated with the model. By contrast,
CAR models allow for dependence through the precision matrix (see Precision Matrix). Both types of
areal data models differ from those used in geostatistics for continuous spatial processes that are based on
direct formulations involving the correlation (rather than precision).

4 Forms of Proximity

Parameterizing the SAR dependence matrix as 𝐁 = 𝜌𝐖 reduces the number of unknowns from n2 to 1
when 𝐖 is considered fixed and known. Considering 𝐖 to be known implies strong assumptions about
the potential relationships among areal units. However, if there is no evidence for such dependence in
the process based on the data, 𝜌 and/or 𝜎2

z will be estimated near zero, attenuating the random effect 𝐳.
Also, the predictive ability of various specifications for 𝐖 can be compared by scoring a set of competing
models (e.g., Ref. 5).

We can specify the simplest type of proximity using𝐖 like that shown in Equation (5) where neighboring
areal units are easily recognized such as in time series. However, in contiguous arrangements of areal
units in higher dimensions, we may choose to parameterize 𝐖 such that elements are equal to 1 if they
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share a boundary. In more complex arrangements of the discrete spatial support for the process, we may
specify neighbors based on proximity calculated using an auxiliary data source. For example, if dij, for
i = 1, … , n and j = 1, … , n, represents a distance between areal units i and j, then we could assign all
other areal units within a certain distance threshold as neighbors. Alternatively, we could specify 𝐖 such
that the closest q (for q < n) nearest areal units to the focal region are considered neighbors.

One benefit of using a binary proximity matrix in a SAR model is to take advantage of sparsity. For
example, consider the proximity matrix 𝐖 in Equation (5) which only has 8 non-zero elements out of a
total of n2 = 25. Thus, when fitting SAR models with sparse precision matrices to large data sets, we can use
computer algorithms that are based on sparse matrix storage and calculations to reduce the computational
time[6]. Another important aspect of both SAR and CAR models relative to geostatistical models is that
we can reduce the primary computational burden to fit the model in Equation (1) to data. Because both
SAR and CAR models are specified in terms of their precision, we do not need to invert their associated
covariance matrix 𝚺z when evaluating the Gaussian likelihood associated with Equation (1).

Binary proximity matrices may not adequately characterize the dependence in a given process. In that
case, it may be useful to specify 𝐖 such that it has continuous-valued elements. For example, in the pre-
viously discussed case where auxiliary information provides knowledge of pairwise distances dij, we could
specify the elements of 𝐖 as

wij = exp

(
−

dij

𝜙

)
(6)

where 𝜙 is a parameter controlling the range of dependence that can either be treated as fixed and known
or estimated with 𝜌 and 𝜎2

z . This proximity matrix formulation is very similar to that used in geostatistical
models for spatial processes. The type of process we are studying affects how we calculate the distances
dij. If the areal units exist in a geographic space, dij could be defined as the Euclidean distance between
centroids for the areal units. Alternatively, in situations with contiguous areal units, the proximity wij could
be a function of the length of shared boundary between units.

The possibility of accommodating asymmetry in the SAR proximity matrix can be viewed as an advantage
in formulating SAR models versus CAR models. For example, if the relationships among areal units can be
viewed jointly as a graph[7], then a SAR model allows us to account for mechanisms giving rise to a directed
graph (see Multivariate Directed Graphs). That is, suppose we wish to use a SAR model to accommodate
dependence among species in a community. In this case, each areal unit in a SAR model represents a
species and the proximity wij characterizes dependence among species i and j. If wij = 1 and wji = 0, then
the model accommodates the situation where species j influences species i, but not vice versa. Hanks[8] also
demonstrated how natural dynamic mechanisms can lead to dependence structure in limiting processes
that can be accommodated by SAR models.

5 Row Standardization

When the SAR dependence matrix is specified as𝐁 ≡ 𝜌𝐖, the precision matrix (𝐈 − 𝜌𝐖)(𝐈 − 𝜌𝐖′)will only
be proper when the dependence parameter 𝜌 is between the reciprocals of the smallest and largest eigen-
values (see Eigenvalues and Eigenvectors in Statistics) of 𝐖. For our example SAR proximity matrix
in Equation (5), the smallest and largest eigenvalues are −1.732 and 1.732, respectively. Thus, for the
associated SAR precision matrix to be valid, then −0.577 < 𝜌 < 0.577 is sufficient for (𝐈 − 𝜌𝐖)−1 to exist.
Standardizing the rows of the proximity matrix 𝐖 so that they sum to one has several benefits (e.g., Ref. 2).
One such benefit is that, when the rows of the proximity matrix sum to one, it simplifies the condition
for the dependence parameter such that −1 < 𝜌 < 1 is sufficient for the SAR precision matrix to be valid.
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However, when the rows of the proximity matrix sum to one, it has become common to set the dependence
parameter 𝜌 = 1 to reduce the overall number of parameters in the model because 𝜌 is often estimated to
be near 1 regardless. SAR models for which 𝜌 = 1 are referred to as intrinsic simultaneous autoregressive
models (ISAR; or ICAR when used with CAR models; see Conditional Autoregressive (CAR) Model).
In ISAR models, the covariance matrix does not exist, but the resulting form of the distribution can be
used as an improper prior in a Bayesian analysis. Alternatively, additional constraints can be placed on 𝐳
to ensure that the distribution is proper[9].

In our example proximity matrix from Equation (5), standardizing so that each row sums to one results
in the new matrix

𝐖 =

⎛⎜⎜⎜⎜⎜⎝

0 1 0 0 0
0.5 0 0.5 0 0
0 0.5 0 0.5 0
0 0 0.5 0 0.5
0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎠
(7)

The constructive perspective of the SAR model in Equation (4) sheds some light on the new interpreta-
tion of this row-standardized proximity matrix. The constructive SAR model in Equation (4) implies that
each element of 𝐳 is a weighted average (rather than a sum) of the other elements of 𝐳 if we use the proxim-
ity matrix 𝐖 in Equation (7). When the process is averaged over more neighboring areal units, its variance
will decrease implying that more central and well connected areal units will have lower variance than
those on the margins of the graph that are less well connected. This concept matches our understanding of
geostatistical (see Geostatistics) processes that have larger uncertainty when certain locations are farther
from other measured locations in the process. Thus, row-standardization of the proximity matrix in SAR
(and CAR) models is generally appropriate[2].

6 Equivalence of SAR and CAR Models

Ver Hoef et al.[10] showed that any SAR model can be written as a CAR model and vice versa. For compari-
son, a general CAR model takes the same form as the mixed model in Equation (1), but has the covariance
matrix for 𝐳 expressed as 𝚺z ≡ 𝜎2

z (𝐈 − 𝐂)−1𝐌, where 𝐂 serves as the CAR dependence matrix and 𝐌 is a
diagonal matrix with elements mii proportional to the conditional variance of zi given all its neighbors.
CAR dependence matrices are often specified as 𝐂 ≡ 𝜌𝐖 like in SAR models. However, Wall[11] showed
that correlation increases more rapidly with the dependence parameter 𝜌 in SAR models than in CAR
models specified in this way. Intuitively, that makes sense because SAR models are parameterized such
that the dependence is a function of square root of the precision matrix rather than the precision matrix
directly as in CAR models.

7 Example: Avian Diversity

To demonstrate the use of a SAR model, we apply a reduced form of the model with second-order structure
arising only from the spatially structured random effects to model avian diversity in Colorado, USA. We
take a Bayesian (see Bayes’ Theorem and Updating of Belief) approach to fitting the SAR model to the
natural log of avian species richness in Colorado counties 𝐲 ≡ ( y1, … , yn)′ (n = 64)

𝐲 = 𝐗𝜷 + 𝐳 (8)
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Figure 1. SAR network graph (graph edges shown in black) associated with our binary proximity matrix
W based on a threshold set at 15% of the maximum distance between county (shown in gray) centroids in
Colorado.

where 𝐳 ∼ N(𝟎, 𝜎2
z ((𝐈 − 𝜌𝐖)(𝐈 − 𝜌𝐖′))−1). In our model, we used a row-standardized proximity matrix 𝐖

that was based on a binary proximity matrix𝐖with elements equal to one only when the distances between
Colorado county centroids do not exceed 15% of the maximum distance between any two counties. The
threshold equal to 15% of the maximum distance ensured that every county in Colorado had at least one
neighbor (Figure 1).

To complete our Bayesian SAR model, we specify priors for the regression coefficients 𝜷 , SAR variance
𝜎2

z , and SAR spatial dependence parameter 𝜌, such that

𝜷 ∼ N(𝟎, 1000 ⋅ 𝐈) (9)
𝜎2

z ∼ IG(0.001, 0.001) (10)
𝜌 ∼ Unif(0, 1) (11)

Note that the prior support for 𝜌 (0 < 𝜌 < 1) results in a valid SAR covariance matrix but also restricts the
model such that it can only account for positive spatial dependence.

We fit the Bayesian SAR model to the log species richness data in Figure 2a based on the spatially refer-
enced covariates in Figure 2b–d using a Markov chain Monte Carlo (see Bayesian Analysis and Markov
Chain Monte Carlo Simulation) algorithm and 100 000 iterations. Figure 3 shows marginal posterior his-
tograms resulting from our model fit to the log species richness data. Based on our analysis, we can see
that there is weak evidence for a negative effect of minimum elevation (Figure 3b), a strong effect of log
human population density (Figure 3c), and some evidence for a positive effect of total county area on log
avian species richness (Figure 3d). Furthermore, there was evidence for substantial learning about the SAR
dependence parameter 𝜌 beyond our prior distribution (Figure 3f ) which implies that the spatial random
effect is needed in the model to account for dependence beyond what is explained by the first-moment
effects.
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(a)

(b) (c) (d)

Figure 2. (a) Log species richness in Colorado counties, and standardized covariates: (b) minimum eleva-
tion in county, (c) log human population density per county, and (d) total area of county. Darker shades
correspond to greater values in each map.

For comparison, we also fit a conventional linear regression model assuming independent errors (i.e.,
the model shown in Equation (8) with 𝜌 = 0). We compared the predictive ability of the SAR model and
conventional regression model using the deviance information criterion (DIC; smaller values indicate
better predictive ability; (Refs 12, 13; see Deviance Information Criterion (DIC)). We calculated DIC
for the conventional regression model as −64.6 and for the SAR model as −489.3 which indicated that the
SAR model is the better predictive model for our data set and chosen covariates (because it has the smaller
DIC value).

8 Extensions and Related Concepts

8.1 Confounding

In general, linear mixed models as in Equation (1) are useful for modeling data that have discrete
support and a combination of first-moment and second-moment structure. Often such models are used
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Figure 3. Marginal posterior histograms for (a) the intercept 𝛽0, (b) the coefficient associated with min-
imum elevation (𝛽1), (c) the coefficient associated with log human population (𝛽2), (d) the coefficient
associated with total area (𝛽3), (e) the SAR variance (𝜎2

z ), and (f ) the SAR dependence parameter (𝜌).
Priors shown as dashed lines.
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when a subset of predictor variables are measured and appear in the design matrix 𝐗 yet there remains
dependence that goes unaccounted for when considering only the first-moment fixed effects. An analysis
of the residuals from conventional linear regression to assess additional dependence (e.g., using a Moran’s
I statistic[14]; (Spatial Autocorrelation Coefficient, Moran’s) may indicate that we need to account for
it in the model so that the assumptions are valid. However, in such cases, there may exist confounding
among the first- and second-moment effects[15, 16]. To see this, consider the alternative form for the
random effects, written as a linear combination of basis vectors 𝐳 = (𝐈 − 𝐁)−1𝜼. Using this formulation,
the linear mixed model in Equation (1) is

𝐲 = 𝐗𝜷 + (𝐈 − 𝐁)−1𝜼 + 𝜺 (12)

and it becomes clear that both 𝐗 and (𝐈 − 𝐁)−1 act as covariates in the model. If the columns of 𝐗 and
(𝐈 − 𝐁)−1 are correlated, our inference about the regression coefficients 𝜷 may differ in the models with
and without random effects. While remedial approaches such as restricted regression (e.g., Refs 16, 17)
exist for constraining such models so that estimates for 𝜷 are similar in models with and without random
effects, determining when to use restricted regression is not always clear[18].

8.2 GLMMs

The linear mixed modeling approach we presented in Equation (1) may be appropriate for continuous-
valued response data. However, in other fields such as ecology and epidemiology, binary or count response
variables are common. Fortunately, SAR models can easily be applied in a generalized linear mixed model
(GLMM; see Generalized Linear Mixed Models) framework. For example, for binary observations
𝐲 ≡ (y1, … , yn)′ and associated success probabilities 𝐩 ≡ (p1, … , pn)′, we could specify a GLMM with
SAR random effects as yi ∼ Bern(pi) where g(𝐩) = 𝐗𝜷 + 𝐳. In this case, the autocorrelated random effects
𝐳 are modeled as in Equation (3) and g represents a link function of choice (e.g., logit or probit). In fact,
for the Bayesian version of this type of GLMM, a latent variable representation can be used to facilitate
computation when fitting the model to data (e.g., Refs 19, 20). Similar GLMM specifications based on
other types of data (e.g., counts) follow naturally.

8.3 Network Models

Statistical models for networks (i.e., graphs) can assume a SAR form where the covariance is expressed
as in Equation (3) with 𝐁 = 𝜌𝐖 and the proximity matrix 𝐖 is not known a priori. The goal in such
analyses is to infer the network structure. Thus, we seek to estimate the elements of 𝐖, which we can
do by assuming additional structure about the edges of the graph. One approach to parameterizing the
edge weights wij is to link them to an underlying latent point process (e.g., Ref. 21; see Exponential
Random Graph Models). For example, we could define wij = exp(−||𝐬i − 𝐬j||) where 𝐬i, for i = 1, … , n,
are points in a potentially multidimensional latent space  . The simplest probability model for the
points 𝐬i is a standard multivariate normal distribution. If the latent space is two-dimensional, there
will be 2n + 2 unknowns to be estimated in the SAR covariance matrix 𝚺z (i.e., all 𝐬i for i = 1, … , n,
𝜌, and 𝜎2

z ) which is 2n more than the model where the proximity matrix 𝐖 is assumed to be known,
but much less than the n2 that would be unknown if we allowed the proximity matrix 𝐖 to be fully
parameterized.
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