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A B S T R A C T

Methods for population estimation and inference have evolved over the past decade to allow
for the incorporation of spatial information when using capture–recapture study designs.
Traditional approaches to specifying spatial capture–recapture (SCR) models often rely on
an individual-based detection function that decays as a detection location is farther from an
individual’s activity center. Traditional SCR models are intuitive because they incorporate
mechanisms of animal space use based on their assumptions about activity centers. We modify
the SCR model to accommodate a wide range of space use patterns, including for those
individuals that may exhibit traditional elliptical utilization distributions. Our approach uses
underlying Gaussian processes to characterize the space use of individuals. This allows us
to account for multimodal and other complex space use patterns that may arise due to
movement. We refer to this class of models as geostatistical capture–recapture (GCR) models.
We adapt a recursive computing strategy to fit GCR models to data in stages, some of which
can be parallelized. This technique facilitates implementation and leverages modern multicore
and distributed computing environments. We demonstrate the application of GCR models by
analyzing both simulated data and a data set involving capture histories of snowshoe hares in
central Colorado, USA.

1. Introduction

Bayesian models for spatial capture–recapture (SCR) data have become popular for estimating wildlife population demograph-
ics (Royle et al., 2013a). Conventional SCR models utilize data that comprise detections of a subset of individual animals from
a wildlife population at an array of detectors (often referred to as ‘‘traps’’). By accounting for spatial structure in the underlying
movement process of the individuals, SCR models can be used to infer population abundance and density (in addition to other
quantities in generalized SCR models; Tourani 2022). We present a new model formulation that relaxes the conventional assumption
of latent activity centers while still accounting for spatially structured species distributions and space use patterns. Our model links
individual-level detection probability to latent continuous spatial random fields and thus we refer to it as a geostatistical capture–
recapture (GCR) model. The GCR model is also amenable to multi-stage computing strategies that leverage parallel computing
environments to accelerate and stabilize the implementation.

In what follows, we present the conventional SCR model formulation to introduce our statistical notation and then highlight
the components we modify in the subsequent methods section. We follow the parameter-expanded data augmentation (PX-DA)
approach of Royle and Dorazio (2012) in the SCR framework (Royle and Dorazio, 2008; Royle and Young, 2008). For a set of
traps that detect individuals at locations 𝐱𝑙 for 𝑙 = 1,… , 𝐿 during sampling periods (or occasions) 𝑗 = 1,… , 𝐽 , we observe binary
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detection/nondetection measurements for a set of 𝑛 observed individuals 𝑦𝑖,𝑙,𝑗 where 𝑖 denotes individual. It is often assumed that
𝑦𝑖,𝑙,𝑗 are independent conditioned on individual 𝑖 and trap 𝑙. Thus, the count 𝑦𝑖,𝑙 =

∑𝐽
𝑗=1 𝑦𝑖,𝑙,𝑗 represents the number of detections of

individual 𝑖 at trap 𝑙 with conditional mixture binomial distribution

𝑦𝑖,𝑙 ∼

{

Binom(𝐽 , 𝑝𝑖,𝑙) , 𝑧𝑖 = 1
0 , 𝑧𝑖 = 0

, (1)

here 𝑧𝑖 is a latent population membership indicator for 𝑖 = 1,… ,𝑀 , with 𝑀 chosen so that it provides a realistic upper bound for
population abundance (usually 𝑀 ≫ 𝑛). In this type of PX-DA scenario, the data are augmented with all-zero capture histories such
that 𝑦𝑖,𝑙 = 0 for all 𝑖 > 𝑛 and the latent indicators are modeled as 𝑧𝑖 ∼ Bern(𝜓) (Royle, 2009).

Most formulations of SCR models account for heterogeneity in detection probability 𝑝𝑖,𝑙 by relating it to the distance between
n unobserved individual activity center 𝐜𝑖 and the trap location 𝐱𝑙 such that

𝑔(𝑝𝑖,𝑙) = 𝛼 + 𝛽 ⋅ ‖𝐜𝑖 − 𝐱𝑙‖2 . (2)

he term 𝛼 accounts for baseline detection probability and 𝛽 (often expressed as 1∕2𝜎2) controls the rate of decay in detection
probability as the distance between activity center and trap location increases. The functional form of (2) implies a radial space
use pattern by all individuals, and this aspect of conventional SCR models has been debated (e.g., Ivan et al., 2013; Royle et al.,
2013b; Fuller et al., 2016; Efford, 2019; Sutherland et al., 2019). Furthermore, the link function 𝑔 can be specified based on the
study design or chosen based on convenience. For example, Royle and Dorazio (2008) described how the ‘cloglog’ link function may
accommodate data that arise as a censoring of counts based on multiple detections during a single time period.

Our reformulation of the SCR model uses a geostatistical representation of the detection function. The resulting GCR model
is more robust to departures from individual elliptical space use patterns. For example, Wilson et al. (2010) found that bobcat
(Lynx rufus) space use distributions could contain three distinct core areas of higher intensity use. Similarly, Kordosky et al. (2021)
observed some individual fishers (Pekania pennanti) with multiple core areas. Some bird species construct multiple nests during
breeding season which may lead to complex space use patterns (Macqueen and Ruxton, 2023). Our GCR model is flexible enough
to accommodate these types of species and individuals with irregular space use distributions.

2. Methods

2.1. Geostatistical capture–recapture (GCR) model

To generalize the SCR model, we retain the data model in (1) and develop a robust stochastic process model for the detection
probabilities 𝑝𝑖,𝑙. A common criticism of conventional SCR models is that the link function in (2) implies a homogeneous radial
space use distribution for each individual 𝑖 that may not be realistic. Extensions that allow for heterogeneity in the pattern of activity
centers 𝐜𝑖 using inhomogeneous point process models have been proposed (e.g., Royle et al., 2013b, 2018), but many studies assume
the activity centers are independent and complete spatial random such that 𝐜𝑖 ∼ Unif() for all 𝑖 (for compact study region ).

Other approaches have generalized the detection function; for example, Fuller et al. (2016) incorporated least-cost distance to
andscape features. Their approach was designed for cases when environmental characteristics that affect movement are known
e.g., river corridors; Sutherland et al. 2015), but may not be helpful when barriers or movement corridors are unobserved. Royle
t al. (2013b) developed a hybrid resource selection function (RSF) SCR model that allowed for heterogeneity in individual space
se and in the broader species distribution. The hybrid RSF-SCR approach allows the individual locations to vary according to
patially referenced covariates and a general attraction to a single activity center. Similarly, a variety of new approaches to explicitly
ccommodate fine scale animal movement in SCR models (e.g., McClintock et al., 2022) have been proposed, but may require
dditional auxiliary data sources.

Many of the aforementioned extensions to SCR models could be generalized to incorporate additional mechanisms associated
ith the processes of animal movement and space use (e.g., multiple activity centers, barriers and corridors to movement, etc.),
ut as the models become more complex they require more parameters and hence more data to learn those parameters effectively.
o increase the set of options for modeling SCR data when they are limited and ∕or the mechanisms are less well known, we offer
flexible and parsimonious stochastic model for detection probability that accommodates spatial structure and irregularity in the

pecies distribution and space use pattern together.
For a position 𝐱 of individual 𝑖, we consider the detection function 𝑝𝑖(𝐱) (for 0 < 𝑝𝑖 < 1) as a smooth stochastic process in space.

If the function 𝑝𝑖(𝐱) is proportional to the probability of an individual choosing to occur in that region of space then it could be
referred to as a resource selection probability function (RSPF) (Lele, 2009; Hooten et al., 2020) and admits the notion of animal
movement as an underlying mechanism that leads to detection in wildlife surveys (Hooten et al., 2017).

We use a Gaussian process representation to construct a model for 𝑝𝑖(𝐱) such that it exists for any position 𝐱. First, without loss
of generality, we consider a latent Gaussian process 𝑣𝑖(𝐱) with mean 𝜇 and covariance function between any two locations 𝑙 and 𝑙,
defined as

cov(𝑣𝑖(𝐱𝑙), 𝑣𝑖(𝐱𝑙)) = 𝜎2𝑅𝑙,𝑙 = 𝜎2 exp
(

−
(𝐱𝑙 − 𝐱𝑙)′(𝐱𝑙 − 𝐱𝑙)

𝜃2

)

, (3)

where this form can be generalized to accommodate any valid covariance function (e.g., the Matern class; Stein 2012). We connect
the Gaussian process to the detection probability by 𝑔(𝑝 (𝐱 )) = 𝑣 (𝐱 ) for a valid link function 𝑔(⋅) (e.g., logit, probit, etc.). By
2
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combining the SCR data model in (1) with a latent Gaussian process, we have a hierarchical zero-inflated binomial model with
𝑔(𝑝𝑖(𝐱𝑙)) = 𝑣𝑖(𝐱𝑙).

To complete the Bayesian model specification, only the spatial range (i.e., lengthscale) parameter 𝜃, mean 𝜇, and variance 𝜎2
re unknown random variables in the model. We specify a normal prior for 𝜇 such that 𝜇 ∼ N(𝜇0, 𝜎20 ), where 𝜇0 = 0 can often be
ssumed. When a probit link is selected for 𝑔, we set 𝜎2 = 1, but an inverse gamma prior for 𝜎2 is conjugate if desired. A variety
f options for prior distributions are available for 𝜃, however, one particularly useful prior from a computational perspective is the
iscrete uniform such that 𝜃 ∼ DiscUnif(𝛩) on the finite discrete support set 𝛩 (Diggle and Ribeiro Jr., 2002). By selecting a grid
f values for 𝛩 that span a range of realistic scales for the spatial structure in 𝑣𝑖 (and hence 𝑝𝑖), we can precompute and store the
atrix quantities that are necessary to implement the model. This can be done in advance of model fitting and in parallel.

.2. Recursive Bayesian implementation

A traditional MCMC algorithm can be used to fit either the original SCR or our new GCR model, but such algorithms often suffer
rom poor mixing due to the need to tune the 𝐜𝑖 updates in the case of (2) or all 𝑝𝑖,𝑙 updates in the case of our GCR model. Hooten
t al. (2023) described an approach to fit CR models using multistage algorithms that leverage parallel computing resources. They
lso demonstrated that helpful adjustments to the model components arise when considering recursive implementations. We show
hat similar strategies can be applied to fit GCR models to SCR data.

We seek a recursive Bayesian procedure that involves computational stages to fit the GCR model to data. This approach was
nspired by the meta-analytic two-stage MCMC procedure described by Lunn et al. (2013) and generalized by Hooten et al. (2021)
nd McCaslin et al. (2021) where it was referred to as ‘‘prior-proposal recursive Bayesian’’ (PPRB) computation. In general, PPRB
s a simple approach to obtain posterior inference based on a procedure with parallelizable components, but Hooten et al. (2023)
howed that it can be particularly useful for fitting CR models with heterogeneous detection probabilities.

The full Bayesian GCR model we presented in Section 2.1 results in the posterior distribution

[𝐕, 𝐳, 𝜓, 𝜇, 𝜎2, 𝜃|𝐘] ∝
( 𝑀
∏

𝑖=1

( 𝐿
∏

𝑙=1
[𝑦𝑖,𝑙|𝑝𝑖,𝑙 , 𝑧𝑖]

)

[𝑧𝑖|𝜓][𝐯𝑖|𝜇, 𝜎2, 𝜃]
)

[𝜓][𝜇][𝜎2][𝜃] , (4)

for 𝐕 ≡ (𝐯1,… , 𝐯𝑀 ), where [𝐯𝑖|𝜇, 𝜎2, 𝜃] represents the latent Gaussian process that is linked to 𝐩𝑖, and 𝐏 ≡ (𝐩1,… ,𝐩𝑀 ). We specify
the prior for 𝜓 as [𝜓] = Beta(𝛼𝜓 , 𝛽𝜓 ) with hyperparameters 𝛼𝜓 and 𝛽𝜓 either set based on prior information or to approximate a scale
prior (Link, 2013). A conventional implementation of this model using MCMC would require 𝑀 ⋅ 𝐿 Metropolis–Hastings updates,
ach of which could potentially involve proposal distributions that require tuning due to the lack of conjugacy when updating 𝑝𝑖,𝑙.

Thus, although the GCR model is more flexible than the classical SCR model, we would expect similar instability issues with the
associated MCMC algorithm. Approaches based on integrated likelihoods can sometimes be helpful (e.g., Borchers and Efford, 2008;
Efford et al., 2009; Efford, 2011; King et al., 2016) and numerical integration approaches commonly used to fit SCR models are
usually more stable, but also computationally intensive.

To remedy the aforementioned issues, we fit the GCR model following the capture–recapture recursive Bayesian implementation
proposed by Hooten et al. (2023) which is comprised of two main stages. In the first stage, we condition on the observed individual
capture histories 𝐲𝑖 for 𝑖 = 1,… , 𝑛 and marginalize over the latent process 𝐯𝑖. In the second stage, we subsample from the first
tage output using the conditional distribution for 𝑛. This procedure allows us to obtain a final MCMC sample from the posterior
istribution associated with our GCR model:

[𝜇, 𝜎2, 𝜃, 𝜓|𝐲1,… , 𝐲𝑛, 𝑛] ∝
( 𝑛
∏

𝑖=1

[

𝐲𝑖|𝜇, 𝜎2, 𝜃, 𝐲′𝑖𝟏 > 0
]

)

[𝑛|𝜇, 𝜎2, 𝜃, 𝜓][𝜇][𝜎2][𝜃][𝜓] , (5)

with component distributions as described in what follows. We show how to derive (5) in Appendix A.
For the first stage, we condition on the knowledge that the observed individuals were captured at least once which yields the

integrated data model
[

𝐲𝑖|𝜇, 𝜎2, 𝜃, 𝐲′𝑖𝟏 > 0
]

= ∫ [𝐲𝑖|𝐩𝑖, 𝐲′𝑖𝟏 > 0][𝐯𝑖|𝜇, 𝜎2, 𝜃, 𝐲′𝑖𝟏 > 0]𝑑𝐯𝑖 , (6)

where the conditional data model for 𝐲𝑖 given at least one detection is

[𝐲𝑖|𝐩𝑖, 𝐲′𝑖𝟏 > 0] =
Pr(𝐲′𝑖𝟏 > 0|𝐲𝑖,𝐩𝑖)[𝐲𝑖|𝐩𝑖]
∑

𝐲 Pr(𝐲′𝟏 > 0|𝐲,𝐩𝑖)[𝐲|𝐩𝑖]
, (7)

=
1{𝐲′𝑖𝟏>0}

[𝐲𝑖|𝐩𝑖]
∑

𝐲 1{𝐲′𝟏>0}[𝐲|𝐩𝑖]
, (8)

=
1{𝐲′𝑖𝟏>0}

[𝐲𝑖|𝐩𝑖]

1 −
∏𝐿

𝑙=1(1 − 𝑝𝑖,𝑙)𝐽
. (9)

he denominator in (9) is equal to 1 − [𝐲 = 𝟎|𝐩𝑖] for the binomial model [𝐲𝑖|𝐩𝑖] =
∏𝐿

𝑙=1[𝑦𝑖,𝑙|𝑝𝑖,𝑙], such that [𝑦𝑖,𝑗 |𝑝𝑖,𝑙] ≡ Binom(𝐽 , 𝑝𝑖,𝑙).
The process model for 𝐯𝑖 conditioned on at least one detection for individual 𝑖 is

[𝐯𝑖|𝜇, 𝜎2, 𝜃, 𝐲′𝑖𝟏 > 0] =
Pr(𝐲′𝑖𝟏 > 0|𝐩𝑖, 𝜇, 𝜎2, 𝜃)[𝐯𝑖|𝜇, 𝜎2, 𝜃]

′ 2 2
, (10)
3

∫ Pr(𝐲𝑖𝟏 > 0|𝐩, 𝜇, 𝜎 , 𝜃)[𝐯|𝜇, 𝜎 , 𝜃]𝑑𝐯
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𝑙=1(1 − 𝑝𝑖,𝑙)

𝐽 )[𝐯𝑖|𝜇, 𝜎2, 𝜃]

∫ (1 −
∏𝐿

𝑙=1(1 − 𝑝𝑙)𝐽 )[𝐯|𝜇, 𝜎2, 𝜃]𝑑𝐯
, (11)

which together with the conditional data model implies the integrated data model in (6) can be expressed as

[

𝐲𝑖|𝜇, 𝜎2, 𝜃, 𝐲′𝑖𝟏 > 0
]

=
∫ 1{𝐲′𝑖𝟏>0}

[𝐲𝑖|𝐩𝑖][𝐯𝑖|𝜇, 𝜎2, 𝜃]𝑑𝐯𝑖

∫ (1 −
∏𝐿

𝑙=1(1 − 𝑝𝑙)𝐽 )[𝐯|𝜇, 𝜎2, 𝜃]𝑑𝐯
. (12)

Thus, in the first computing stage, we draw a sample for 𝜇, 𝜎2, 𝜃, and 𝜓 , from the temporary posterior which is proportional to
( 𝑛
∏

𝑖=1

[

𝐲𝑖|𝜇, 𝜎2, 𝜃, 𝐲′𝑖𝟏 > 0
]

)

[𝜇][𝜎2][𝜃][𝜓] , (13)

while noting that 𝜓 does not appear in the integrated data model and thus a Monte Carlo (MC) sample can be drawn from its prior
[𝜓] directly.

In the second computing stage, we sample from the full posterior distribution in (5) using the first stage temporary posterior as
a proposal for 𝜇, 𝜎2, 𝜃, and 𝜓 . This results in a block update for all parameters using the Metropolis–Hastings ratio

[𝑛|𝜇(∗), 𝜎2(∗), 𝜃(∗), 𝜓 (∗)]
[𝑛|𝜇(𝑘−1), 𝜎2(𝑘−1), 𝜃(𝑘−1), 𝜓 (𝑘−1)]

, (14)

for MCMC iterations 𝑘 = 1,… , 𝐾 and where the (∗) indicates a random draw from the first stage sample with replacement.
The conditional distribution for 𝑛 in (5) and (14) is

[𝑛|𝜇, 𝜎2, 𝜃, 𝜓] = ∫ [𝑛|𝐏, 𝜓][𝐕|𝜇, 𝜎2, 𝜃]𝑑𝐕 , (15)

where [𝐕|𝜇, 𝜎2, 𝜃] =
∏𝑀

𝑖=1[𝐯𝑖|𝜇, 𝜎
2, 𝜃] is a product of multivariate Gaussian densities. The crux of this second computing stage lies in

the evaluation of (15). We need to approximate the integral, either through numerical quadrature or MC integration by sampling
from the multivariate Gaussian density. However, the conditional distribution in (15) can be computed in parallel and stored for
recall as necessary in the first and second stage of the procedure. Also, Hooten et al. (2023) showed that [𝑛|𝐏, 𝜓] could be specified
as Poisson with intensity ∑𝑀

𝑖=1 𝜓(1 −
∏𝐿

𝑙=1(1 − 𝑝𝑖,𝑙)𝐽 ). This Poisson model for 𝑛 is much more computationally efficient to evaluate
than the Poisson-binomial model that is implied in the original SCR model. The Poisson model specification for [𝑛|𝐏, 𝜓] also yields
early identical results as 𝑀 → ∞, thus we retain it in our implementation of the model that follows.

.3. Inference and prediction

In terms of statistical inference, the GCR model allows us to quantify posterior characteristics of the parameters 𝜇, 𝜎2, 𝜃, and
. However, most wildlife biologists are interested in inference associated with abundance 𝑁 , the total number of individuals in

he study population. Following Hooten et al. (2023), we sample the number of undetected individuals in our study population as
(𝑘)
0 ∼ Pois(𝜓̄ (𝑘)(𝑀 −𝑛)) and let 𝑁 (𝑘) = 𝑛+𝑁 (𝑘)

0 (for 𝑘 = 1,… , 𝐾) as a posterior realization of abundance. The Poisson rate parameter
an be computed as

𝜓̄ (𝑘) = ∫

(

𝜓 (𝑘) ∏𝐿
𝑙=1(1 − 𝑝𝑙)

𝐽

𝜓 (𝑘) ∏𝐿
𝑙=1(1 − 𝑝𝑙)𝐽 + 1 − 𝜓 (𝑘)

)

[𝐯|𝜇(𝑘), 𝜎2(𝑘), 𝜃(𝑘)]𝑑𝐯 . (16)

The parenthetical term in (16) is the full-conditional probability of membership for an undetected individual in our population.
There are 𝑀 − 𝑛 potential undetected individuals, thus we have the Poisson intensity 𝜓̄(𝑀 − 𝑛). Posterior mean abundance can be
computed using Monte Carlo integration as: E(𝑁|𝐘) ≈

∑𝐾
𝑘=1𝑁

(𝑘)∕𝐾.
This procedure for inferring abundance can be interpreted similarly to the non-spatial CR setting. Our estimate of 𝑁 represents

the capturable individuals in our population under study; that is, the population susceptible to our trap array during the study. Our
geostatistical model for detection probability accounts for individuals that may spend time outside the trap array, but unlike most
other SCR models, it does not depend on latent activity centers explicitly (nor the associated assumptions about circular space use
patterns).

Royle and Dorazio (2008) presented an excellent review of approaches for estimating effective sample area and formulations
of density (i.e., abundance per unit area). Similar approaches could be developed for the GCR model setting in cases where
density, rather than abundance is of interest. We focus on space use patterns in what follows and the ability of the GCR to
account for multimodel and asymmetric characteristics of space use that may arise in different ways. Thus, we estimate trap-specific
detection probability 𝑝𝑖,𝑙 for all individuals in the population and infer the individual-level space use patterns (i.e., the utilization
distributions; Worton 1989) using the posterior predictive distribution of 𝐯̃𝑖. We first obtain an MCMC sample of 𝐯𝑖 from its full-
conditional distribution based on the original joint distribution in (4), then sample 𝐯̃𝑖 from its predictive full-conditional distribution
given 𝐯𝑖 by composition sampling with kriging (Appendix B). The full-conditional distribution of 𝐯𝑖 is

[𝐯𝑖|⋅] ∝ [𝐲𝑖|𝐩𝑖][𝐯𝑖|𝜇, 𝜎2, 𝜃] , (17)

where [𝐲𝑖|𝐩𝑖] =
∏𝐿

𝑙=1[𝑦𝑖,𝑙|𝑝𝑖,𝑙] is a product of binomial distributions and [𝐯𝑖|𝜇, 𝜎2, 𝜃] is multivariate normal. Then, given 𝐯𝑖, the
predictive full-conditional for 𝐯̃𝑖 is

[𝐯̃ |𝜇, 𝜎2, 𝜃, 𝐯 ] = N(𝜇𝟏 + 𝜮̃𝜮−1(𝐯 − 𝜇𝟏), ̃̃𝜮 − 𝜮̃𝜮−1𝜮̃′) , (18)
4
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where 𝜮̃ is the cross-covariance matrix between the predictions and observed data and ̃̃𝜮 is the covariance matrix associated with
the predictions.

To sample 𝐯𝑖 from (17), there are a variety of approaches including standard MCMC with conditional Metropolis–Hastings up-
dates, elliptical slice sampling (Murray et al., 2010), Hamiltonian Monte Carlo (Neal, 1992), and auxiliary variable approaches (Chib
and Greenberg, 1998). We used this latter approach in practice (Albert and Chib, 1993) to obtain Markov chains for 𝐯𝑖 (via auxiliary
ariables) based on each parameter set 𝜇(𝑘), 𝜎2(𝑘), 𝜃(𝑘), for 𝑘 = 1,… , 𝐾 (Appendix B). Alternatively, this can be achieved with

automated software (e.g., JAGS, NIMBLE, STAN; Plummer 2003, de Valpine et al. 2017, Stan Development Team 2023) but may be
slower and not result in well-mixed chains.

To obtain inference for the individual-level utilization distributions we can use MC integration to compute
∑𝐾
𝑘=1 𝑝̃

(𝑘)
𝑖 (𝐬̃𝑖)∕𝐩̃

′(𝑘)
𝑖 𝟏

𝐾
, (19)

where 𝐩̃(𝑘)𝑖 = 𝛷(𝐯̃(𝑘)) and 𝑝̃(𝑘)𝑖 (𝐬̃𝑖) is the 𝑘th posterior realization of detection probability at location 𝐬̃𝑖. For a fine grid of locations,
this results in a map of individual level posterior space use. However, the spatial pattern of (19) is the same as that of the posterior
mean of 𝐩̃𝑖 for individual 𝑖. Thus, we present the latter in the applications that follow.

3. Applications

3.1. Simulation

We simulated capture–recapture data for a square trap array of 𝐿 = 64 equally spaced detectors on the unit square (Fig. 1). We
used a multi-activity center SCR model to simulate the data. This simulation model was based on a superpopulation of 𝑀 = 200
individuals, with 𝜓 = 0.2 membership probability which resulted in 𝑁 = 29 individuals in our simulated population. We simulated
the number of activity centers for each individual from a zero-truncated Poisson distribution with intensity parameter equal to 0.5
and locations of the latent activity centers were sampled as a complete spatial random point process in a square buffered region
centered on the unit square study area  containing our trap locations 𝐱𝑙 for 𝑙 = 1,… , 𝐿. The buffered region extended 0.5 units
beyond the trap array in each direction to allow the activity centers for some individuals to occur outside the trap array boundary
. We used a maximum of the complementary log–log (‘cloglog’) link for the detection function from (2) over all activity centers
at each trap location with 𝛼 = −1 and 𝛽 = −50. These simulated data resulted in a mixture of unimodal and multimodal space use
distributions for the 𝑁 individuals, with 𝑛 = 13 individuals observed (Fig. 1).

We fit the GCR model as described in the Methods section with priors specified as 𝜇 ∼ N(0, 4), 𝜓 ∼ Beta(1, 1), and 𝜃 ∼ DiscUnif(𝛩)
with support on the set 𝛩 ≡ {max(𝐃)∕20,… ,max(𝐃)∕2} of equally spaced values of 𝜃. The matrix 𝐃 contains the pairwise distances
among traps in our study area and max(𝐃) =

√

2. We set the superpopulation size to 𝑀 = 200 individuals for our study area and
2 = 1.

We used the multistage computing strategy to fit the GCR model with 𝐾 = 100000 MCMC iterations. Stage one required 61.4 min
nd stage two required 1.2 min. After fitting the model, post hoc sampling of the abundance 𝑁 required 5.4 min and then we used
Gibbs sampler to obtain an MCMC sample for 𝐏 for the simulated individuals 9 and 12. A Gibbs sampler required approximately
6 s for each individual. All computation was performed on a machine with a 24-core 3.6 GHz processor and 192 MB of RAM.

The GCR model fitted to the simulated data resulted in the marginal posterior distributions shown in Fig. 2. Fig. 2a shows a
mall estimated 𝜇 which implies that the space use throughout most of the study area is low for a given individual. If the species
ccupied more of the study area, the parameter 𝜇 could increase to accommodate that type of space use.

The marginal posterior mean for population abundance 𝑁 was 28.5 (compared with the true simulated value 𝑁 = 29; Fig. 2d).
he 95% marginal posterior credible interval for abundance 𝑁 was (15, 55) and the marginal posterior quartiles were 21 and 34.

Fig. 3 shows the posterior mean (and posterior standard deviation) for the implied space use distribution for two observed
ndividuals in our simulated data; individual 9 illustrates a bimodal space use pattern and individual 12 illustrates a unimodal
pace use pattern. For comparison, we also fit the traditional SCR model with detection function in (1) to the same simulated data
Appendix C), but with the buffer included in the state-space for the latent activity center point process. The results indicate a
nimodal symmetric space use pattern between the two sets of detections for individual 9 (Fig. 7) rather than the bimodal space
se pattern resulting from a fit of the GCR model.

.2. Snowshoe hare

We applied the GCR model to analyze a set of spatially-explicit capture histories of 𝑛 = 13 snowshoe hares in Colorado, USA.
he data contain counts of detections over 𝐽 = 5 sampling occasions at 𝐿 = 84 trap locations (Fig. 4) and were collected during
inter 2007 (Ivan et al., 2014). We defined the study area as the convex hull of the trap locations for this analysis. Exploratory
nalysis of these data suggest that certain individuals may not use space in a way that meets the assumptions of a standard SCR
odel because their detections occurred farther apart than those for most other individuals in the study; for example, individuals
and 5 in Fig. 4.

We fit the GCR model as described in the Methods section with priors specified as 𝜇 ∼ N(0, 4), 𝜓 ∼ Beta(1, 1), and 𝜃 ∼ DiscUnif(𝛩)
with support on the set 𝛩 ≡ {max(𝐃)∕20,… ,max(𝐃)∕2} of equally spaced values, where 𝐃 is the pairwise distance matrix among
5
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Fig. 1. SCR data for 𝑛 = 13 simulated individuals over an 8 × 8 array of 𝐿 = 64 traps spaced 0.143 units apart in a unit square study area. Positions of numbers
represent trap locations in the array and values correspond to the number of detections for each individual at each trap (cases with 𝑦𝑖,𝑙 > 0 shown in bold large
font). Study area shown as a dashed box.

traps in our study area. We set the superpopulation size to 𝑀 = 200 individuals for our study area and 𝜎2 = 1 to ensure the other
parameters were identifiable.

We used 𝐾 = 100000 MCMC iterations to fit the GCR model. This required 73.3 min for stage one, and only 1.4 min for stage
two of the recursive procedure. To sample the abundance 𝑁 required 7.2 min and to sample from the full-conditional for 𝐯 for an
individual required approximately 54 s using a Gibbs sampler. All computation was performed on a machine with a 24-core 3.6 GHz
processor and 192 MB of RAM.

The GCR model fitted to the snowshoe hare data resulted in marginal posterior distributions shown in Fig. 5. Fig. 5 indicates
that a small 𝜇 and large 𝜃 were needed to result in adequate smoothness of the space use distribution throughout the study area.
Furthermore, the marginal posterior 95% credible interval for abundance 𝑁 was (16, 88) and the marginal posterior quartiles were
24 and 43.
6
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Fig. 2. Marginal posterior distributions for GCR parameters 𝜇 (panel a), 𝜃 (panel b), 𝜓 (panel c), and 𝑁 (panel d) resulting from our simulated data. Panel d
shows both the observed number of individuals 𝑛 (dotted vertical) and true number of individuals 𝑁 (dashed vertical).

Fig. 3. Posterior mean and standard deviation of 𝑝̃ for simulated individuals 9 and 12 in our study area. Count of detections for each trap at 𝐱𝑙 for 𝑙 = 1,… , 64
shown as numbers.
7
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Fig. 4. SCR data for 𝑛 = 13 snowshoe hare individuals over a 7 × 12 array of 𝐿 = 84 traps spaced 50 m apart. Positions of numbers represent trap locations in
array and values correspond to the number of detections for each individual at each trap (cases with 𝑦𝑖,𝑙 > 0 shown in bold). Study area is shown as a dashed
box.

For example, Fig. 6 shows the posterior mean (and posterior standard deviation) for the implied space use distribution for two
observed individuals in our study that have clearly bimodal space use patterns. These types of individual-level detection probability
patterns (and hence space use patterns) (Fig. 6, left column) would not be possible under the conventional SCR model.

4. Discussion

We presented a formulation of spatial capture–recapture models that allows for structured heterogeneity in detection probability
over the study area. Our approach assumes the detection probability surface (and hence implied space use distribution) can be
characterized by a GP. We refer to this new CR model formulation as ‘‘geostatistical’’ to associate it with the previous studies that
8
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Fig. 5. Marginal posterior distributions for GCR parameters 𝜇 (panel a), 𝜃 (panel b), 𝜓 (panel c), and 𝑁 (panel d). Panel d shows the observed number of
individuals 𝑛 (dotted vertical).

Fig. 6. Posterior mean and standard deviation of 𝑝̃ for snowshoe hare individuals 1 and 5 in our study area (Fig. 4). Count of detections for each trap at 𝐱𝑙 for
𝑙 = 1,… , 84 shown as numbers.

have used GPs for modeling other ecological and environmental processes. While there are a variety of approaches to fitting such
models to data, we showed how to leverage multicore computing resources based on a multistage computing strategy. By extending
the procedure described by Hooten et al. (2023) to accommodate latent GPs, we showed that the GCR model was able to recover
total abundance and detection probability patterns that are not unimodal using simulated data.

We also fit the GCR model to capture–recapture data on snowshoe hares in Colorado, USA. Some of the capture histories
associated with our observed snowshoe hares showed evidence of multimodality and asymmetric detection probability patterns.
The posterior predictive space use distributions we obtained by fitting our GCR model confirmed this.

Whereas conventional SCR models are specified based on an assumption about latent point processes, our approach relies
on the flexibility of latent continuous spatial processes. We appreciate the mechanism involved in the conventional SCR model
9
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specifications and our GCR model lacks that direct connection to an explicit activity center for each individual. However, we also
see the need for additional flexibility in some cases where the space use distributions may not adhere to single elliptical shapes.
Furthermore, the latent GP is not without mechanistic connections. For example, in ongoing work, we are exploring the use of
multi-output GPs (Alvarez et al., 2012) in GCR models that can account for dependence among individuals explicitly. For example,
territorial species may use space that is unoccupied by conspecifics. Therefore we expect those individual space use distributions to
be negatively correlated with each other. Our GCR model allows for both negative and positive interactions among individuals to
be accounted for using the same types of spatial statistical approaches that have been used to account for dependence among other
multivariate spatial processes in nature (e.g., coregionalization and cokriging approaches; Journel and Huijbregts, 1978; Higdon,
2002).

For those interested in multiscale ecological processes, a simpler extension of the GCR approach could facilitate separate inference
or individual-based space use and species distribution by allowing for a shared spatially heterogeneous mean function in the latent
P across individuals. That mean function would then represent species distribution due to environmental factors that relate to the

undamental niche. Then the individual-specific spatial random field could account for resource selection and movement at the finer
cale.

In fact, a rapidly growing area of development in SCR modeling involves the use of telemetry data (Hooten et al., 2017) coupled
ith CR data to account for individual-level movement patterns in abundance estimation (e.g., McClintock et al., 2022). Our GCR
odel could be paired with a telemetry data model in a similar way when both sources of data exist.
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ppendix A

To show how the form of model that involves conditioning on observed sample size 𝑛 in (5) arises, we demonstrate with a simple
capture–recapture (CR) model for brevity in what follows. Extensions to the case where detection probability varies are described
in Hooten et al. (2023).

Suppose we have a CR model with 𝑦𝑖 modeled as in (1) but with homogeneous detection probability 𝑝 and population membership
ndicator 𝑧𝑖 ∼ Bern(𝜓) for 𝑖 = 1,… ,𝑀 . In this case, using PX-DA, 𝑦𝑖 = 0 for undetected individuals 𝑖 = 𝑛 + 1,… ,𝑀 . This results

in two sets of data: The original observed data 𝐲1∶𝑛 ≡ (𝑦1,… , 𝑦𝑛)′ and the augmented zero data 𝐲(𝑛+1)∶𝑀 ≡ (𝑦𝑛+1,… , 𝑦𝑀 )′. If we
arginalize over 𝑧𝑖 to yield the ‘‘integrated’’ data model [𝑦𝑖|𝑝, 𝜓], then we can write the posterior distribution of interest as

[𝑝, 𝜓|𝐲1∶𝑛, 𝐲(𝑛+1)∶𝑀 , 𝑛] = [𝐲(𝑛+1)∶𝑀 |𝑝, 𝜓, 𝐲1∶𝑛, 𝑛][𝑝, 𝜓|𝐲1∶𝑛, 𝑛] , (20)

here we condition on 𝑛 as an auxiliary source of data because it is unknown until observed as part of the CR survey, like 𝐲1∶𝑛. The
irst term on the right-hand side in the above expression is irrelevant because the elements of 𝐲(𝑛+1)∶𝑀 are always known to equal
ero when 𝑛 is observed. Thus, the second term in the above expression can be factored as

[𝑝, 𝜓|𝐲1∶𝑛, 𝑛] ∝
( 𝑛
∏

𝑖=1
[𝑦𝑖|𝑝, 𝑦𝑖 > 0]

)

[𝑛|𝑝, 𝜓][𝑝][𝜓] , (21)

here the conditional distribution [𝑦𝑖|𝑝, 𝑦𝑖 > 0] is a zero-truncated binomial and the conditional distribution [𝑛|𝑝, 𝜓] is either Poisson-
inomial or Poisson depending on model assumptions because 𝑛 is the sum of binary variables indicating which individuals in the
uperpopulation were detected. In our GCR model, the detection probability is heterogeneous and stochastic, thus the conditional
istribution for 𝑛 is obtained by marginalizing over 𝑝.

In terms of implementation of this simple model, for the first stage, we can use an MCMC algorithm with Metropolis–Hastings
pdates based on a proposal for 𝑝 from its prior (or a random walk). The membership probability 𝜓 can be Monte Carlo sampled
irectly from its prior because it does not appear in the first-stage conditional data model. In the GCR model, we only have two
arameters 𝜇 and 𝜃. We used a Gaussian random-walk proposal for 𝜇 and a discrete random-walk proposal for 𝜃 and then a block
pdate for both parameters simultaneously.

ppendix B

To sample 𝐯𝑖 (and hence 𝐩𝑖) from its full-conditional distribution after implementing computing stages 1 and 2, we used a Gibbs
ampler following a reparameterization of the distribution to include auxiliary variables (Albert and Chib, 1993). This approach
as stable and fast relative to sampling using automated software.

As a brief summary of the approach, to sample from the full-conditional distribution of 𝐯𝑖, we recognize that we simply need to
se MCMC to fit the model 𝑦𝑖,𝑙 ∼ Binom(𝐽 , 𝑝𝑖,𝑙) where 𝐯𝑖 = 𝛷−1(𝐩𝑖) ∼ N(𝜇𝟏,𝐑(𝜃)) assuming that 𝜇 and 𝜃 are known (from the stage
MCMC output). It is not necessary to sample 𝐯𝑖 to fit the broader GCR model because it has been marginalized out in stages 1

nd 2, but if we desire inference about the detection probability surface for certain individuals (e.g., Figs. 3 and 6), we can obtain
(𝑘)
10

sample for 𝐯𝑖 post hoc. We can do this by fitting the model described above while conditioning on each realization of 𝜇 and
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Fig. 7. Posterior mean and standard deviation of 𝑝̃ from the traditional SCR model for simulated individuals 9 and 12 in our study area. Count of detections
for each trap at 𝐱𝑙 for 𝑙 = 1,… , 64 shown as numbers. The sampled region is buffered to allow for individuals with activity centers outside the trap array.

𝜃(𝑘) from the stage 2 output and retain a single realization of 𝐯(𝑘)𝑖 (e.g., the last realization in a short chain after burn-in) for each
𝑘 = 1,… , 𝐾.

For a specific individual 𝑖 and conditional on 𝜇 and 𝜃, we need only fit a Bayesian binomial generalized linear model (GLM) with
probit link function 𝛷−1(𝐩𝑖) = 𝜇𝟏+ 𝜼𝑖 with prior 𝜼𝑖 ∼ N(𝟎,𝐑(𝜃)). Thus, the random vector 𝜼𝑖 can be treated as a set of parameters in
this reduced model. Alternatively, we can write 𝜼𝑖 = 𝐇𝜶𝑖 where 𝜶𝑖 ∼ N(𝟎,𝜦) and 𝐇 is a matrix of spatial basis functions (e.g., we
used eigenvectors resulting from the spectral decomposition 𝐑(𝜃) = 𝐇𝜦𝐇′ and 𝜦 is a diagonal matrix of associated eigenvalues).
This latter linear model formulation is not strictly necessary but could be used to reduce dimensionality to improve computation
time by truncating the matrix 𝐇 and associated dimension of the spectral coefficients 𝜶𝑖. Based on the probit link function and
multivariate normal prior for 𝜶𝑖, we can write the model for a given individual of interest 𝑖 as:

𝑦𝑖,𝑙,𝑗 =

{

0, 𝑧𝑖,𝑙,𝑗 ≤ 0
1, 𝑧𝑖,𝑙,𝑗 > 0

, (22)

where 𝑧𝑖,𝑙,𝑗 ∼ N(𝜇 + 𝐡′𝑙𝜶𝑖, 1) with prior 𝜶𝑖 ∼ N(𝟎,𝜦) for 𝑗 = 1,… , 𝐽 sampling occasions and 𝐡′𝑙 is the 𝑙th row vector of 𝐇. Jointly for
an individual of interest 𝑖, we can write the model for the 𝐿 × 1 latent random vector 𝐳𝑖,𝑗 as

𝐳𝑖,𝑗 ∼ N(𝜇𝟏 +𝐇𝜶𝑖, 𝐈) . (23)

This results in the following tractable full-conditional distributions

[𝑧𝑖,𝑙,𝑗 |⋅] =

{

TN(𝜇 + 𝐡′𝑙𝜶𝑖, 1)
0
−∞ , 𝑦𝑖,𝑗,𝑙 = 0

TN(𝜇 + 𝐡′𝑙𝜶𝑖, 1)
∞
0 , 𝑦𝑖,𝑗,𝑙 = 1

, (24)

[𝜶𝑖|⋅] = N((𝐽𝐇′𝐇+𝜦)−1(𝟏⊗𝐇)′(𝐳𝑖 − 𝜇𝟏), (𝐽𝐇′𝐇+𝜦)−1) , (25)

where 𝐳𝑖 = (𝑧𝑖,1,1, 𝑧𝑖,2,1,… , 𝑧𝑖,𝑙,𝑗 ,… , 𝑧𝑖,𝐿−1,𝐽 , 𝑧𝑖,𝐿,𝐽 )′. These full-conditional distributions can be sampled from sequentially in our
secondary MCMC algorithm and we obtain the realization 𝐯(𝑘) = 𝜇𝟏+𝐇𝜶(𝑘) as a derived quantity. To predict 𝐯̃ at a grid of non-trap
11
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𝑝

locations throughout the study area, we sample from its predictive full-conditional distribution (18) as described in the Inference
and Prediction section, then transform to 𝐩̃(𝑘)𝑖 and use Monte Carlo integration to obtain posterior moments (i.e., the maps in Figs. 3
and 6).

Appendix C

To compare inferred space use patterns, we fit the traditional SCR model from (1) to the simulated data shown in Fig. 1 using
JAGS. We used the spatial domain from the simulation (extended 0.5 units beyond the trap array to account for activity center that
may fall outside the trap array) and specified vague Gaussian priors for the SCR parameters 𝛼 and 𝛽, and a uniform prior for 𝜓 . We
also used the same superpopulation size 𝑀 = 200.

The GCR model is able to account for irregular detection probability patterns in space, but the SCR model is not. The results of
fitting the classical SCR model to our data can be compared with those from the GCR model in terms of the detection probability
̃ for a grid of prediction locations.

We note that the predicted detection probability function places the center of probability mass between the two clusters of
detections for individual 9 (Fig. 7). The radial shape evident in the individual space use patterns is a characteristic of the SCR
model and allows it to be powerful when the underlying detection probability meets the assumptions (e.g., for individual 12), but
as in this case with simulated individual 9, it may not appropriately represent more complicated patterns (as compared with the
GCR results presented in Fig. 3). From a model checking perspective (e.g., Conn et al., 2018), we could omit the classical SCR model
from our set of candidate models based on these results.
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