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a b s t r a c t

A suite of statistical methods are used to study animal move-
ment. Most of these methods treat animal telemetry data in
one of three ways: as discrete processes, as continuous pro-
cesses, or as point processes. We briefly review each of these
approaches and then focus in on the latter. In the context of point
processes, so-called resource selection analyses are among the
most common way to statistically treat animal telemetry data.
However, most resource selection analyses provide inference
based on approximations of point process models. The forms of
these models have been limited to a few types of specifications
that provide inference about relative resource use and, less
commonly, probability of use. For more general spatio-temporal
point process models, the most common type of analysis often
proceeds with a data augmentation approach that is used to
create a binary data set that can be analyzed with conditional
logistic regression. We show that the conditional logistic regres-
sion likelihood can be generalized to accommodate a variety of
alternative specifications related to resource selection. We then
provide an example of a case where a spatio-temporal point
process model coincides with that implied by a mechanistic
model for movement expressed as a partial differential equation
derived from first principles of movement. We demonstrate that
inference from this form of point process model is intuitive (and
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could be useful for management and conservation) by analyzing
a set of telemetry data from a mountain lion in Colorado, USA,
to understand the effects of spatially explicit environmental
conditions on movement behavior of this species.

Published by Elsevier B.V.

1. Introduction

The dynamics associated with animals moving in complex environments are critical to the
natural function of the individual, species, and ecosystem in which animals reside (Nathan et al.,
2008). To study movement dynamics, a wide variety of statistical models have been developed to
analyze animal telemetry data (Hooten et al., 2017). In general, these statistical models are based on
perspectives of movement and data generating mechanisms that fall into 3 main classes: discrete-
time processes, continuous-time processes, and point processes (Hooten and Johnson, 2019). These
same three types of processes are also the main subject of study in spatial statistics (Cressie, 1993)
and are thus familiar to most spatial statisticians. Of course, when considered in time explicitly,
the trajectories of moving animals are spatio-temporal processes and it is natural to account for
temporal dependence in animal movement models just as we would when modeling other dynamic
processes (Cressie and Wikle, 2011). The temporal dependence in telemetry data can provide
insights about important biological and ecological dynamic processes (Hooten et al., 2019).

In what follows, we review the three main classes of statistical models that are used to analyze
animal telemetry data. We then delve more deeply into point process models and the commonly
used implementations of them. Finally, we show that an unusual form of point process model arises
naturally as a result of a partial differential equation that describes the movement of animals based
on mechanistic first principles. We demonstrate how to fit the resulting point process model to data
using a popular conditional regression procedure.

1.1. Overview of statistical models for animal movement

We assume the true position of an individual animal is measured and expressed as s(ti) for time
ti and with support s(ti) ∈ S (often a subset of two-dimensional geographic space) for i = 1, . . . , n
observation times. A variety of devices and approaches are used to observe the animal position s(ti)
(e.g., Cooke et al., 2004) and the associated measurement error can be accounted for in a hierarchical
framework (e.g., Brost et al., 2015). For the purposes of this exposition, we assume the measurement
error is small enough to be negligible, such as that arising from high-quality global positioning
system (GPS) telemetry devices (e.g., Cagnacci et al., 2010).

Discrete-time models for movement most closely follow methods used in time series analysis.
For example, following Hooten et al. (2017), a temporal vector autoregressive model for the position
s(ti) can be expressed as

s(ti) = (I − A)c + As(ti−1) + ε(ti) , (1)

where, I is a 2 × 2 identity matrix and, for now, we assume that the time lag between observations
∆t = ti − ti−1 is constant and the error term ε(ti) ∼ N(0,Σ ). In the example model in (1), the
2 × 1 vector c represents the activity center for the animal in geographic space and the 2 × 2
propagator matrix A controls the dynamics of the discrete-time trajectory. Anderson-Sprecher and
Ledolter (1991) described this form of discrete-time movement model and various extensions.

Similar models were developed for continuous-time movement and they are often based on
Weiner processes that are represented as stochastic differential equations (SDEs). Both the discrete-
and continuous-time models have ‘‘integrated’’ forms that account for additional smoothness in the
trajectories (e.g., Jonsen et al., 2005; Johnson et al., 2008a; Hooten and Johnson, 2017).
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Accounting for heterogeneity in movement dynamics has been a strong theme in contemporary
movement modeling (Hooten et al., 2018). Morales et al. (2004) proposed representing the velocity
associated with the changes in position in polar coordinates and using the resulting step-length
and turning angle as response variables in a variety of statistical mixture models. These mixture
models cluster portions of the animal trajectories into interpretable groups that can be associated
with distinct animal behaviors (e.g., resting, foraging, transit). This class of discrete-time movement
models is now most commonly implemented using a hidden Markov model framework (Zucchini
and MacDonald, 2009) and a variety of software exists to fit these models to data (e.g., McClintock
and Michelot, 2018).

The final class of animal movement models is based on point processes from spatial statistics.
However, it appears that much of the methodology was developed somewhat independently in
wildlife ecology (Manly et al., 2002) because, while the model forms are the same, the terminology
varies across fields. Point process models treat a set of points as the response variables and account
for heterogeneity in the space from which the points arose using a spatially varying density function.
The density function for a point process is often expressed as a weighted distribution (Patil and Rao,
1977) where, for example, a trajectory observation arises as

s(ti) ∼
g(s(ti), θ)∫
S g(s, θ)ds

, (2)

where the function g is non-negative and referred to as the resource selection function (RSF). Thus,
point process models for telemetry data are called RSF models by wildlife ecologists.

The denominator in (2) presents a challenge for implementing point process models because the
integral is often intractable. Thus, logistic (or Poisson) regression procedures have been developed
to approximate the likelihood and fit these models to data using existing statistical software. We
elaborate on these approximation methods for fitting point process models in the next section.

Point process models are popular among wildlife ecologists because they are easy to implement
and provide inference about the selection of ‘‘resources’’ (represented as covariates in the RSF)
thereby connecting the moving animal to its environment. Continuous-time models based on SDEs
have also been developed to provide inference about how individual movement corresponds to
changes in the environment (e.g., Preisler et al., 2004; Brillinger, 2010; Hooten et al., 2019), but
they can be challenging to implement by practitioners and are thus less popular.

When considering the temporal dynamics of a movement trajectory, spatio-temporal point
process models (STPPs) have been adapted to the animal movement setting (e.g., Johnson et al.,
2008b, 2013; Brost et al., 2015). In some cases, STPPs have been implemented using conditional
logistic regression procedures (Fortin et al., 2005); in the animal movement setting, the use of
conditional logistic regression to fit approximate point process models is often referred to as step-
selection analysis. We focus on spatio-temporal point process models and their implementation in
what follows.

2. Methods

2.1. STPPs for animal movement

Conditioning on the total number of observations (n), a STPP model for the observed positions
s(ti) is often expressed using a weighted distribution (Patil and Rao, 1977) representation as

[s(ti)|s(ti−1), θ] =
g(w(s(ti)), θ)fi(s(ti)|s(ti−1))∫
S g(w(s), θ)fi(s|s(ti−1))ds

, (3)

where the bracket notation ‘[·]’ corresponds to a probability distribution (Gelfand and Smith, 1990)
and w(s) represents a vector of covariates at position s. The functions g and f in (3) are non-negative
and often referred to as the ‘‘selection’’ (as in the RSF models described previously) and ‘‘availability’’
functions, respectively, in the animal ecology literature (Hooten et al., 2017). When the availability
function fi(s(ti)|s(ti−1)) is specified as a uniform probability density function over S , then the model
in (3) simplifies to the RSF model previously described (Manly et al., 2002; Johnson et al., 2006).
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The traditional RSF model assumes that the observed positions arise conditionally independent of
one another. Most commonly, the RSF model is fit using a data augmentation strategy where a set
of indicators serve as the response variable in a binary regression. When the RSF is specified as
g(w(s(ti)), θ) ≡ ew

′(s(ti))θ , logistic regression is implied and can be implemented using a variety of
software.

In the case where the availability function in (3) is time dependent, such as when the telemetry
data are collected at a high temporal resolution, the likelihood associated with (3) can be approxi-
mated using a similar data augmentation strategy and conditional logistic regression (Breslow and
Day, 1980; Boyce, 2006). In this approach, the analyst creates a binary data set comprised of a
single one (yi1 = 1) representing a ‘‘presence’’ associated with the observed position s(ti), and
zeros (yij = 0 for j = 2, . . . , J) for a set of locations simulated from the availability function at
each time step ti based on the position at the previous time ti−1 (i.e., J − 1 positions sij where
the individual did not move are simulated from the normalized availability function fi(s|s(ti−1)) at
each time step). Using the associated covariate values at the observed and simulated availability
positions, the likelihood for the STPP model in (3) can be approximated with that resulting from
the binary data model yij ∼ Bern(pij) when J → ∞, where logit(pij) = β0,i + log(g(w′

ijθ)). The
step-specific intercepts β0,i for i = 1, . . . , n account for the changing availability at each time step
when making inference on θ. In this approach, the function g in (3) is referred to as a step-selection
function (SSF) and the associated analysis is a step-selection analysis (Fortin et al., 2005). In practice,
the constraint

∑J
j=1 yij = 1 allows us to derive a conditional likelihood that we can maximize using

standard statistical software (often the same software that is used to fit Cox proportional hazard
models to survival data).

Several important notes are relevant to this practice. First, it is possible, but not common, to
maximize the original point process likelihood associated with (3) directly (e.g., Johnson et al.,
2008b, 2013; Brost et al., 2015). However, because the integral in the denominator of (3) can be
costly to compute in an iterative algorithm and because the availability function fi(s(ti)|s(ti−1)) may
be complicated, most practitioners use the data to estimate the availability distribution a priori and
sample from a normalized version of it, and then use conditional logistic regression with available
software (e.g., Signer et al., 2019). When Bayesian methods are used, this results in an empirical
Bayes procedure that often provides a good representation of the true model. Such implementations
are often justified by practitioner claims that the RSF (or SSF) is the main focus of their inference
and the availability function exists only to account for additional temporal dependence.

In what follows, we present a derivation of the conditional likelihood associated with the
empirical Bayes approach to fitting an STPP with a general selection function g(w(s(ti)), θ). We then
use the resulting likelihood in a Bayesian model that has connections to the same mechanisms that
have been used to describe spatio-temporal population dynamics.

2.2. Conditional regression procedure

The approaches to resource-selection and step-selection analyses described above typically rely
on a specification of the selection function as g(w(s(ti)), θ) ≡ ew

′(s(ti))θ . However, when an intercept
(θ0) is included in the selection function such that w′(s(ti))θ = θ0+θ1x1+· · ·+θp−1xp−1, it cancels in
the RSF and SSF likelihoods and limits the inference to relative selection only (Manly et al., 2002). In
such cases, the researcher can only say that the individual selects for a resource more (or less) than
another resource; they cannot infer the absolute probability of selection (Lele and Keim, 2006). This
fact has led some to argue for the use of resource selection probability functions (RSPFs) specified
in such a way that g(w(s(ti)), θ) is a probability function such as the inverse logit or probit that
are bounded below by zero and above by one (Lele and Keim, 2006; Lele, 2009; Solymos and Lele,
2016).

In the sections that follow, we highlight other forms of selection functions, for g(w(s(ti)), θ) > 0,
that ecologists may wish to consider for inference. Thus, in the case of the general SSF model in (3),
a similar logistic regression procedure to that described in the previous section can be considered
where

yij ∼ Bern(φij) , (4)

logit(φij) = β0,i + log(g(wij, θ)) , (5)
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for i = 2, . . . , n steps, where yi1 = 1 and yij = 0 for j = 2, . . . , J availability samples, and where wij
represents the set of covariate values at the jth availability position for step i. Under this logistic
regression procedure, the likelihood component associated with step i is

[yi|β0,i, θ] =

J∏
j=1

φ
yij
ij (1 − φij)1−yij , (6)

=

J∏
j=1

(
eβ0,i+log(g(wij,θ))

1 + eβ0,i+log(g(wij,θ))

)yij ( 1
1 + eβ0,i+log(g(wij,θ))

)1−yij
, (7)

=
eβ0,i

∑J
j=1 yij+

∑J
j=1 log(g(wij,θ))yij(

1 + eβ0,i+log(g(wij,θ))
)J . (8)

When we account for the known constraint
∑J

j=1 yij = 1 for all i = 2, . . . , n, the resulting
conditional likelihood component becomes⎡⎣yi

⏐⏐⏐⏐θ, J∑
j=1

yij = 1

⎤⎦ =
[yi|β0,i, θ]∑

ỹ′
i1=1[ỹi|β0,i, θ]

, (9)

=
e
∑J

j=1 log(g(wij,θ))yij∑
ỹ′
i1=1 e

∑J
j=1 log(g(wij,θ))ỹij

, (10)

because the term eβ0,i
∑J

j=1 yij and the denominator of [yi|β0,i, θ] cancel. Note that the sum ỹ′

i1 = 1
includes all possible arrangements of binary data for step i. Thus, the complete conditional likelihood
for all steps i = 2, . . . , n is⎡⎣Y

⏐⏐⏐⏐θ,
⎧⎨⎩

J∑
j=1

yij = 1,∀i

⎫⎬⎭
⎤⎦ =

n∏
i=2

g(wi1, θ)∑J
j=1 g(wij, θ)

(11)

because only yi1 = 1 for step i (the rest of yij = 0 for j = 2, . . . , J).
The binary regression model with intercept terms that vary with step is not by itself a generative

model for the data, but is nonetheless used as a means to achieve a likelihood that approximates
the STPP model. An alternative approach would be to use a multinomial model where the binary
data for each step are restricted by the multinomial distribution to contain only a single value of
one (i.e., yi ∼ MN(1,φi)). We show that the multinomial approach results in the same likelihood
as the conditional logistic regression procedure in Appendix A.

Thus, regardless of whether a Bernoulli or multinomial model for the augmented data is assumed,
a form of conditional logistic regression can be used to fit the STPP model using a SSF of choice
as long as we assume or empirically estimate the availability function and obtain a large set
(i.e., J → ∞; Northrup et al., 2013) of positions from it at each time step to construct the augmented
binary data set Y.

2.3. Partial differential equation for movement

Turchin (1998) showed that a form of partial differential equation (PDE) called the Fokker–Planck
equation can be derived from a discrete-time Lagrangian movement model. The procedure for
deriving the movement-based Fokker–Planck equation involves expanding a set of movement and
residence probabilities in a Taylor series, truncating higher-order terms, and rearranging to yield
a PDE with motility parameters appearing inside the second spatial derivative (Hooten and Wikle,
2010; Hooten et al., 2013). While advection–diffusion PDEs have been used in environmental science
for decades (Wikle and Hooten, 2010; Cressie and Wikle, 2011), their use in statistical models for
population-level animal movement has also become popular recently (e.g., Wikle, 2003; Hooten and
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Wikle, 2008; Williams et al., 2019). The two-dimensional diffusion form of the Fokker–Planck PDE
is

∂p(s, t)
∂t

=

(
∂2

∂s21
+
∂2

∂s22

)
δ(s)p(s, t) , (12)

for probability of presence p(s, t), and is also called the ecological diffusion equation (EDE). The EDE
in (12) involves the motility function δ(s) =

∆s2
4∆tψ(s) which relates to the movement probability

ψ(s) from the original Lagrangian model with spatial grain ∆s2 and temporal resolution ∆t . The
EDE is especially relevant for modeling movement because it can be derived from first principles
of individual-level movement and results in residence times (i.e., the length of time an individual
resides in an area before moving) that are realistically related to landscape pattern (Powell and
Zimmermann, 2004; Garlick et al., 2011, 2014).

Multiplying the presence probability in the EDE (12) by population abundance yields a spatio-
temporal model for population intensity (Hooten et al., 2013). The resulting population-level models
have been used in a variety of statistical implementations and ecological applications (Hefley et al.,
2017; Williams et al., 2017; Lu et al., in press). Only recently has the EDE been considered in
an individual animal movement context. Garlick et al. (submitted for publication) showed that a
fundamental solution of the ‘‘homogenized’’ EDE (Appendix B) has the form

[s(ti)|s(ti−1)] ∝
1

δ(s(ti))∆ti
e−

1
2 (s(ti)−s(ti−1))′(2δ̄(ti)∆tiI)−1(s(ti)−s(ti−1)) , (13)

where the term δ̄(ti) in (13) is a local harmonic mean of motility δ(t) that arises naturally from
the homogenization method. Homogenization is a multiscale approximation technique that can be
used with certain classes of PDEs to make them more computationally efficient to solve numerically
(Hooten et al., 2013). In the case of the EDE, homogenization also facilitates the fundamental
solution in (13) which can be used as a statistical model for animal trajectories.

The critical aspect of the fundamental solution to the EDE in (13) that makes it relevant to our
review of STPPs is that it takes the form of the point process model in (3). If we define the selection
function from (3) as

g(w(s(ti)), θ) =
1

δ(s(ti))∆ti
, (14)

and the availability function as

f (s(ti)|s(ti−1)) ∝ e−
1
2 (s(ti)−s(ti−1))′(2δ̄(ti)∆tiI)−1(s(ti)−s(ti−1)) , (15)

then the fundamental solution (13) to the homogenized EDE is a member of the class of statistical
point process models based on the weighted distribution specification in (3). It is easily shown that
the availability function (15) is an unnormalized multivariate normal density function for s(ti) that
lends itself to straightforward stochastic simulation. However, the selection function (14) is notably
different than those used in former developments of RSFs and SSFs. Using the relationship between
the motility function δ(s) and the movement probability ψ(s), we can reduce the dimensionality
for statistical estimation by linking the movement probability to a set of environmental covariates
w(s) via logit(ψ(s)) = w′(s)θ.

Following Turchin (1998), Garlick et al. (submitted for publication) showed that the homogenized
motility coefficients δ̄(ti) could be pre-estimated with a temporal moving average of the original
telemetry data

δ̄(ti) ≈

∑
tj∼ti

(s(tj) − s(tj−1))′(s(tj) − s(tj−1))
4ni∆tj

, (16)

where, tj ∼ ti indicates the set of times tj that are considered temporally close to ti and ni is the size
of the set tj ∼ ti. When used in the STPP likelihood implied by the EDE, the inference on selection
parameters θ was robust to the pre-estimation of δ̄(ti).
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2.4. Implementation for EDE point process model

One benefit of the EDE-based STPP model is that, like the RSPF approaches (e.g., Lele, 2009), an
intercept can be included in the linear (w′(s)θ) component of the selection function (14) and we can
obtain inference on the relationship between environmental covariates and the movement proba-
bility (and hence motility) implied by the EDE. Additionally, because the movement probabilities
are inversely related to residence time by

r(s) =
4∆t

logit−1(w′(s)θ)
, (17)

we can obtain spatially-explicit maps of estimated time spent r(s) in a spatial region with area ∆s2
that can be used by practitioners to improve the understanding, conservation, and management of
wildlife. A knowledge of residence time is particularly important for threatened and endangered
species with high site fidelity and/or philopatry (e.g., Gerber et al., 2019) and for cases where the
environment may become pathogenic with increased exposure (e.g., Garlick et al., 2014).

To connect the implementation of the EDE-based point process model to the procedures most
commonly used to estimate RSFs and SSFs in the wildlife ecology literature, we used a conditional
regression approach as outlined in Section 2.2. We also developed algorithms to fit the model
using Bayesian methods for two reasons: (1) to allow for straightforward inference on nonlinear
derived quantities of model parameters such as r(s) in (17) and (2) because, like Lele (2009) in his
development of RSPFs, we also found evidence of non-Gaussian and asymmetric shaped multivariate
likelihood surfaces and posterior distributions for θ.

Thus, to fit the EDE-based point process models, we first created an augmented binary data set
consisting of a single value of one for yi1 = 1 and J − 1 zeros (yij for j = 2, . . . , J) for which
the positions were drawn randomly from the multivariate availability distribution in (15). For each
position, the associated covariate values wij were extracted from the environmental data sets as is
standard practice in step-selection analyses. We then used the conditional likelihood we derived in
(11) as the approximate STPP model (that becomes exact as J → ∞) and multivariate normal prior
for regression coefficients θ ∼ N(µθ ,Σ θ ).

We fit the resulting Bayesian EDE-based point process model using a custom Hamiltonian Monte
Carlo (HMC) algorithm to accommodate situations with correlated joint posterior distributions. Our
HMC algorithm (details in Appendix C) performed well in our simulations and real data analyses.

3. Application

To demonstrate our empirical Bayes approach, we fit an EDE-based STPP model to a set of
telemetry data from a mountain lion (Puma concolor) in Colorado, USA. These data comprise a set
of 150 global positioning system (GPS) satellite fixes at a temporal resolution of 3 h spanning a
period of approximately 2.5 weeks (Fig. 1). During this period, the individual mountain lion moved
several kilometers on a loop in the foothills northwest of Denver, CO as it exhibited normal life
history behaviors for this species (Buderman et al., 2018; Hooten and Hefley, 2019). To improve
our understanding of spatially heterogeneous motility and residence time, we specified a Bayesian
model based on the conditional likelihood associated with EDE-based STPP model and multivariate
normal prior for θ with mean zero and diagonal covariance matrix with diagonal elements 0.1, 1, 1,
and 1 (based on an intercept and three covariates) which induces a regularization on θ and flattens
the implicit prior on ψ(s). We used spatially explicit covariates that represent potentially important
topographic resources for mountain lion movement, including standardized elevation and slope, as
well as solar exposure (Fig. 2). We estimated δ̄(ti) using a moving average of approximately 70 h
based on Eq. (16) and obtained an availability sample of size J − 1 = 100 for each position from
a bivariate normal availability distribution implied by (15). Using the procedure described in the
previous section, we created an augmented binary data set and fit the EDE-based STPP model using
a HMC algorithm (Appendix C) with 20,000 iterations and discarded the burn-in period of 1000
iterations.
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Fig. 1. A total of 150 observed GPS positions (black points), connected by lines, for a single mountain lion spanning
approximately 2.5 weeks in Colorado, USA. For illustration, red points represent the availability sample (J = 100) for
step 49 based on the 49th observed GPS position shown as green point. The blue triangle represents the 50th observed
GPS position. Background images show (a) posterior mean residence time r(s) in hours per hectare and (b) movement
probability ψ(s) per hectare.

Fig. 2. Maps of covariates in W, including: (a) elevation (standardized), (b) slope (standardized), and (c) solar exposure
(ranges from −1 to 1) in Colorado, USA.
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Fig. 3. Marginal posterior distributions for motility coefficients θ with: (a) intercept, (b) elevation coefficient, (c) slope
coefficient, and (d) solar exposure coefficient.

The results of our model fit to the mountain lion GPS data yielded marginal posterior distribu-
tions for the motility coefficients θ shown in Fig. 3. We also computed the posterior mean of the
derived quantity r(s) in (17) for the entire study area in units of hours per hectare (Fig. 1).

The results of our analysis suggest that the environmental covariates we used related to motility
(and hence residence time) for the individual mountain lion data during the period of the study.
In particular, the GPS data suggested that the effect of both elevation and solar exposure had a
positive relationship with motility whereas slope (i.e., steepness) had a negative relationship with
motility (Fig. 3). The posterior mean map of residence time confirms these findings and indicates
that the individual remains longer in habitat with lower elevation as well as steeper and less
exposed hillsides which generally consist of wetter, more densely forested areas. By contrast, these
results indicate that the mountain lion moves quickly through areas on mountaintops and ridges
that are more exposed.

From a management perspective, the movement of wildlife is often characterized spatially
by movement corridors based on habitat preference or use (perhaps derived from conventional
exponential resource selection analyses). By considering the movement trajectories of wildlife in
terms of a physically based, dynamic movement model, we can infer a variety of environmental
conditions that may be important to conserve species and their natural movement patterns. For
example, in the case of the mountain lion we studied here, areas with greater residence time may
be critical for one aspect of the life history of the animal, but areas with great motility may be
important for transit between areas with higher residence time. Our modeling framework allows
managers to make inference on both aspects of wildlife movement behavior while using an analysis
procedure that is intuitive and familiar.
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4. Discussion

Despite the rapidly growing popularity of discrete-time models (e.g., Morales et al., 2004) and
slowly increasing popularity of stochastic differential equation (SDE) models for animal trajectories
(e.g., Johnson et al., 2008a; Blackwell et al., 2016; Hooten and Johnson, 2017), point process
models are still the predominant default method for obtaining animal movement inference given
individual-based telemetry data. Spatial and STPP models for animal telemetry data typically rely on
exponential forms for the selection function g(w(s(ti)), θ) which only allow for inference on relative
selection of resources.

Garlick et al. (submitted for publication) showed that a different form of selection function
arises under the EDE that results from a first-principles perspective of animal movement. We
parameterized the selection component of the STPP in (3) based on a homogenized version of
the EDE. We linked the movement probability to the underlying environmental features that may
influence movement using the logit-linear relationship logit(ψ(s)) = w′(s)θ. A natural characteristic
of the EDE is that motility and residence time are inversely related, thus, we can easily make
inference on residence time r(s) as a derived quantity in the model. This inference can be used
in efforts to manage and conserve wildlife.

To fit the EDE-based STPP using computationally efficient algorithms, we derived the conditional
regression likelihood that can be used to analyze data structures that are created using procedures
that are standard practice in wildlife ecology. While the conditional likelihood can be used in both
maximum likelihood and Bayesian settings, we found it helpful to use Monte Carlo methods to fit
a Bayesian version of the model because of the non-Gaussian joint posterior distributions that can
result and to streamline the inference on derived quantities such as r(s).

The functional form of resource selection in point process models for animal movement has long
been debated among ecologists. While the exponential form of RSF is the most common by far, it
is also limited in that it can only provide inference about relative selection. Related to this, it is
important to note that certain forms of RSFs can suffer from identifiability issues when estimating
the parameters because the likelihood contains a ratio in which a globally multiplicative term
cancels in the numerator and denominator of (3). For example, the reason why an intercept is not
included in the exponential RSF is because it will cancel. Similarly, the parameters θ in linear RSFs
such as g(w(s(ti)), θ) = w′(s(ti))θ and inverse linear RSFs such as g(w(s(ti)), θ) = 1/w′(s(ti))θ will
result in the same likelihood if multiplied by a constant c . As a result, this identifiability issue implies
that the STPP cannot distinguish between θ and c · θ for any c ̸= 1 when using linear or inverse
linear RSFs. Consequently, if a more general RSF g(w(s(ti)), θ) is nearly linear or inverse linear in θ

on the study domain, the STPP model parameters may not all be fully identifiable.
With the preceding note about identifiability in mind, overall, we showed that by combining the

EDE-based STPP model with conditional regression approaches to fit the model, ecologists may be
able to gain a new perspective on animal movement dynamics. The computational approach we
presented aligns with the most common way STPP models are fit to telemetry data in conventional
step-selection analyses. As part of ongoing research, we are assessing a suite of other PDEs for use
in statistical models based on a similar procedure.
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Appendix A. Multinomial regression approximation

To show that a multinomial model results in the same likelihood as conditional logistic regres-
sion and thus can be used as an approximation to the STPP likelihood, we let yi be the J × 1
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containing a first element equal to 1 and the remainder J − 1 values equal to 0 for step i. If we
specify a multinomial model for the data such that yi ∼ MN(1,φi) with probabilities

φij =
g(wij, θ)∑J
l=1 g(wil, θ)

, (18)

then the likelihood component for step i is

[yi|θ] =
1!

1!
∏J

j=2 0!
φ1
i1

J∏
j=2

φ0
ij , (19)

which yields the joint likelihood

[Y|θ] =

n∏
i=2

g(wi1, θ)∑J
j=1 g(wij, θ)

. (20)

Note that the likelihood resulting from the multinomial model for yi in (20) coincides with the
conditional logistic regression likelihood in (11).

Appendix B. EDE homogenization

To derive the EDE-based STPP formulation that results in the selection and availability functions
in (14) and (15), we begin from the diffusion-based Fokker–Planck equation (i.e., the EDE) in (12)
and then derive the associated homogenized EDE using the method of multiple scales. Garlick et al.
(2011) showed that the plain diffusion equation

∂u(s, t)
∂t

= δ̄(s)
(
∂2

∂s21
+
∂2

∂s22

)
u(s, t) , (21)

can be solved numerically on a coarser spatio-temporal scale which facilitates much faster algo-
rithms and resulting statistical inference (Hooten et al., 2013). The homogenized motility function
δ̄(s) in (21) is the harmonic mean of δ(s) over the coarser scale. Thus, to return to the EDE on the fine
scale, we divide the homogenized process by the fine scale motility function p(s, t) = u(s, t)/δ(s).
This upscaling strategy substantially reduces computing requirements to implement a statistical
model containing the EDE (Hooten et al., 2013).

A secondary benefit, and one that we exploit here, is that the homogenized EDE in (21) also
allows us to solve for u(s, t) given a point source at the previous time t −∆t . Following Haberman
(2013) and Logan (2015), for previous position s(t −∆t), the fundamental solution is

u(s, t) = |2π2δ̄(s)∆tI|−
1
2 e−

1
2 (s−s(t−∆t))′(2δ̄(s)∆tI)−1(s−s(t−∆t)) . (22)

Then, because p(s, t) can be recovered by dividing u(s, t) by the motility function, we have

p(s, t) ∝
1

δ(s)∆t
e−

1
2 (s−s(t−∆t))′(2δ̄(s)∆tI)−1(s−s(t−∆t)) , (23)

which matches the conditional distribution for s(t) in (13). Thus, the homogenized fundamental
solution to the EDE can serve as the point process model in a step selection analysis.

Appendix C. Hamiltonian Monte Carlo algorithm

In our implementation of the HMC algorithm, we define the Hamiltonian function as a function
of position θ (in parameter space) and velocity v in the following,

h(θ, v) = − log[θ|·] − log[v] , (24)



12 M.B. Hooten, X. Lu, M.J. Garlick et al. / Spatial Statistics 37 (2020) 100406

where [θ|·] is the full-conditional distribution of θ up to a multiplicative constant and [v] =

N (0,Σ v). Following the conditional likelihood derivation, the full-conditional distribution for θ is

[θ|·] ∝

⎡⎣y

⏐⏐⏐⏐⏐⏐θ,
⎧⎨⎩

Ji∑
j=1

yij = 1,∀i

⎫⎬⎭
⎤⎦ [θ],

=

n∏
i=2

gi1∑Ji
j=1 gij

· N
(
µθ ,Σ θ

)
,

where gij ≡ g
(
wij, θ

)
and µθ and Σ θ are hyperparameters for θ. The Hamiltonian trajectories are

controlled by partial derivatives of the Hamiltonian function in (24),

dv(τ )
dτ

= −
∂h(θ, v)
∂θ

=

n∑
i=2

(
▽gi1
gi1

−

∑Ji
j=1 ▽gij∑Ji
j=1 gij

)
− Σ−1

θ

(
θ − µθ

)
, (25)

dθ(τ )
dτ

=
∂h(θ, v)
∂v

= Σ−1
v (v − 0) , (26)

where ▽gij ≡ ∂g
(
wij, θ

)
/∂θ and Σ v ≡ 3 · I is set as a tuning parameter. When we use the link

function g
(
wij, θ

)
=
(
logit−1 (w′

ijθ
))−1

=
1+exp

(
w′

ijθ
)

exp
(
w′

ijθ
) , the gradient function ∂h(θ, v)/∂θ is evaluated

as

∂h(θ, v)
∂θ

= −

n∑
i=2

⎛⎜⎜⎜⎝ −wi1

1 + exp
(
w′

i1θ
) −

∑Ji
j=1 − exp

(
−w′

ijθ
)
wij∑Ji

j=1

1+exp
(
w′

ijθ
)

exp
(
w′

ijθ
)

⎞⎟⎟⎟⎠+ Σ−1
θ

(
θ − µθ

)
.

Based on the Hamiltonian system in (25) and (26), the associated leap frog algorithm in
computing time τ with discretization ∆τ is

1. Choose initial velocity v(0);
2. Update the velocity a half step in time using

v
(
τ +

∆τ

2

)
= v(τ ) −

∆τ

2
∂h(θ(τ ), v(τ ))

∂θ
;

3. Update the position using

θ(τ +∆τ ) = θ(τ ) +∆τ
∂h
(
θ(τ ), v

(
τ +

∆τ
2

))
∂v

;

4. Update the velocity again using

v(τ +∆τ ) = v
(
τ +

∆τ

2

)
−
∆τ

2
∂h
(
θ(τ +∆τ ), v

(
τ +

∆τ
2

))
∂θ

;

5. Let τ = τ +∆τ , go to 2 and repeat until the end of computing time period for each update.

In practice, we tuned the HMC algorithm such that ∆τ = 0.05 and the maximum τ was 10 to yield
a well-mixed Markov chain for θ.
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