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Abstract
1.  Animals often exhibit changes in their behaviour during migration. Telemetry data 

provide a way to observe geographic position of animals over time, but not 
necessarily changes in the dynamics of the movement process. Continuous-time 
models allow for statistical predictions of the trajectory in the presence of 
measurement error and during periods when the telemetry device did not record 
the animal's position. However, continuous-time models capable of mimicking 
realistic trajectories with sufficient detail are computationally challenging to fit to 
large datasets. Furthermore, basic continuous-time model specifications (e.g. 
Brownian motion) lack realism in their ability to capture nonstationary dynamics.

2.  We present a unified class of animal movement models that are computationally 
efficient and provide a suite of approaches for accommodating nonstationarity in 
continuous trajectories due to migration and interactions among individuals. Our 
approach uses process convolutions to allow for flexibility in the movement 
process while facilitating implementation and incorporating location uncertainty. 
We show how to nest convolution models to incorporate interactions among 
migrating individuals to account for nonstationarity and provide inference about 
dynamic migratory networks.

3.  We demonstrate these approaches in two case studies involving migratory birds. 
Specifically, we used process convolution models with temporal deformation to 
account for heterogeneity in individual greater white-fronted goose migrations in 
Europe and Iceland, and we used nested process convolutions to model dynamic 
migratory networks in sandhill cranes in North America.

4.  The approach we present accounts for various forms of temporal heterogeneity in 
animal movement and is not limited to migratory applications. Furthermore, our 
models rely on well-established principles for modelling-dependent data and 
leverage modern approaches for modelling dynamic networks to help explain 
animal movement and social interaction.
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1  | INTRODUC TION

Rapid improvement in technology has led to high-quality animal 
tracking (i.e. telemetry; see Appendix S1 for a glossary of terms) data 
that are accumulating at an incredible rate (Cagnacci, Boitani, Powell 
& Boyce, 2010; Kays, Crofoot, Jetz & Wikelski, 2015). There are not 
only more data being collected in more studies but the variety of 
data is also increasing. Variation exists in telemetry devices, fix rates 
and regularity, accuracy, types of measurement error, duration and 
taxa studied. Behavioural variation also exists within individual and 
taxa. Many approaches have been developed to characterize the 
variation within individual animal trajectories (Hooten & Johnson, 
2017b; Hooten, Johnson, McClintock & Morales, 2017). These ap-
proaches include the use of spatial and temporal covariates and 
clustering methods to understand the portions of animal trajecto-
ries that indicate distinctly different patterns (e.g. Whoriskey et al., 
2017). For example, potential function specifications in stochastic 
differential equations (SDEs; Brillinger, 2010) have facilitated the 
explicit inclusion of covariates in continuous-time models. While 
some discrete-time models incorporate covariates as well, they also 
often focus on phenomenological clustering of movement processes 
to infer behavioural changes over time (e.g. Langrock et al., 2012; 
Morales, Haydon, Frair, Holsinger & Fryxell, 2004; McClintock et al., 
2012; McKellar, Langrock, Walters, & Kesler, 2014).

The use of SDEs to infer relationships between animal move-
ment and habitat based on telemetry data is increasing (e.g. Gurarie, 
Fleming, et al., 2017; Parton & Blackwell, 2017; Russell, Hanks & 
Hughes, 2017), but the associated computational challenges are 
also increasing as a function of dataset size as well as data and 
model complexity (Scharf, Hooten, Johnson & Durban, 2017). Thus, 
several approaches have been developed to utilize predicted con-
tinuous-time trajectories based on telemetry data in a two-stage 
modelling framework to infer relationships between animal move-
ment and habitat (Hooten, Johnson, Hanks & Lowry, 2010; Hanks, 
Hooten & Alldredge, 2015; McClintock, 2017; Scharf et al., 2017). 
In this framework, the first stage predicts the trajectory of the in-
dividual and the second stage uses that prediction to obtain infer-
ence for the effects of covariates on movement while accounting for 
uncertainty in the predicted trajectory in continuous-time (Hooten 
et al., 2017). Thus, accurate continuous-time models are essential to 
represent the predicted trajectory distribution in the first stage of 
such approaches.

Accurate representations of the predicted trajectory distribution 
may be obtained from movement models that are continuous and 
allow for variation in the movement dynamics throughout the tra-
jectory. Thus, movement models should allow for nonstationarity, a 
term used in time series and spatial statistics, to account for changes 
in the dynamics of the animal as it moves. Nonstationarity could be 
caused by behavioural responses to the environment, diurnal cycles 
or interactions with other individuals of the same or different spe-
cies (Auger-Méthé et al., 2016; Soleymani, Pennekamp, Dodge & 
Weibel, 2017). For migratory animals specifically, heterogeneity is 
a natural component of their life history and leads to nonstationary 

dynamics in their movement trajectories (Cagnacci et al., 2016; 
Gurarie, Cagnacci, et al., 2017). Several approaches have been used 
to characterize migrations (Bauer & Klaassen, 2013), in both terres-
trial (e.g. Fleming et al., 2014) and aquatic (e.g. Hays et al., 2016) sys-
tems. However, key questions about animal ecology remain that new 
methods for analysing telemetry data must be developed to answer 
(Hays et al., 2016).

In what follows, we demonstrate a unified framework to account 
for nonstationarity in animal trajectories using statistical models 
that are flexible and computationally efficient to implement. We 
show that single- and multiple-individual continuous-time models 
can accommodate heterogeneity in movement due to migratory 
processes. We use process convolutions (Higdon, 2002) to specify 
flexible movement models mechanistically and nest them in a hier-
archical statistical framework to properly account for measurement 
error. Process convolutions have become popular in spatial statistics 
because they result in models that are easy to specify and fit to data 
(e.g. Barry & Ver Hoef, 1996).

We illustrate our approach to characterizing nonstationary an-
imal trajectories through two examples involving migratory birds. 
First, we apply individual-based process convolution models to ac-
count for heterogeneity in the migration trajectories of Greenland 
white-fronted geese Anser albifrons flavirostris, a subspecies of 
greater white-fronted goose (Dalgety & Scott, 1948) from Ireland to 
staging grounds in Iceland. For this example, we developed a tem-
poral deformation for migratory animals that provides inference 
about the timing and duration of migration-induced nonstationarity 
in the movement dynamics. In the second example, we demonstrate 
a nested process convolution approach that utilizes simultaneous 
telemetry data from multiple sandhill crane Antigone canadensis indi-
viduals migrating across North America. Our convolution-based ap-
proach provides substantial reductions in uncertainty for trajectory 
estimates by borrowing strength across individuals using a dynamic 
network specification (Jacoby & Freeman, 2016).

2  | GENER AL STATISTIC AL FR AME WORK

Our approach can be summarized as a hierarchical model for telem-
etry data s(ti) (a 2 × 1 vector), for i = 1,…,n (Figure 1). By construct-
ing the statistical movement model hierarchically, we consider the 
mechanisms that give rise to data and underlying movement process 
μ(t) conditionally. After constructing the hierarchical model, we fit 
the model to data using an efficient computer algorithm based on 
an integrated likelihood (where μ(t) is integrated out) that takes the 
form of a Gaussian process model with measurement error and tem-
poral dependence in the trajectory accommodated by covariance. 
We predict the correct latent process μ(t) using a separate procedure 
that relies on output from the model fit.

The hierarchical Bayesian framework (Berliner, 1996; Hobbs & 
Hooten, 2015) we rely on contains three components (Figure 1): 
a data model (i.e. measurement error model), a process model (i.e. 
the movement model) and a parameter model (i.e. priors expressing 
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our existing knowledge about model parameters). The second stage 
(i.e. process model) of our hierarchical framework characterizes the 
movement trajectory using process convolutions. Process convolu-
tion specifications allow us to build movement models mechanisti-
cally, based on first-order mean structure, but fit them to data using 
second-order covariance structure for computational efficiency 
(Hefley et al., 2017). Therefore, we describe process convolutions 
first and then describe how to arrive at custom covariance functions 
using process convolutions.

2.1 | Process convolution models

Process convolutions can be thought of as moving averages (Barry 
& Ver Hoef, 1996; Higdon, 2002; Peterson & Ver Hoef, 2010). If we 
average over a continuous-time stochastic process like white noise 
in a certain way, the result is an appropriately smooth (and maybe 
heterogeneous) trajectory that can serve as a model for movement.

Hooten and Johnson (2017a) proposed movement models as 
convolutions with white noise

where μ(t) is a 2 × 1 vector that represents the true unobserved 
animal position at time t (t1≤ t≤ tn, where t1 and tn bound the tem-
poral period of interest) and db(τ) is a two-dimensional–scaled 
white noise process (scaled by σ2

μ
). The matrix H(t, τ) in Equation 

1 is a 2 × 2 diagonal matrix with diagonal elements equal to 
h(t, τ)= ∫ tn

τ
g(t, τ̃)dτ̃ (also called a “basis function;” e.g. Hefley et al., 

2017). The function g(t, τ) is a one-dimensional temporal ker-
nel anchored at time t (e.g. a Gaussian function with location t). 
Different choices for g(t, τ) represent different hypotheses about 
the ecology of the species under the study (see Figure 2 in Hooten 
& Johnson, 2017a). For example, both Brownian motion and 

integrated Brownian motion (i.e. correlated random walk models; 
Johnson, London, Lea & Durban, 2008; Gurarie & Ovaskainen, 
2011) can be expressed as Equation 1.

Equation 1 is referred to as a process convolution because it de-
fines the position of an individual at time t as a convolution (i.e. an 
integral of a product) of a kernel function with a stochastic process 
(Higdon, 2002). In the animal movement context, process convolu-
tions induce a form of inertial smoothing in the trajectory. Figure 2 
depicts how trajectories arise (in one dimension) based on different 
choices of g(t, τ). The middle row of Figure 2 represents two possible 
basis functions h(t, τ) at a subset of time points. To obtain the move-
ment process (i.e. the locations of the individual) in the bottom row 
of Figure 2, we multiply h(t, τ) by white noise and integrate over the 
time domain.

While the exact convolution can be written in continuous time 
(Equation 1), we approximate it using numerical integration as a sum 
of the product, that is, 

∑

 H(t, τ)db(τ). The set of times   over which 
the sum is calculated is chosen to be large enough to provide an ac-
curate approximation to the convolution, but small enough to still be 
computationally tractable. This is the same type of approximation 
used in differential equation models (e.g. Cangelosi & Hooten, 2009) 
and integral projection models (e.g. Easterling, Ellner & Dixon, 2000; 
Ellner & Rees, 2006).

Convolutions of white noise are well-studied, have useful prop-
erties (Barry & Ver Hoef, 1996; Higdon, 2002) and are attractive 
because they allow the user to model the system with a dynamic 
forward process that aligns with their hypotheses of animal move-
ment mechanisms. Furthermore, convolutions can be used to con-
struct complex covariance functions for dependent processes that 
are not easy to specify directly (Ver Hoef & Peterson, 2010). In 
modern spatial statistics, second-order covariances are commonly 
parameterized using first-order representations of the dependence 
structure in the form of convolutions (Sampson, 2010; Hefley et al., 

(1)�(t)=�0+∫

tn

t1

H(t, τ)db(τ),

F I G U R E  1    A directed acyclic graph (DAG) depicting the hierarchical model for telemetry data s(ti) for i = 1,…,n, containing an underlying 
trajectory μ(t) (with dashed arrow indicating the continuous-time process) and both data and process parameter sets σ2

s
, σ2

μ
, and ϕ. This DAG 

represents a basic hierarchical model for the single-individual case
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2017) because of the added flexibility and computational efficiency 
in many cases. Our approach to movement modelling allows the user 
to construct models based on mechanisms, but then fit the models 
to data using Gaussian processes with dependence expressed via 
covariance.

2.2 | Convolution-induced covariance

Convolutions such as Equation 1 provide an intuitive way to specify 
dependence for continuous processes based on covariance (Hefley 
et al., 2017). For example, convolutions provide a formal way to ac-
commodate correlated random walk models that have a long history 
of use in studies of animal movement. In spatial statistics, it is com-
mon to express dependence in terms of covariance, at least in part, 
because it can yield computational advantages for fitting models 
to data (Hefley et al., 2017). For the convolution model in Equation 
1, we can write the covariance between time points ti and tj as 
cov(�(ti), �(tj))= ∫ tn

t1
σ
2
μ
H(ti, τ)H(tj, τ)

�dτ (where ′ denotes a transpose). 
This allows us to construct the full hierarchical model (Figure 1) with 
data modelled conditionally as s(ti)∼N(�(ti), σ

2

s
I), where σ2

s
 repre-

sents telemetry error variance, and the continuous-time trajectory 

μ conditionally modelled as a Gaussian process with mean μ0 and 
covariance as specified above.

To fit the model, we integrate out μ to yield a Gaussian process model 
for the observed telemetry data s≡ (s1(t1), … , s1(tn), s2(t1), … , s2(tn))

� 
 directly as

where the n × m matrix H has (i, j)th element h(ti, τj) computed at a 
subset of m times associated with the finite approximation of the 
integral as previously described. The integrated model in Equation 
2 now accommodates the data and process levels of the hierarchi-
cal model in Figure 1 simultaneously. The multivariate Gaussian 
form of the jointly specified movement model in Equation 2 is at-
tractive because efficient numerical methods can be used to fit the 
model to high-resolution telemetry datasets. Many approaches 
for fitting Gaussian process models efficiently have been devel-
oped for use in spatial statistics, including reduced rank methods 
(Wikle, 2010), predictive processes (Banerjee, Gelfand, Finley & 
Sang, 2008), covariance tapering (Furrer, Genton & Nychka, 2006), 
nearest neighbour methods (Datta, Banerjee, Finley & Gelfand, 
2016) among others.

(2)s∼N(�0⊗1, σ
2

s
I + σ

2

μ
(I⊗H)(I⊗H)

�
) ,

F I G U R E  2    A one-dimensional example illustrating how white noise (top) can be convolved with Brownian basis functions (left middle) or 
integrated Gaussian basis functions (right middle) to yield a Brownian motion (left bottom) or integrated Gaussian movement process (right 
bottom). Note that the change in scale from white noise to the movement process of interest is controlled by σ2

μ
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2.3 | Temporal deformation

The statistical model in Equation 2 is flexible because the shape, 
range and scale of the kernels g(t, τ) can vary with time t to accom-
modate realistic dynamics in animal movement. For example, in a 
Gaussian kernel, the temporal range parameter (ϕ) may vary (i.e. 
g(t, τ)∝ exp (−(t−τ)2/ϕ(t))) to allow for heterogeneity in the smooth-
ness of the individual's track over time (Higdon, 2002). Larger 
values for ϕ(t) imply animal behaviour that results in smoother tra-
jectories, such as migration periods, and as ϕ(t) decreases towards 
zero, the process becomes less smooth. An alternative to letting 
the range parameter vary in the kernel function is to deform (i.e. 
compress or expand) the temporal domain itself (Sampson & 
Guttorp, 1992). By compressing time in certain regions and ex-
panding it in others, we can account for the same type of hetero-
geneous dynamics as the varying parameter approach previously 
described. By conditioning on a temporal deformation, we are able 
to use the same software we would use to fit the temporally ho-
mogeneous convolution model.

Temporal deformation can be induced using a warping function 
w(t) in place of time (e.g. g(t, τ)∝ exp (−(w(t)−τ)2/ϕ)). Warping func-
tions have traditionally been expressed as smooth stochastic func-
tions in the time domain, such as Gaussian processes (e.g. Hooten & 
Johnson, 2017a). The derivative of the warping function (i.e. dw(t)/
dt) indicates the portions of the time domain that are compressed 
(dw(t)/dt < 1) and expanded (dw(t)/dt > 1)). Temporal compression 
leads to rough trajectories and temporal expansion leads to smooth 
trajectories. Gaussian process-warping functions are quite general, 
but not mechanistically linked to known natural history or animal 
behaviour. Furthermore, a critical characteristic of deformation ap-
proaches to account for nonstationarity is that the warping func-
tion does not fold (i.e. the resulting warped time field retains the 
same order as the original time domain). Previous implementations 
of deformation approaches have imposed a non-folding constraint 
by tuning the Gaussian process associated with the warping function 
so that it does not result in temporal expansions that induce folding. 
Such constraints may be computationally demanding to implement 
using conventional deformation approaches.

We propose a warping function for implementing temporal de-
formation that acknowledges the natural history of migratory ani-
mals and is guaranteed not to fold. We refer to this warping function 
as a “temporally deforming cumulative function” (TDCF). The TDCF 
stretches time appropriately to provide inertial smoothness in the 
trajectory during migration and is defined as

where σ2
w
≥0, F(t)= ∫ t

t1
f(τ)dτ, f(t) is any non-negative function (e.g. 

a probability density function) that integrates to one over the time 
domain, and t1 and tn represent the beginning and end of the time 
domain (or first and last times at which data were collected). It can be 
shown that the derivative of the TDCF in Equation 3 is

which is a linear function of f(t). The general form of TDCF in 
Equation 3 will not fold the time domain and will retain the original 
temporal extent of the data (Figure 3). The latter characteristic can be 
helpful for specifying a prior distribution for the range parameter (ϕ) 
in Bayesian implementations of the convolution model in Equation 2.

Finally, we note that the temporal deformation approach could 
be employed in most continuous-time models. For example, the cor-
related random walk model proposed by Johnson et al. (2008) is a 
member of the class of models we describe herein; thus, the same 
approach to account for temporal heterogeneity using a TDCF ap-
plies there as well. We return to specific forms of deformation and 
warping kernel functions in an example involving Greenland white-
fronted geese.

2.4 | Dynamic movement networks

Temporal heterogeneity in animal movement dynamics may also 
arise as a result of intraspecific interactions. While adding complex-
ity to the statistical model, accounting for dependence among indi-
viduals as populations redistribute over space can be beneficial for 
inference (as we demonstrate in the sandhill crane example that fol-
lows). Many studies collect telemetry data for multiple individuals 
of a population or community simultaneously. Thus, we can make 
use of those data to improve our understanding of the trajectories 
of each individual using an extension of the convolution approach. 
Scharf, Hooten, Johnson and Durban (2018) proposed a nested 
structure for multiple convolutions that we use to reconcile the 
individual-level movement model in Equation 1 with dynamic social 
network models for movement (e.g. Russell, Hanks, & Haran, 2016; 
Scharf et al., 2016).

The process convolution in Equation 1 is actually a two-level 
nested convolution with the first level resulting in Brownian mo-
tion and the second performing the inertial smoothing (Hooten and 
Johnson, 2017a, 2017b). However, that nested convolution can be 
expressed as a single process convolution with white noise to ob-
tain the covariance for the Gaussian process model in Equation 2. 
Extending this concept one step further, a general three-level nested 
process convolution structure can be expressed as

where j and k correspond to observed individuals and the kernel 
functions on the diagonals of each of the convolution matrices 
(H(1)

jk
(t, τ), H(2)

jk
(t, τ), H(3)

jk
(t, τ)) are specified as

(3)
w(t)=

σ
2
w
F(t)+ t− t1

σ
2
w
+ tn− t1

,

(4)dw(t)

dt
=

σ
2
w
f(t)+1

σ
2
w
+ tn− t1

,

(5)�
(1)
j (t)=

J
∑

k=1
∫

tn

t1

H
(1)

jk
(t, τ)dbk(τ),

(6)�
(2)
j (t) = �0,j+

J
∑

k=1
∫

tn

t1

H
(2)

jk
(t, τ)�

(1)

k
(τ)dτ,

(7)
�
(3)
j (t)=

J
∑

k=1
∫

tn

t1

H
(3)

jk
(t, τ)�

(2)

k
(τ)dτ,
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The first two kernel functions (h(1)
jk
(t, τ) and h(2)

jk
(t, τ), where 1{⋯} is 

an indicator function that is equal to 1 when the subscript condi-
tion is met and zero otherwise) are the same as in Equation 1 from 
the previous example for individual-based movement (i.e. induc-
ing Brownian and inertial smoothing). However, the third kernel 
(h(3)

jk
(t, τ)) is a function of a weighted network describing the joint 

dynamics of a group of moving individuals. The network weights 
νjk(t) correspond to pairwise relationships among individuals that 
may vary over time.

Many approaches have been proposed for modelling net-
work weights, including exponential random graph models and 
latent space models (Farine, 2017; Farine & Whitehead, 2015; 
Goldenberg, Zheng, Fienberg, & Airoldi, 2010). In what follows, 
we describe a latent space approach (Hoff, Raftery, & Handcock, 
2002) to model the network weights νjk(t) based on distances 

among a set of points in a latent Euclidean space . The latent 
points zj(t) act as random effects in the model and require a prior 
(described in Appendix S3). Modelling the latent points zj(t), in-
stead of the network weights νjk(t) directly, simplifies the parame-
terization of the network substantially and facilitates estimation. 
If the points zj(t) and zk(t) are close in latent space, the network 
weight between them is large. For inference in static networks 
where the social relationship of the individuals is homogeneous 
over time, all zj(t) = zj and the set of zj (for j = 1,…,J) arise as a point 
process in .

In the case where we expect the social structure of the observed 
individuals to change over time, a variety of dynamic models are 
available for zj(t). We describe one such specific dynamic model 
for zj(t) in the application pertaining to sandhill crane migrations 
(Appendix S3).

Heuristically, by expressing group movement using process 
convolutions, we are able to account for complex dynamic depen-
dencies within and among individuals as they move. Process convo-
lutions allow us to parameterize second-order covariance matrices 
for group movement using mechanistic first-order structure (Hefley 
et al., 2017). In Appendix S3, we show that the nested process con-
volution in Equations (5)–(7) results in a single Gaussian process 
model that resembles a geostatistical model commonly used in 

(8)h
(1)

jk
(t, τ)=1

{τ<t}1{j=k},

(9)h
(2)

jk
(t, τ)=exp

(

−

(t−τ)2

ϕ

)

1
{j=k},

(10)
h
(3)

jk
(t, τ)=

�jk(t)

∑J

k=1
�jk(t)

1
{t=τ}.

F I G U R E  3    Top panel: An example 
warp function derivative (dw(t)/dt) 
based on a truncated Gaussian function 
f(t) anchored at t = 0.5. The dashed 
horizontal grey line indicates where the 
warp derivative equals 1 (indicating the 
inflection points delineating temporal 
compression or expansion) when the 
horizontal line intersects dw(t)/dt. Middle 
panel: The mapping from the original time 
(t) to the warped time (w(t)). Bottom panel: 
Simulated one-dimensional trajectories 
(μ) based on the original time (grey) and 
warped time (black)
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spatial statistics. This linkage between first-order and second-order 
model formulations is well-known in environmental science (Higdon, 
2002; Wikle, 2010), but is still fairly new in animal movement model-
ling, where its potential utility is high.

3  | APPLIC ATIONS

3.1 | Individual movement: Greenland white-fronted 
geese

The Greenland white-fronted goose (GWFG) is the most morpholog-
ically distinct subspecies of the circumpolar greater white-fronted 
goose A. albifrons; Ely et al., 2005). GWFG are long-distance migrants 
that breed in west Greenland (Malecki, Fox, & Batt, 2000), stage dur-
ing autumn and spring in south and west Iceland and winter at over 
70 regularly used sites across Great Britain and Ireland (Ruttledge 
& Ogilvie, 1979). Thus, their annual migration spans 5,000 km and 
includes crossing the Greenland Ice Sheet (a 1.7 million km2 expanse 
of ice peaking at 3,000 m in elevation; Comiso & Parkinson, 2004). 
The global population of GWFG has declined in recent years, from c. 
36,000 individuals in 1999 to 19,000 in 2016 (Fox, Francis, Norriss, & 
Walsh, 2016), and poor productivity has been identified as the proxi-
mate demographic mechanism for population change (Weegman 
et al., 2017). GWFG are listed as “Endangered” under IUCN Red 
List criteria and as a priority species in the Biodiversity Action Plan 
in the United Kingdom (UK), and managed under a Species Action 
Plan through the African-Eurasian Migratory Waterbird Agreement 
(Stroud, Fox, Urquhart, & Francis, 2012). GWFG have been protected 
from hunting since 1982 in Ireland and Scotland, 2006 in Iceland and 
2009 in Greenland; a voluntary shooting ban on the birds remains in 
place in Wales, where they are still legal quarry, as in England.

GWFG occupy breeding areas from May to early September and 
feed on tubers and exposed plant matter, mainly common cotton-
grass Eriophorum angustifolium (Madsen & Fox, 1981). They lay 4–6 
eggs and incubation occurs over 25–27 days (Fox & Stroud, 1988), 
similar to other Arctic-nesting geese (Cooke, Lank, & Rockwell, 
1995). A 4-week complete wing moult occurs during late summer. 
Autumn migration begins in September and birds stage in Iceland 
until October (now into early November; Fox et al., 1999), when 
they migrate to wintering areas in Great Britain and Ireland. Food 
sources on staging and wintering areas are mainly agricultural (e.g. 
cereal crops or managed grassland; Fox & Stroud, 2002). Although 
spring migration from Great Britain and Ireland began in April in the 
1970s and 1980s, in recent years, birds have departed for Iceland 
successively earlier and now do so in late March (Fox et al., 2014), 
with greater fat stores than in previous years (Fox & Walsh, 2012). 
The spring staging period in Iceland has increased in duration over 
the same time period because, although GWFG arrive earlier, they 
depart within a few days of historical departure dates in early May 
(Fox et al., 2014).

During late winter 2016, GWFG were caught over intensively 
managed grassland at Wexford Slobs, Ireland using rocket-propelled 
nets (Wheeler & Lewis, 1972) under permission from the British 

Trust for Ornithology. We analysed data from four female GWFG 
that were fitted with 28 g Global Positioning System (GPS) tracking 
devices (with internal GPS aerial; Cellular Tracking Technologies; Rio 
Grande, New Jersey, USA) attached to neck collars (i.e. total package 
weight = 39 g). The GPS logger measured and recorded spatial po-
sition sj(ti) at each fix. Tags were programmed to log eight GPS fixes 
per day. Data were uploaded daily to an online user interface via the 
Global System for Mobile Communications technology.

We used the convolution model (Equation 2) to analyse the 
GWFG telemetry data from each individual separately. We used 
Gaussian kernel functions (h(t,τ)∝ exp (−(w(t)−τ)2/ϕ)) with a prior for 
the range parameter ϕ specified as a discrete uniform distribution to 
facilitate computation (see Hooten & Johnson, 2017a, for details). To 
account for heterogeneity in time, we applied the temporal defor-
mation approach using the warping function in Equation 4 based on 
the mixture model

where [s|θl] refers to the integrated likelihood in Equation 2 with θl 
representing all of the model parameters for the lth potential warp-
ing function. Specifically, we defined the lth warping function using a 
truncated Gaussian function with location t∗

l
, scale parameter ϕl and 

support (t1, tn) for fl(t) (associated with the lth element of Equation 
11). Mixing over models with different warping functions allowed 
us to approximate nearly any temporal deformation indicated by the 
data and also facilitates the computational implementation because 
we can use Bayesian model averaging (BMA) across mixture com-
ponents (estimating the mixture probabilities pl as posterior model 
probabilities). We used the two-stage BMA approach by Barker and 
Link (2013), fitting each model separately and then recombining the 
results in a second-stage algorithm to obtain the optimal model- 
averaged trajectory. See Appendix S2 for priors and further model 
implementation details.

The results of fitting the model to four GWFG individuals are 
presented in Figure 4, where the left panel shows the estimated 
trajectories for the four GWFG individuals on their migration from 
Ireland to Iceland from 20 March 2017 to 15 April 2017. In Figure 4, 
the trajectories are shown as posterior predictive realizations (the 
individual lines) from the model-averaged posterior distribution. 
Figure 4 also indicates the utility of the warp functions to account 
for heterogeneity in the migration of each individual. We can also 
glean inference from the derivatives of the model-averaged warp 
functions because they indicate the time and duration of the migra-
tory period for each individual, illustrating the variability in migration 
among individuals. The red and blue individuals both departed on 
their migration early (26–27 March) with a similar migratory dura-
tion, whereas the green and purple individuals both departed late (2 
April) with the green individual taking a more circuitous route that 
lasted nearly twice as long.

Convolution models provide a statistically principled means to 
predict true animal trajectories while accommodating uncertainty in 

(11)
s ∼

⎧

⎪

⎨

⎪

⎩

[s��1] w.p. p1

⋮

[s��L] w.p. pL
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the data and heterogeneous dynamics. Temporal deformations that 
acknowledge the natural history of the species (e.g. the TDCFs we 
proposed herein) also provide a way to quantify differences in migra-
tion characteristics among individuals and over time. For example, 
for the GWFG migration trajectories we analysed, there appeared 
to be two groups in terms of timing of migration initiation, with two 
individuals departing in late March and the other two in early April 
(Figure 4, lower right panel). However, there was no clear indication 
that the differences in migration onset were related to individual fit-
ness or age. In the second group of migrating individuals (purple and 
green individuals in Figure 4), the migration of the green individual 
led to nearly double the energetic demands as the purple individual 
because the total distance travelled was substantially longer (poste-
rior mean of 3,062 km for green vs. 1,824 km for purple, during the 
study period).

Prior to our analyses, little evidence existed that GWFG stop-
over on the Faroe Islands between wintering and staging areas. 
While the green individual began northward almost immediately 
upon departing wintering areas, the red individual seemed to lose 
its ability to orient correctly approximately half way through the 
trip (perhaps due to weather, influence of other individuals or other 
unknown causes). After a loop north of the UK, however, the red 

individual corrected its orienting and reached Iceland with a total 
distance travelled of 4,499 km and posterior mean speed of 7.28 
km/hr (as compared to 1,914 km [3.10 km/hr], 3062 km [4.96 km/hr] 
and 1,824 km [2.95 km/hr] for the blue, green and purple individuals 
respectively). Remarkably, the total migration period from wintering 
to staging areas for the red individual (Figure 4, lower right panel) 
was not longer than those individuals that flew directly to Iceland 
from Ireland (purple and blue). However, the red individual shifted 
its position westward after reaching Iceland initially on the east side.

3.2 | Group movement: Sandhill cranes

Sandhill cranes (SACR; Antigone canadensis) are a long-lived bird 
species found in wetland-rich landscapes across North America. 
SACR are divided into various migratory and nonmigratory man-
agement populations across North America. The midcontinent 
SACR population (MCP) is the largest, comprising c. 600,000 in-
dividuals (Kruse & Dubovsky, 2015). They breed from western 
Quebec, across the Canadian Arctic and Alaska to northeastern 
Russia in a variety of ecoregions from Arctic tundra to temper-
ate grasslands. Twice each year, SACR migrate through the Great 
Plains and winter from southern Oklahoma to northern Mexico, 

F I G U R E  4    Left panel: Model-averaged posterior predictive realizations of the geographic trajectories of four GWFG individuals 
(indicated in the colours: red, blue, green and purple) migrating from Ireland (bottom right) to Iceland (top left). Right panels: Marginal 
trajectories corresponding to those in the left panel for longitude and latitude respectively. Bottom right panel represents the model-
averaged warping function derivative dw(t)/dt associated with each individual by colour. The dashed grey line illustrates when the warp 
derivative equals one, above which temporal expansion is indicated
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using playa and coastal wetlands for roosting and foraging (Krapu, 
Brandt, Jones, & Johnson, 2011; Krapu, Brandt, Kinzel, & Pearse, 
2014).

The SACR is a species with a unique convergence of multiple 
user groups that share a common interest in the continued health of 
the species. Midcontinent SACR are a popular sport harvest species 
during fall and winter in Canada and the United States and are the 
most hunted population of cranes in the world. Furthermore, SACR 
attract a large and committed following of wildlife viewers. For ex-
ample, spring staging and courtship display along the Platte River 
in central Nebraska attracts tens of thousands of people each year 
(Stoll, Ditton, & Eubanks, 2006).

Four geographically distinct groups can be identified forming the 
midcontinent population. Each expresses differences in breeding, 
migration and wintering space use and timing; groups also differ in 
potential exposure to hunting (Krapu et al., 2011). For this study, all 
individuals were from a single group that breeds in western Alaska 
and Siberia (lesser SACR; a subspecies distinction) and represent the 
smallest individuals found in the midcontinent population. The lesser 
SACR group also has the greatest abundance, comprising c. 40% of 
the entire MCP (Krapu et al., 2011).

We analysed data from five adult SACRs that were captured 
by rocket-propelled nets (Wheeler & Lewis, 1972) during March 
and April 2011 in the North Platte River Valley near North Platte, 
Nebraska. Captured birds were tagged with a solar-powered GPS 

platform terminal transmitter (GPS-PTT; Geotrak, Inc., Apex, North 
Carolina) attached with two-piece leg bands and released in the 
same location. GPS-PTTs can remotely provide locations to within c. 
10 m of the true position of the transmitter; therefore, they are the 
most accurate noninvasive tracking method available for use on this 
wide-ranging species. Transmitters were programmed to record GPS 
locations every 6–8 hr, which provided daytime and night-time loca-
tions, allowing for detailed information on roosting sites, diurnal use 
sites and flight paths. We monitored and archived crane locations 
from data provided by ARGOS (www.argos-system.org).

We used the nested process convolution model (5–7) described 
in the Dynamic Movement Networks section, which results in a 
Gaussian process model of the form in Equation 2 (see Appendix S3 
for details), to analyse the SACR telemetry data for all five individu-
als simultaneously during late summer and autumn 2013. To account 
for heterogeneity in time, we specified the third kernel function 
(Equation 10) using latent space network weights νjk(t) = exp (−(zj(t) 
− zk(t))′(zj(t) − zk(t))), with priors for zj(t) as described in Appedix S3.

The results of fitting the migratory network model to five SACR 
individuals are presented in Figure 5, where the left panel shows the 
estimated trajectories for the SACR individuals in geographic space. 
The right panels of Figure 5 correspond to the marginal trajectories 
in latitude and longitude, respectively, and the grey symbols along 
the x-axis are placed at the time points of the positions in geographic 
space on the right panel.

F I G U R E  5    Left panels: Marginal posterior predictive realizations of individual trajectories corresponding to those in the right panel 
for northing and easting respectively. Right panels: Posterior predictive realizations of the geographic trajectories of five SACR individuals 
(indicated in the colours: red, dark blue, light blue, purple and orange) migrating from Siberia and Alaska (top left) to the southern United 
States and Mexico (bottom middle)

http://www.argos-system.org
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The trajectories in Figure 5 provide insight about the geographic 
positions and timing of the SACR individuals. However, we also 
gain inference on the network connectivity. Figure 6 illustrates the 
dynamic connectedness of each SACR individual during the mi-
gration via the derived quantity referred to as “individual degree”  
dj(t) = ∑k ≠ jνjk(t). Individual degree dj(t) is a function of the migratory 
network weights νjk(t); thus, we can assess its uncertainty using the 
Markov chain Monte Carlo (MCMC) output based on the model fit 
(using the equivariance property of MCMC, Hobbs & Hooten, 2015).

In the migratory group of SACR individuals we analysed, 
Figure 6 indicates that all individuals are connected to approxi-
mately one other individual in the migratory network during early 
September. However, in early October, the individuals we analysed 
reached the Prairie Pothole region of North America (near the × 

symbol in the right panel of Figure 5). During the week long stop-
over in the Prairie Pothole region, the red and orange individuals 
mostly stayed within a few kilometres of each other while the blue, 
green and purple SACR individuals remained farther away. SACR 
fly multiple kilometres daily between nocturnal roost wetlands 
and various diurnal foraging sites. Thus, these daily flights imply 
that the red and orange individuals were likely aware of each other 
during this portion of the migration, but less aware of the blue, 
green and purple individuals.

In addition to providing insights into the movement ecology and 
behaviour of animals, the migratory network model we described 
herein can be used to reduce the uncertainty of the individual tra-
jectories μj(t) when individuals in a migratory group are inferred to 
be connected. For example, Figure 7 illustrates the reduction in 
uncertainty that is gained by modelling all SACR individuals jointly. 
In Figure 7, the uncertainty in the predicted location for each in-
dividual is small when sufficient telemetry data exist but increases 
as the sparsity of data increases resulting in the “bumps” in the un-
certainty lines. When the individuals lacking telemetry data are well 
connected to other individuals with more regular data, the potential 
for a reduction in uncertainty is greatest. An example of uncertainty 
reduction occurred during the short period of time near September 
16 when data existed for all SACR individuals except the orange in-
dividual (bottom plot in Figure 7). In this case, we see a reduction 
in the uncertainty for the orange individual because it was well 
connected to at least one other individual at that time according to 
posterior individual network degree (Figure 6). Thus, a knowledge 
of all individuals in a migratory group helps account for changes in 
movement dynamics and can reduce uncertainty in the predicted 
locations of individuals. By contrast, the purple individual became 
more disconnected from the other individuals throughout the migra-
tion, and therefore, Figure 7 indicates no reduction of uncertainty 
when fitting the multiple individual model.

F I G U R E  6    Individual network degree dj(t) for five SACR 
individuals during a migration from Siberia and Alaska to the 
southern United States and Mexico. Large values for an individual 
indicate that it is more connected in the network. Colours 
correspond to the individual trajectories shown in Figure 5

F I G U R E  7    Location uncertainty for 
five SACR individuals over time indicated 
by the radius of the 95% credible circle 
for μj(t) on the y-axis. The dashed lines 
represent the uncertainty inferred 
from models fit independently to each 
individual (i.e. assuming wjk(t) = 0) whereas 
the solid lines represent the uncertainty 
resulting from the migratory network 
model. Colours correspond to the 
individual trajectories shown in Figure 5 
and the dashes below each line indicate 
times for which data exist
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4  | CONCLUSION

Convolution specifications for continuous-space models have been 
popular in spatial statistics (Higdon, 2002; Ver Hoef & Peterson, 2010), 
but they have only recently been applied to model animal trajecto-
ries (e.g. Hooten & Johnson, 2017a; Scharf et al., 2018). We demon-
strated how convolution-based statistical models for trajectories can 
be useful to model the trajectories of migratory birds. To account for 
heterogeneity in the dynamics of animal trajectories, we introduced a 
flexible and mechanistically linked temporal warping function that can 
improve inference on individual trajectories as well as provide quanti-
tative insight about the timing and duration of migration periods. The 
process convolution approach to movement modelling could also be 
useful for identifying migration corridors using telemetry data from 
multiple individuals (e.g. Buderman, Hooten, Ivan, & Shenk, 2016; 
Sawyer, Kauffman, Nielson, & Horne, 2009).

Following the convolution nesting approach of Scharf et al. 
(2018), we used three stages of convolutions to account for 
time-varying dynamics in individual trajectories (without relying on 
the temporal warping approach described previously for individual 
trajectories). The nesting of convolutions is particularly useful for 
characterizing the migratory behaviour of groups of birds because 
they may change their social network structure during different 
portions of the migration (e.g. the clustering of SACR individuals we 
observed during stopovers). Furthermore, the migratory network 
movement model may improve the inference pertaining to geo-
graphic position because it leverages the potential connectivity to 
borrow strength from individuals with more, or higher quality, data 
to assist the inference for individuals with missing data. This concept 
could be used to design optimal duty cycling for telemetry devices 
for groups of moving individuals to save battery power and extend 
the life of the device providing more data for movement ecology 
studies. Our approach to account for dependence among individuals 
in movement models is a model-based analogue to the concept of 
“cokriging,” where statistical prediction of multivariate quantities is 
of interest (Ver Hoef & Barry, 1998). Thus, similar methods can be 
used to model other multivariate spatio-temporal phenomena like 
atmospheric and geological processes.

Our methods rely on well-known Gaussian process specifica-
tions and we leveraged common techniques in big data settings 
to implement the models and improve inference. The temporal 
deformation approach we described has ties to spatial statistics 
(Sampson & Guttorp, 1992; Schmidt & O’Hagan, 2003) and pro-
vides an accessible way to fit nonstationary Gaussian process 
models using Bayesian model averaging. To compute posterior 
model probabilities, we applied the two-stage procedure devel-
oped by Barker and Link (2013) that allowed us to fit individual 
movement models and then post-process model output to com-
pare individual movement models in our GWFG example.

Discrete-time animal movement models are still commonly 
employed, however continuous-time continuous-space models for 
animal movement are useful when data are collected irregularly 
in time and continuous-time inference is desired. By extending 

continuous-time movement models to accommodate heteroge-
neous dynamics, we showed that convolution specifications provide 
a valuable means to characterize complex trajectories of migratory 
animals.
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