
Research article

Predicting the spatial distribution of ground flora on large domains using
a hierarchical Bayesian model

Mevin B. Hooten1,*, David R. Larsen2 and Christopher K. Wikle1

1Department of Statistics, University of Missouri, 222 Mathematical Sciences Building, Columbia,
Missouri 65211, USA; 2Department of Forestry, University of Missouri, Columbia, Missouri 65211, USA;
*Author for correspondence (e-mail: hooten@stat.missouri.edu)

Received 5 July 2002; accepted in revised form 28 March 2003

Key words: Bayesian statistics, Hierarchical Bayesian models, Landscape vegetation prediction, Spatial model-
ing, Missouri, USA, Ozark Highlands

Abstract

Accomodation of important sources of uncertainty in ecological models is essential to realistically predicting
ecological processes. The purpose of this project is to develop a robust methodology for modeling natural pro-
cesses on a landscape while accounting for the variability in a process by utilizing environmental and spatial
random effects. A hierarchical Bayesian framework has allowed the simultaneous integration of these effects.
This framework naturally assumes variables to be random and the posterior distribution of the model provides
probabilistic information about the process. Two species in the genus Desmodium were used as examples to il-
lustrate the utility of the model in Southeast Missouri, USA. In addition, two validation techniques were applied
to evaluate the qualitative and quantitative characteristics of the predictions.

Introduction

The spatial pattern of ecological processes has histor-
ically been of interest to researchers (Pielou 1977;
Turner 1989). Early spatial prediction efforts, in the
spirit of landscape ecology, spawned from the desire
to view ecological patterns on a spatial domain
(Turner 1989; Borcard et al. 1992; Guisan et al.
1998). Such efforts were usually motivated by goals
pertaining to understanding the biology of a species,
species associations, species response to the environ-
ment, and the notion of preserving biodiversity (e.g.,
Gleason 1926; Erickson 1943; Whittaker 1956; Day
and Monk 1974; Ernst 1978). Predicting spatially ex-
plicit ecological processes has evolved into a main
theme within the discipline of landscape ecology
(Forman and Godron 1986).

Several different methodologies for incorporating
spatial structure and covariate information have re-
cently been considered (e.g., Davis and Goetz 1990;
Cressie 1993; Smith 1994; Cherrill et al. 1995;
Franklin 1998; Zimmermann and Kienast 1999; Ho-

eting et al. 2000; Royle et al. 2001). These methods
range from ad hoc, fixed-neighborhood, and decision
based models to very complex statistical models.
Still, statistically rigorous methods for combining
species/environment relationships and explicit non-
Gaussian spatial structure at large numbers of predic-
tion locations are lacking. This can mainly be attrib-
uted to the computationally intensive nature of
accounting for dependence structure on such spatial
domains (Besag 1974; Ripley 1981; Cressie 1993).
Computational potential is increasing at an exponen-
tial rate, thus providing abundant opportunity for in-
novation in conceptual and computational methods
for dealing with high-dimensional problems. This pa-
per presents an approach to landscape level process
modeling on large domains while explicitly consider-
ing spatially correlated error.

Our goal is to combine information found within
abiotic covariates and spatial dependence that may act
as a surrogate for various biotic covariates, in order
to provide spatial predictions for vegetation as well
as the uncertainty in those predictions. This method
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combines important features of two different ap-
proaches to ecological modeling, making it a very
complete and robust alternative to conventional meth-
ods. Zimmermann and Kienast (1999) describe a
method and justification for mapping individual spe-
cies patterns using known environmental covariates,
while Royle et al. (2001) describe methods useful in
accounting for unknown ecological/biotic processes
through spatial parameter estimation and modeling.
Legendre (1993) emphasizes the importance of con-
sidering such effects and the biotic mechanisms they
may be representing (i.e., seed dispersal, colonization,
disturbance and competition). Although the aim of
this project is not to infer which biotic mechanisms
are imposing the spatial structure, the method we
present accounts for the spatial random effects as well
as species/environment relationships to model the dis-
tribution of a species on a landscape. Other similar
methods have been proposed (e.g., Augustin et al.
1996; Hoeting et al. 2000; Lichstein et al. 2002),
however the method presented in this paper maintains
statistical rigor and provides a spatial representation
of prediction error.

Constructing such a model within a statistically
rigorous framework and utilizing distributional infor-
mation with random parameters has made it possible
to qualitatively evaluate predictions, assess model ef-
fectiveness, and provide an unparalleled amount of
information at the pixel level. Knowledge of land-
scape level floristic information in addition to simu-
lation-based data helps our method bridge the gap
between the theoretical and applied realms of land-
scape modeling. We demonstrate this method using a
dataset collected as part of a large-scale ecological
project known as the Missouri Ozark Forest Ecosys-
tem Project (MOFEP).

Study area

Southeastern Missouri, USA is home to a topographi-
cally complex section of the country known as the
Ozark Highlands (Ozarks). Oklahoma and Arkansas
share a portion of this ancient and environmentally
heterogeneous area. More than 530 plant species have
been documented in the Ozark Highlands (Grabner et
al. 1997; Grabner 2000). Ecological and site defining
characteristics supply variables that are correlated
with plant diversity and individual species occurrence
and abundance (Grabner et al. 1997; Grabner 2000).
Once identified and quantified at a landscape level,

these variables are useful for describing vegetation
pattern.

A portion of the Current River Hills Subsection (an
ecological subregion of the Ozark Highlands) is home
to an extensive long-term ecological project known as
the Missouri Ozark Forest Ecosystem Project
(MOFEP). This project was designed to monitor and
assess the short and long-term effects of common
management practices on Ozark ecosystems. In this
project, the Missouri Department of Conservation in
conjunction with the University of Missouri and the
USDA Forest Service collected data at 9 sites rang-
ing in size from 265–530 ha (Figure 1). These sites
were selected because they had minimal edge, were
greater than 240 ha, and were largely free from an-
thropogenic manipulation for at least the past 40 years
(Brookshire et al. 1997). The floristic data were col-
lected at 10,368 specific locations throughout the 9
sites. This field dataset is one of the richest of its kind
and provides a solid foundation from which to base
landscape level predictions.

Ecological importance

The Ozarks provide a unique set of ecosystems of
which many important ecological components are
still not well understood. The triad of relationships
between vegetation, edaphic characteristics, and nu-
trient cycling seem to be especially interesting to re-
searchers.

Much of the Ozark Highlands consist of highly
weathered, nutrient poor, ultisols and alfisols (Mein-
ert et al. 1997). These edaphic factors provide an en-
vironment where leguminous nitrogen-fixing plants
appear to succeed in dominating a majority of avail-
able understory growing space. Such relationships are
partially documented but again not well understood
(Grabner et al. 1997; Grabner 2000). This project fo-
cuses on modeling the distributions of two herba-
ceous plants in the genus Desmodium with hopes that
in addition to providing a solid example for this new
modeling technique, it may provide a better under-
standing of ecological processes in the Ozark High-
lands.

This approach to landscape modeling may find ap-
plication in several disciplines. Although the focus in
this work is on developing a method to help us better
understand realistic vegetation distributions on a
landscape, other potential applications of this type of
model may include but certainly are not limited to:
(1) Spatio-temporal mapping of wildlife forage avail-
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ability, (2) Analysis of inter-species spatial interaction
(competition), (3) Landscape level identification of
areas susceptible to exotic invasion, (4) Analysis of
spatial and temporal patterns of biodiversity. Scale is
irrelevant to the methods presented here, thus the
same technique could be implemented at the molecu-
lar and global levels.

Material and methods

Field data

Before treatments were applied to MOFEP forest
stands, a set of initial data were collected in order to
assess pre-treatment conditions. The ground flora data
gathered in 1995 were determined to be the most
complete and representative, and therefore serve as
our main set of field data. Originally intended for use
with analysis of variance, these data are collected in
a spatially non-random scheme and are made up of a
total of 648 plots whereby each consists of four sub-
plots that are in turn represented by four 1 m2 quad-
rats (Figure 2). Vegetation in each quadrat is identi-
fied and quantified on a percent coverage basis
(Grabner 1996).

Specifically for our modeling effort, we converted
the dominance estimates to species presence/absence
and then aggregated over the subplot in order to re-
duce unwanted change in spatial support related to a

difference in measurement scales between the field
and covariate data. The binary nature of the subplot
aggregation is intuitive in that a species which is
present in one of the four quadrats is registered as
present for the subplot (hence coded as 1), while a
species absent from all quadrats in a subplot is re-
corded as absent from the subplot (and hence coded
as 0). The geographic location of the aggregate then

Figure 1. The 9 MOFEP sites are nested in the Ozark Highlands near the Current River.

Figure 2. The conceptual MOFEP plot layout and covariate grid
overlay (measurements in meters).
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becomes the center of the subplot. It is assumed that
the four quadrats represent the grid cell in which the
subplot center lies. The original dataset was conse-
quently reduced to 2592 geographic locations with
binary information for every species in the MOFEP
region.

Covariate data

As discussed earlier, several environmental descrip-
tors have varying degrees of influence on some plant
species in the Ozark Highlands and when geographi-
cally quantified, are potentially useful as covariates in
a predictive model of plant occurrence. The type and
magnitude of influence is highly species dependent,
therefore it was necessary to find diverse and repre-
sentative covariates that may be related to the success
of a given plant. Covariates were chosen based on
availability, resolution, as well as previous published
and unpublished analysis. The availability of certain
potentially important covariates (e.g., micro-climate,
specific soil type, animal influences, and forest can-
opy gaps) is limited due to the effort required in ex-
plicitly describing such information on a continuous
landscape. Methods have been developed for simulat-
ing biophysical variables based on non-biotic envi-
ronmental variables (i.e., Guisan and Zimmermann
2000), however the examples provided in this project
focus on covariates at hand. Many potentially impor-
tant covariates are available but do not share the same
resolution as the proposed predictions. Such covari-
ates would impose an unacceptable amount of error
and were therefore omitted from this study. Table 1
displays the full list of covariates used in this project
and their original formats as well as current descrip-
tions.

Climatic covariate influences are partially ab-
sorbed by topographic variables upon which localized
climatic features may be dependent in the Ozark
Highlands. Although future models of this type could
incorporate climate-related variables, inclusion in this
project was not feasible owing to a lack of availabil-
ity and resolution.

A Digital Elevation Model (DEM) is a very impor-
tant component of this project because it provides
several different types of information (e.g., slope, as-
pect, elevation, curvature) that are potentially impor-
tant as covariates in a statistical model. The original
DEM’s used in this project were created and provided
by Krystansky and Nigh (2000) at the Missouri Eco-
logical Classification Project. All vector-based cova-
riates were rastorized to a grid cell size of 10 m2. The
choice of this cell size was based on the following
four reasons: (1) the bulk of grid-based covariates
originated from a digital elevation model of the same
resolution; (2) this area represents the finest resolu-
tion possible without being overwhelmed by mea-
surement error; (3) the resolution is necessary to ad-
equately describe Ozark landforms and subtle
topography; and (4) it minimizes the difference in
scales between field subplots and covariates.

The prediction domain chosen is nested within
MOFEP sites one and two (Figure 4) and is repre-
sented by two land type associations, two parent ma-
terial types, areas of variable depth soil, all aspects,
variable relief and elevations (Figure 3). The predic-
tion domain ( � 328 ha) consists of a [256 × 128]
grid resulting in 32,768 prediction locations. Of the
216 subplots that fall within the prediction domain,
Desmodium glutinosum is present on 67 and Desmo-
dium nudiflorum is present on 159. All further cova-
riate and prediction images will be shown on this
domain. These gridded covariates (Figure 3) are ex-

Table 1. All covariates with previous and current descriptions.

Covariate Format Type Interval/Categories Origin Original Format

SWnessa grid continuous [−1–1] DEM grid

Rel. Elev.b grid continuous [0–1] DEM grid

LTAc grid categorical 2 GIS layer vector

VDd grid categorical 2 model grid

aSimilar to Beers aspect transform (Beers et al. 1966), (represents most “southwest” aspects as 1 and most “northeast” as −1)
bRelative Elevation (continuous measure of slope position, where 0 represents the bottom of the hill and 1 represents the top)
cLand Type Association (although this region of the Ozarks is made up of many LTA’s, only two were deemed to be important to this Genus
of plant)
dVariable depth soil (this is an ecological land type in the Ozarks and is speculated by researchers to be one of the most important variables
influencing the growth of Desmodium)
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pected to account for a majority of the variation in
the distributions of these two species.

Basic model

A hierarchical Bayesian framework was used to im-
plement a generalized linear mixed model (hereafter
GLMM). Many other vegetation prediction projects

have used generalized linear models, especially with
logistic link functions (e.g., Smith 1994; Franklin
1998; Guisan et al. 1998; Zimmermann and Kienast
1999). These probablistic models are convenient be-
cause of their intuitive nature and ease of implemen-
tation. While it is possible to introduce a spatial ran-
dom effect in the GLM framework, thus obtaining the
GLMM, problems with estimation and implementa-

Figure 3. Covariates used in model.
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tion arise when predicting on large domains (where
correlation is described as a function of distance, not
just neighborhood). A GLMM implemented through
a Bayesian approach provides the ability to deal with
uncertainty related to spatial correlation (Clayton
1997; Gilks et al. 1997; Royle et al. 2001).

Conceptually, hierarchical modeling is based on a
simple result from probability. Consider three random
variables X, Y, Z with the joint probability distribu-
tion [X, Y, Z].* This distribution can always be fac-
tored into component distributions such as: [X, Y, Z]
= [Z | Y, X][Y|X][X]. Thus, there is a hierarchical
structure to the distributions. The idea is that the joint
distribution [X, Y, Z] may be very complicated and
difficult to specify, but a series of conditional models
are simpler to specify.

In Bayesian modeling, one is interested in updat-
ing a prior belief about a random variable given data.
For example, assume we have observations Z of some
process Y. We are interested in updating our prior
distribution [Y] with data to get the posterior distri-
bution [Y|Z]. To do this, we need information about
how the data depend on the process, [Z|Y], which is
often referred to as the “likelihood”. Bayes’ Theorem
provides this updating:

�Y�Z� �
�Z�Y��Y�

�Z�
(1)

Often, there are conditioning parameters, say �,
that describe the distributions. These can also be
given prior distributions and one can utilize the hier-
archical decomposition within the Bayesian frame-
work. For example:

�Y, ��Z� � �Z�Y, ���Y������. (2)

The challenging aspect of such models in compli-
cated settings is the specification of the component
models and the evaluation of the posterior. Very often
the normalizing constant in (2) cannot be found ana-
lytically and Monte Carlo methods must be consid-
ered. Recent advances in Markov Chain Monte Carlo
(MCMC) have dramatically increased the complexity
of models that can be considered by this approach
(Gilks et al. 1997).

Hierarchical spatial model

In our problem of predicting plant species presence
or absence we can think of the data as representing
some binary random variable. Specifically, Yi = 1 if a
species is present at spatial location si (i = 1,. . .,m)
and Yi = 0 if it is absent. If we let Yi be a Bernoulli
random variable then E(Yi) = E(Yi = 1) = pi. Our goal
is to model this mean response in terms of some lin-
ear function of the nx covariates Xij, (i = 1,. . .,m),(j =
1,. . .,nx), e.g., pi = f(xi��), where xi� = (xi1,. . .,xinx

)�
and � is the associated vector of parameters. Com-
mon examples of f() with binary variables include the
logistic function and the probit function. In general,
these ideas fall under the category of generalized lin-
ear models (GLMs) in statistics (e.g., McCulloch
1994). In our case, we know that the chosen covari-
ates can’t possibly explain all of the variability in the
mean response. Thus, we consider adding random ef-
fects, �i, as surrogates for unobserved biological and
environmental covariates. That is, pi = f(xi�� + �i.
With the random effect, this model is now known as
a generalized linear mixed model (GLMM) (e.g., Mc-
Culloch 1994). One must then specify a distribution
for the �i. We expect these random effects to be cor-
related in space.

Traditional likelihood-based approaches for esti-
mation of GLMMs with correlated random effects can
be difficult to implement with complicated spatial ef-
fects and large prediction domains. Diggle et al.
(1998) showed that one could easily account for such
structures in a hierarchical Bayesian setting. How-
ever, their approach, like the traditional approach,
cannot easily be implemented on very large predic-
tion domains. Thus, we outline a hierarchical Baye-
sian probit model (i.e., f() is the cumulative normal
distribution function denoted by �()) with spatial ran-
dom effects that can be implemented on very high di-
mensional prediction domains, as encountered in
landscape ecology.

Albert and Chib (1993) showed that the introduc-
tion of a latent (hidden) process to the probit formu-
lation greatly facilitates Bayesian computation. We
follow their approach, with two critical modifications:
(1) Introduction of spatial random effects and, (2) the
spectral parameterization of those effects. Our model
is described below.

* Note that throughout the paper we use the bracket
notation “[]” to refer to a probability distribution. A
conditional distribution, say A conditioned on B, is
denoted as [A|B].
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Let:

Yi �� 1 if Zi � 0, species is present at spatial location i

0 if Zi � 0, species is absent at spatial location i, �
(3)

where Zi is a latent spatial process with distribution
Zi � N(xi�� + �i, 1), and �i is a spatially correlated
Gaussian process with mean zero. Then, it can be
shown that pi = E(Yi) = �xi�� + �i). Although the
data only apply to Zi, (i = 1,. . ., m) we will ultimately
be interested in predictions of pj (j = 1,. . .,n) which
may include many sites in addition to where we have
data (n � m). Note that our covariates are available
at all m locations as well. Thus, we consider the mul-
tivariate normal distribution Z|�, � � N(X� + �,I)
where Z is n × 1, � is p × 1, x is n × p, � is n × 1,
and I is an n × n identity matrix. In the hierarchical
spirit we must also specify distributions for � and �.
We select � � N�0, 	�

2R�� and � � N(�o, 
�), where
R� is a spatial correlation matrix. In principle, an
MCMC algorithm can be developed for this model
analogous to Albert and Chib (1993). However, when
n is of order 105 or more (as in our example), such
algorithms are not feasible. Thus, we make one addi-
tional modification. We note that the spatial random
effects can be rewritten � = ��, where � is an n × n
matrix of orthonormal basis functions (e.g., Fourier
basis functions, wavelets, etc.) and, � are the associ-
ated spectral coefficients. Specifically, as in Wikle
(2002) we let � be Fourier basis functions so that
��� = � is a discrete Fourier transform and � = ��
is the associated inverse transform. There are ex-
tremely efficient algorithms for computing these
transforms, even in high dimensions (e.g., the Fast
Fourier Transform). Thus, we write Z|�,� � N(x� +
��, I) where � � N��0, 	�

2R��. In addition to fast
computation, this has the advantage that for station-
ary processes the Fourier spectral coefficients are ap-
proximately independent (e.g., Shumway and Stoffer
2000). Thus, 	� is a diagonal matrix which further
simplifies computation. Finally, we don’t know a pri-
ori the spatial dependence in � (and thus �) or the
variance component 	�

2 (and thus 	�
2), although we

have some understanding of these features through
preliminary data analysis. Consequently, we account
for our understanding and our uncertainty about such
understanding by specifying informed prior distribu-
tions on parameters. We allow 	�

2 � IG�q�, r�� where
IG() refers to an inverse gamma distribution. Based

on preliminary data analysis it was assumed that the
spatial dependence for � can be modeled well by an
isotropic exponential correlation function, r�(d) =
exp(−�d), where d is the distance between two loca-
tions and � is the spatial dependence parameter, � >
0. As discussed in Wikle (2002), if one knows r� (d)
then one can specify R�(�) as well. Thus, we let � �
UNIF (u1, u2) to finish out the model hierarchy, where
UNIF(a,b) refers to a uniform distribution on the con-
tinuous closed interval between a and b. The hierar-
chical model is summarized as follows:

Yi �� 1 if Zi � 0, species is present at spatial location i

0 if Zi � 0, species is absent at spatial location i �
(4)

Z��, � � N�X� � ��, I� (5)

���0,�� � N��0,��� (6)

���0, 	�
2, � � N��0, 	�

2R����� (7)

	�
2 �q�, r� � IG�q�, r�� (8)

��u1, u2 � UNIF�u1, u2� (9)

Where, �o, 
�, �o, q�, r�, u1, and u2 are specified.

Coding the model

The process of iterative sampling from the posterior
distribution is laborious, therefore computational ef-
ficiency is critical in implementing such a model. A
programming language with spectral-transform capa-
bilities and sparse matrix storage running on a dual-
processor computer with large memory was used to
perform most of the intensive operations. Efficient
software, fast processors and disk space are not
enough to implement the models proposed here.
Therefore, the need for a mathematically efficient al-
gorithm is the key for including a valid spatial com-
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ponent using large data sets over extensive prediction
domains ([256 × 128] or 32,768 prediction locations).
Discussion of such algorithms can be found in Hooten
(2001) and Wikle et al. (2001), Royle et al. (2001),
Wikle (2002).

Validation methods

Validation is critical in a hierarchical modeling
project because the complexity of a high dimensional
hierarchical GLMM makes it more difficult to get
statistical goodness-of-fit measures. Therefore, inno-
vative methods must be devised to evaluate the effec-
tiveness of a hierarchical model. Neter et al. (1996)
mention that there are three conventional ways to val-
idate a regression model: (1) collection of new data
to check the model and its predictive ability; (2) com-
parison of results with theoretical expectations, ear-
lier empirical results, and simulation results; (3) use
of holdout sample to check the model and its predic-
tive ability. Ideally, one would want to use a seperate
but temporally similar data set for assessing the pre-
dictive power of the model at locations where data
were not originally present. This would be especially
helpful since this project is aimed at predicting con-
tinuously across a spatial domain. Independent data
sets are available for selected MOFEP regions, how-
ever the prediction grid chosen for this project does
not encompass such regions. It is not feasible to col-
lect another dataset because the presence of vegeta-
tion has been affected by temporal variability and dis-
turbance from management practices. Therefore,
comparison of predictions with independent data is
not an option for model validation.

The comparison of results with theoretical expec-
tations offers promising insight into realistic natural
processes. Simulation offers theoretical justification
for implementing a spatial component within the
model, however it is not a direct validation of the
predictions.

The most promising method for model validation
may be the third approach suggested by Neter et al.
(1996). By withholding a portion of the original data,
the results can be validated by the randomly withheld
sample. In a dataset with only 216 observations, it is
difficult to get a sufficiently large sample to be effec-
tive in assessing model accuracy. However, the
dataset can be iteratively split into two sets, a model-
building set and a validation or prediction set (i.e.,
cross-validation), for a series of model runs. Upon
each iteration the validation set is compared with the

predictions gained from modeling with the model-
building set. The comparisons are reported in contin-
gency tables and also the independence in predicted
probabilities given the true data are tested for signifi-
cance with a chi-squared test. Zar (1984) provides the
following formulation of a 2 test statistic:

2 �

n��f1, 1 f2, 2 � f1, 2 f2, 1� �
n

2�2

�C1��C2��R1��R2�
(10)

Where the values are from Table 2. Where “P” refers
to presence and “A” to absence. The use of such a
test assumes a null hypothesis that the predicted oc-
currence of a species is independent of the true oc-
currence of a species. The alternate hypothesis is that
the predicted occurrence of a species is associated
with the true occurrence of a species. Chi-squared
tests are commonly used for assessing the accuracy
of binary regression models. The chi-squared test also
assumes independent observations which isn’t the
case here. However, it is assumed that since the spa-
tial dependence is not overly large that the random
selection process gives fairly independent samples.
Nevertheless, the p-values in this setting are only con-
sidered guides and are not used for inferential deci-
sions. It is important to note that such tests applied in
similar situations are subject to arbitrary threshold
values and although informative, may not always pro-
vide adequate validation for models of this type.
Some studies have devised certain methods for cali-
brating such thresholds (e.g., Franklin 1998). This
project utilized chi-squared tests in conjunction with
boxplots for predicted probabilities versus real occur-
rence to suggest that a given threshold is reasonable.

The primary benefit of using a rigorous statistical

Table 2. D. glutinosum and D. nudiflorum (Threshold=0.5).

Real Predicted

P A total

D. glutinosum

P 18 15 33

A 10 57 67

total 28 72 100

D. nudiflorum

P 64 7 71

A 16 13 13

total 80 20 100

494



approach to modeling is the ability to use a model-
based validation. In this hierarchical framework there
is a marginal posterior distribution for pi correspond-
ing to each element of the spatial prediction grid (Fig-
ure 5). Just as a grid cell posterior mean can be re-
ported by averaging the posterior predictions for
parameters of interest, a measure of error about the
posterior mean (standard deviation or variance) can
be reported as well. It follows that these measures can
be presented in the form of an image and represent
the spatial distribution of prediction error on the do-
main. Such images provide a reasonable approach
with which to evaluate model accuracy and add to the
overall validation of the model (Royle et al. 2001).

Results

Predictions

An area within sites 1 and 2 (Figure 1) consisting of
nearly 330 hectares ( � 33,000 grid cells) was chosen
to test the model. Of the 2592 MOFEP subplots, 216
fall within the aforementioned area (see Figure 4) and
these are utilized in this form of the model. Approxi-
mately 32% of the data locations contained Desmo-
dium glutinosum while 74% of the sampled locations
contained Desmodium nudiflorum. The data locations

only make up 0.66% of the prediction grid and are
therefore very sparse within prediction domain.

By predicting at a discrete and contiguous number
of locations (grid cells in this case) over a spatial do-
main, maps that display information about the poste-
rior distribution can be created. Maps based on pre-
dicting the E(Yi) process, such as those shown in this
section, can be viewed as probabilistic maps of spe-
cies occurrence, such that map intensities can range
from 0 to 1 (1 being 100% probability of species oc-
currence).

The MCMC algorithm (Gibbs sampler) was run
for 10,000 iterations after a burn-in period of 2000 it-
erations. Resulting parameter distributions were sum-
marized in the form of histograms. Figure 7 shows the
marginal posterior histograms for the parameters, �,
in the model for both species. It can be inferred that
the covariates are indeed important factors influenc-
ing the occurrence of these species because the dis-
tributions for � generally do not overlap zero. In the
case of Land Type Association for Desmodium gluti-
nosum, a slight overlap of zero is evident. This sug-
gests that the Land Type Association covariate is per-
haps less important than the other covariates when
modeling this species.

Posterior prediction means, p̂i, were obtained from
the Gibbs sampler for each unit in the prediction do-
main and plotted as an image (Figures 8 and 10). Re-
alizations from the posterior distribution of pi graph-
ically portray the variablilty in distributions (Figures
9 and 11).

The simultaneous visual analysis of the prediction
images and posterior predictions of the � parameters
reveals important ecological differences in the re-
sponse of the two species to certain covariates. Wor-
thy of special attention are the opposite responses of
the two species to the relative elevation and variable
depth soil covariates.

Validation

Two primary methods were used for assessing the
model accuracy: (1) testing for independence between
predicted occurrence and real occurrence using cross-
validation; (2) presenting maps of prediction error in
the form of marginal posterior standard deviations for
pixel means.

A threshold value was used to create binary values
from the mean probability images so that when the
probability is greater than the threshold the species is

Figure 4. The prediction domain spanning MOFEP sites 1 and 2.
Red and blue pixels represent the subplot locations.
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thought to be present and when it is less than the
threshold the species is thought to be absent. Conven-
tionally, a probability threshold of 0.5 is used, how-
ever this may not always be the most reasonable
threshold for these predictions because the data may
not encompass the threshold. Determining if the
model is distinguishing between those subplots where
the species is present and those where it is absent is
sufficient. Therefore chosing a threshold between the
two distributions of predictions is the most reasonable

approach. Boxplots showing the differentiation of
predicted probabilities for Desmodium glutinosum
and Desmodium nudiflorum are shown in Figure 12.
Such boxplots suggest that a 50% threshold is a rea-
sonable cutoff for the predicted probabilities in this
case.

Approximately 50% of the original data were ran-
domly withheld in an iterative fashion and the model
output was aggregated in order to test for indepen-
dence as discussed in section 2.7. The two-by-two

Figure 5. Graphical illustration of the distributional information available at the pixel-level provided by the posterior distribution.

Figure 6. Empirical correlograms for the two species and exponentially fitted lines with parameter theta and root mean squared error of fitted
model.
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contingency tables for both species are shown below.
The chi-squared test for Desmodium glutinosum
yielded a 2 value of 15.30 and a p-value of < 0.0001
(calculated using Table 3). A 2 value of 13.63 and a
p-value of 0.0002 was found for Desmodium nudiflo-
rum (calculated using Table 4).

The second part of the validation is based on maps
of prediction error presented in Figure 13. These
maps, created using the marginal posterior standard
deviations for pixel means, offer a rigorous spatially
based measure of model accuracy. The results of such
mapping efforts are similar for both species, and show
that the prediction error is greatest at locations far-
thest from the data, as expected.

Discussion

Results of the modeling were informative. A pattern
of spatial arrangement in the data was evident and
expected. As mentioned, this is likely due to the ef-
fect of influential spatial processes in environmental
covariates. However if none of these covariates are
explicitly known on the domain, a pure spatial pre-
diction could be gained from the geographic location
and value of the data alone.

Patterns in the predicted images for the posterior
mean of the spatial process somewhat resembled that
of the images for covariate-based predicted means.
This similarity occurs because the spatial process is
trying to absorb any spatial correlation in the un-
known covariates. Differences between the two pre-
dictions illustrate the need for spatially explicit cova-
riates in the model.

The modeled residual spatial random field (�)
given in Figures 9 and 11 can be thought of as the
“missing covariate(s)” and will ultimately improve
the accuracy of the model. Images given in the same
figures illustrate that the �-process differs by species
as suggested in the exploratory analysis (Figure 6).
From an analytical standpoint, it is clear that the pro-
cess is most evident in neighborhoods about the data.
From an ecological standpoint, these neighborhoods
likely have an implicit biological meaning. The eval-
uation and interpretation of a given species �-process
could be extensive and is therefore beyond the scope
of this project. It is recognized however, that the re-

Figure 7. Histograms for � in the model.

Table 3. D. glutinosum

Predicted

Threshold = 0.5 P A total

P 18 15 33

Real A 10 57 67

total 28 72 100

Table 4. D. nudiflorum

Predicted

Threshold =0.5 P A total

P 64 7 71

Real A 16 13 29

total 80 20 100
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Figure 8. Data locations and posterior mean with and without covariates for Desmodium glutinosum.

Figure 9. Residual spatial process and two realizations for Desmodium glutinosum.

Figure 10. Data locations and posterior mean with and without covariates for Desmodium nudiflorum.

Figure 11. Residual spatial process and two realizations for Desmodium nudiflorum.
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sidual process is probably a synthesis of complex in-
teractions, both biological and environmental.

The predicted mean images for each plant graphi-
cally depict relationships between the vegetation and
environment (Figures 8 and 10). Mathematically, the
grid cell intensities of such maps are based on rigor-
ous relationships and represent the best possible pre-
dictions available. Ecologically, the predictions are

based on a combination of environmental factors and
surrogates for biological factors, making them a very
complete and robust reflection of the species response
on a continuous spatial domain. Theoretically, this
response might be interpreted as the spatial prediction
of vegetation occurence or perhaps suitable habitat. It
is suggested that the interpretation be flexible so it
may individually suit a specific project.

Figure 12. Predicted probabilities vs. real occurrence. Widths are relative to the amount of data while notches represent a 95% confidence
interval for the median.

Figure 13. Standard deviation map for the prediction mean of D. glutinosum and Desmodium nudiflorum.
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Predicted maps of the mean posterior probabilities
take the form of the covariates. Therefore the pre-
dicted images (represented by a grid) could be uti-
lized in a GIS for an endless number of applications.
Additionally, output from the proposed model could
be used as covariates in another model (such as a
model predicting wildlife habitat, fire susceptibility,
forage, . . .). Importantly, measures of uncertainty re-
lated to these covariates are then available (such in-
formation has traditionally been unavailable).

The distributional nature of the posterior predic-
tions is difficult to portray with a map of prediction
means because the mean response of a species at a
given time and location is represented by a single
value. However, if a realization is taken from each
pixel distribution on a contiguous domain, the result
is one of infinitely many maps of possible real spe-
cies response. Such a map, as presented in Figures 9
and 11 can be thought of as a snapshot of a stochastic
process. These maps have much to offer as founda-
tions for theoretical projects investigating patch dy-
namics, realistic vegetation patterning, and environ-
mental simulation.

The purpose of this project is to provide methods
that are robust enough to be applied to a number of
different applications. Of course a specific scenario
was chosen to test and present the proposed methods
and as such the validation of this model applied to the
specific scenario has the purpose of illustrating cer-
tain advantages of the technique.

The chi-squared tests provided a way to evaluate
the ability of the model to distinguish between those
areas where a species should be present or absent. The
tabular results of the tests showed that the specified
threshold of 0.5 is a reasonable classification criteria
for these data. However, as mentioned earlier, statis-
tics that are dependent on such analyst-based classi-
fications are subjective. However, they still provide a
way to test the differentiating power of the model.
Chi-squared tests used here prove that the model is
distinguishing between presence and absence for both
species. Resulting p-values allow the rejection of a
null hypothesis that predictions and actual data are
independent.

It was mentioned earlier that one advantage of us-
ing a statistical model over a more ad hoc approach,
is the ability to provide a model-based estimate of
prediction error. In a spatial setting this information
is especially valuable for it can provide an error esti-
mate at each prediction location. In the form of a
map, this information can be compared to the loca-

tion of field data, covariate effects, residual spatial
effects, and ultimately the predictions. The practice of
reporting error for spatially explicit data is becoming
more popular (e.g. Justice and Running 1998) and it
is convenient that the approach presented here auto-
matically provides a way to incorporate such infor-
mation.

It is common for maps of marginal posterior stan-
dard deviations to illustrate that the model is good at
predicting near the locations of the actual data, and
gains some error as it is applied further from the data
(Royle et al. 2001). The maps presented in Figure 13
illustrate this expected patterning of prediction error.
Overall, the standard deviations of the posterior mean
predictions are quite small and suggest that the model
is doing a good job predicting occurrence for both
species (especially near the locations of the data).
Such maps have the potential to be quite useful in
other models where it is appropriate to specify uncer-
tainty related to prior information. Ultimately this
chain of utilizing the output from one model to for-
mulate priors or data in new models could prove to
be useful in modeling more complex systems.

Conclusions

The purpose of this project was to develop and test a
robust methodology for realistically accounting for
uncertainties in modeling natural processes at a land-
scape level. Specifically, this problem was considered
from a hierarchical Bayesian perspective. This ap-
proach has allowed the incorporation of a critical spa-
tial component into a generalized linear mixed model.
Similar modeling methodologies have been proposed,
however many are currently focused on small spatial
domains because of mathematical and computational
limitations. The formulations presented here are
aimed at predicting natural processes on larger do-
mains.

The methodology presented here was tested using
part of a landscape level dataset collected in the Mis-
souri Ozarks as part of the Missouri Ozark Forest
Ecosystem Project. Relationships between vegetation
occurrence and known environmental features were
investigated in an exploratory analysis. Residual spa-
tial random effects in the data were observed and ex-
tensively analyzed via several methods. Simulations
were conducted to insure that the proposed methods
of informing a spatial prior were indeed reasonable.
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An approach for constructing generalized linear
models was modified to include a spatial parameter.
The coding of this model was optimized using a spec-
tral transformation that invariably simplified the for-
mulation of the marginal posterior distributions. The
integrations required to analytically find the necessary
joint distributions were intractible, therefore the
model was implemented using an iterative process
known as Markov Chain Monte Carlo that allowed
samples to be drawn from the posterior distribution
through a Gibbs sampler.

Parameter distributions, posterior mean prediction
images, maps of the residual spatial process, and re-
alizations were provided in order to show the range
of information available through this approach. Dif-
ferent methods for validating such models were pre-
sented and applied to the modeling results for Des-
modium glutinosum and Desmodium nudiflorum.
Both validation methods suggested that this model is
performing quite well overall and is especially accu-
rate at predicting near the original data.

As mentioned earlier, probabilistic results of the
proposed model using the example dataset could be
viewed as the spatial prediction of a species on a
continuous domain at the time of data collection or
as the realized niche of the given species. It was not
the intent of the project to determine which descrip-
tion is most appropriate but to provide the most ro-
bust and informative predictions about the ecological
process.

Finally, these methods provide a partial answer to
a problem alluded to by Clark et al. (2001), where
they state that the failure to appropriately account for
the various sources of ecological uncertainty will re-
sult in misleading inference and even though recent
techniques in atmospheric science are available, ecol-
ogy seems to be a late adopter. The intent of this pa-
per was not to make inference about the biology of a
certain species, however the two specific examples
discussed are meant to show how the methodology
could be applied in an ecological setting. The next
step might be for ecologists to apply this or a combi-
nation of this and other methods to a specific area of
interest or concern in order to make management de-
cisions or scientific observation.

Acknowledgements

We thank the following parties: NASA and the Uni-
versity of Montana for funding through the EOS
Training Center Project. UMC Quantitative Silvicul-
ture Laboratory for computational machinery and
software. Missouri Department of Conservation for
unparalleled involvement in a Missouri landscape
level project. Jennifer Grabner and Tim Nigh for pro-
viding field data and many helpful comments and
suggestions. John Krystansky and B.J. Gorlinski for
landscape grid and GIS data as well as many helpful
comments and suggestions. Wikle’s research was sup-
ported by a grant from the US Environmental Protec-
tion Agency’s Science to Achieve Results (STAR)
program, Assistance Agreement No. R827257-01-0.

References

Albert J. and Chib S. 1993. Bayesian analysis of binary and poly-
chotomous response data. Journal of the American Statistical
Association 88: 669–679.

Augustin N., Mugglestone M. and Buckland S. 1996. An autolo-
gistic model for the spatial distribution of wildlife. Journal of
Applied Ecology 33: 339–347.

Beers T., Dress P. and Wensel L. 1966. Aspect transformation in
site productivity research. Journal of Forestry 64: 691–692.

Besag J. 1974. Spatial interaction and the statistical analysis of lat-
tice systems. Journal of the Royal Statistics Society 36: 192–
236.

Borcard D., Legendre P. and Drapeau P. 1992. Partialling out the
spatial component of ecological variation. Ecology 73: 1045–
1055.

Brookshire B., Jensen R. and Dey D. 1997. The Missouri Ozark
Forest Ecosystem Project: past, present, and future. In: Brook-
shire B. and Shifley S. (eds), Proceedings of the Missouri Ozark
Forest Ecosystem Project symposium: an experimental ap-
proach to landscape research, number GTR NC-193. US De-
partment of Agriculture, Forest Service, North Central Forest
Experiment Station, St. Paul, Minnesota, USA, pp. 1–25.

Cherrill A., McClean C., Watson P., Tucker K., Rushton S. and
Sanderson R. 1995. Predicting the distributions of plant species
at the regional scale: A hierarchical matrix model. Landscape
Ecology 10: 197–207.

Clark J., Carpenter S., Barber M., Collins S., Dobson A., Foley J.
et al. 2001. Ecological Forecasts: An emerging imperative. Sci-
ence 293: 657–660.

Clayton D. 1997. Markov Chain Monte Carlo in Practice chapter
16, Generalized linear mixed models. Chapman & Hall, New
York, New York, USA, pp. 276–301.

Cressie N. 1993. Statistics for Spatial Data: Revised Edition. John
Wiley and Sons, New York, New York, USA.

Davis F. and Goetz S. 1990. Modeling vegetation pattern using
digital terrain data. Ecology 4: 69–80.

Day F. and Monk C. 1974. Vegetation pattern on a southern appa-
lachian watershed. Ecology 55: 1064–1074.

501



Diggle P., Tawn J. and Moyeed R. 1998. Model-based geostatistics
(with discussion). Applied Statistics 47: 299–350.

Erickson R. 1943. Population size and geographical distribution of
Clematis fremontii var. riehlii. Annals of the Missouri Botani-
cal Garden 30: 63–68.

Ernst W. 1978. Discrepancy between ecological and physiological
optima of plant species: a re-interpretation. Oecologica Plan-
tarum 13: 175–188.

Forman R. and Godron M. 1986. Landscape Ecology. John Wiley
and Sons, New York, New York, USA.

Franklin J. 1998. Predicting the distribution of shrub species in
southern California from climate and terrain-derived variables.
Journal of Vegetation Science 19: 733–748.

Gilks W., Richardson S. and Spiegelhalter D. (eds) 1997. Markov
Chain Monte Carlo in Practice. Chapman & Hall, New York,
New York, USA.

Gleason H. 1926. The individualistic concept of plant association.
Bulletin of the Torrey Botanical Club 53: 7–26.

Grabner J. 1996. MOFEP botany: pre-treatment sampling and data
management protocol. MDC unpublished report.

Grabner J. 2000. Ground layer vegetation in the Missouri Ozark
Forest Ecosystem Project: Pre-treatment species composition,
richness, and diversity. In: Brookshire B. and Shifley S. (eds),
Missouri Ozark Forest Ecosystem Project: Site history, Soils,
Landforms, Woody and Herbaceous Vegetation, Down Wood,
and Inventory Methods for the Landscape Experiment, number
GTR NC-208. US Department of Agriculture, Forest Service,
North Central Forest Experiment Station, St. Paul, Minnesota,
USA, pp. 107–131.

Grabner J., Larsen D. and Kabrick J. 1997. An analysis of MOFEP
ground flora: pre-treatment conditions. In: Brookshire B. and
Shifley S. (eds), Proceedings of the Missouri Ozark Forest Ec-
osystem Project symposium: an experimental approach to land-
scape research, number GTR NC-193. US Department of Ag-
riculture, Forest Service, North Central Forest Experiment
Station, St. Paul, Minnesota, USA, pp. 169–197.

Guisan A., Theurillat J. and Kienast F. 1998. Predicting the poten-
tial distribution of plant species of plant species in an alpine
environment. Journal of Vegetation Science 9: 65–74.

Guisan A. and Zimmermann N. 2000. Predictive habitat distribu-
tion models in ecology. Ecological Modelling 135: 147–186.

Hoeting J., Leecaster M. and Bowden D. 2000. An improved model
for spatially correlated binary responses. Journal of Agricul-
tural, Biological, and Environmental Statistics 5: 102–114.

Hooten M. 2001. Modeling and mapping the distribution of le-
gumes in the Missouri Ozarks. Master’s Thesis, University of
Missouri, Columbia, Missouri, USA.

Justice C. and Running S. 1998. The Moderate Resolution Imag-
ing Spectroradiometer (MODIS): land remote sensing for glo-
bal change research. IEEE Transactions on Geoscience and Re-
mote Sensing 96.

Krystansky J. and Nigh T. 2000. Missouri Ecological Classifica-
tion Project, ELT Model.

Legendre P. 1993. Spatial autocorrelation: Trouble or new para-
digm? Ecology 74: 1659–1673.

Lichstein J., Simons T., Shriner S. and Franzreb K. 2002. Spatial
autocorrelation and autoregressive models in ecology. Ecologi-
cal Monographs 72: 445–463.

McCulloch C. 1994. Maximum likelihood variance components
estimation for binary data. Journal of the American Statistical
Association 89: 330–335.

Meinert D., Nigh T. and Kabrick J. 1997. Landforms, geology, and
soils of the MOFEP study area. In: Brookshire B. and Shifely
S. (eds), Proceedings of the Missouri Ozark Forest Ecosystem
Project symposium: an experimental approach to landscape re-
search, volume GTR. US Department of Agriculture, Forest
Service, North Central Forest Experiment Station, St. Paul,
Minnesota, USA, pp. 169–197.

Neter J., Kutner M., Nachtsheim C. and Wasserman W. 1996. Ap-
plied Linear Statistical Models. 4th edn. WCB/McGraw-Hill,
Boston, Massachusetts, USA.

Pielou E. 1977. Mathematical Ecology. John Wiley and Sons, New
York, New York, USA.

Ripley B. 1981. Spatial Statistics. John Wiley and Sons Inc, New
York, New York, USA.

Royle J., Link W. and Sauer J. 2001. Predicting Species Oc-
curences: Issues of Scale and Accuracy, chapter Statistical
mapping of count survey data. Island Press, Covello, Califor-
nia, USA.

Shumway R. and Stoffer D. 2000. Time series analysis and its ap-
plications. Spring-Verlag, New York, New York, USA.

Smith P. 1994. Autocorrelation in logistic regression modeling of
species’ distributions. Global Ecology and Biogeography Let-
ters 4: 47–61.

Turner M. 1989. Landscape Ecology: The effect of pattern on pro-
cess. Annual Review of Ecology and Systematics 20: 171–197.

Whittaker R. 1956. Vegetation of the Great Smoky Mountains.
Ecological Monographs 26: 1–80.

Wikle C. 2002. Spatial Cluster Modeling, chapter Spatial Model-
ling of Count Data: A Case Study in Modelling Breeding Bird
Survey Data on Large Spatial Domains. Chapman and Hall/
CRC, pp. 199–209.

Wikle C., Milliff R., Nychka D. and Berliner L. 2001. Spatio-tem-
poral hierarchical Bayesian modeling: Tropical ocean, surface
winds. Journal of the American Statistical Association 96: 382–
397.

Zar J. 1984. Biostatistical Analysis. 2nd edn. Prentice-Hall, Engle-
wood Cliffs, New Jersey, USA.

Zimmermann N. and Kienast F. 1999. Predictive mapping of al-
pine grasslands in Switzerland: species versus community ap-
proach. Journal of Vegetation Science 10: 469–482.

502


