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Abstract

Question: Static sampling designs for collecting spatial
data efficiently are being readily utilized by ecologists,
however, most ecological systems involve a multivariate
spatial process that evolves dynamically over time. Effi-
cient monitoring of such spatio-temporal systems can be
achieved by modeling the dynamic system and reducing
the uncertainty associated with the effect of design choice
at future observation times. However, can we combine
traditional techniques with dynamic methods to find
optimal dynamic sampling designs for monitoring the
succession of a herbaceous community?

Location: Lower Hamburg Bend Conservation Area,
Missouri, USA (4013404200 lat. 9514503800 long.).

Methods: The dynamic nature of the system under study is
modeled in such away that uncertainty in themeasurements
and temporal process can both be accounted for. Both fixed
and roving monitoring locations were used in conjunction
with a spatio-temporal statistical model to efficiently
determine optimal locations of roving monitors over time
based on the reduction of uncertainty in predictions.

Results: During the first 3 years of the study, roving
monitors where held at fixed locations to allow for
statistical parameter estimation from which to make pre-
dictions. Optimal monitoring locations for the remaining
2 years were selected based on the overall reduction in
prediction uncertainty.

Conclusions: The dynamic and adaptive vegetation mon-
itoring scheme allowed for the efficient collection of data
that will be utilized for many future ecological studies. By
optimally placing an additional set of monitoring loca-
tions, we were able to utilize information about the system
dynamics when informing the data collection process.

Keywords: Dynamic sampling design; environmental
monitoring; vegetation restoration; Kalman filter.

Introduction

Background: Hamburg Bend vegetation monitoring
project

The Missouri River was historically a braided
channel that was extremely dynamic. Channeliza-
tion efforts removed all side channels along the river
in northwest Missouri, USA. This channelization
also produced large tracts of accreted lands adjacent
to the Missouri River. These lands normally devel-
oped into forests, but many were later cleared and
converted to agricultural fields.

Recently, the U.S. Army Corps of Engineers
(COE) and the Missouri Department of Conserva-
tion (MDC) teamed together to acquire and manage
an extensive area in theMissouri River flood plain in
northwest Missouri. Currently, between St. Joseph,
Missouri and the Iowa border, the COE has pur-
chased over 24 km2 within the Missouri River flood
plain (Fig. 1). All of this land has been passed to
MDC to be managed for fish and wildlife habitat.
Future land acquisitions by the COE could add even
more land that can be developed into fish and wild-
life habitat. Such efforts have presented managers
with both challenges and opportunities for vegeta-
tion management in these areas.

Chute restoration has become a priority man-
agement option in the area, and, as such, chutes are
cut through an area to create shallow, flowing water
habitat for fish and an island for wildlife habitat.
The backwaters and shallow sloughs provide
spawning grounds for fish, and the heavily vegetated
islands make habitat for wildlife. However, as suc-
cession occurs on the islands, the wildlife habitat
becomes less diverse and is only able to serve a lim-
ited number of species. The number of management
strategies available to managers is quite limited for
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maintaining a diversity of habitats due to financial
limitations and inaccessibility. That is, due to the
physical attributes of the chute, swift river currents,
and the fact that much of the study area is an island,
it is not feasible to perform much mechanical ma-
nipulation of habitat.

The current management strategy on the newly
created islands is simply to observe succession pas-
sively. The question then, is what happens to the
vegetation under such a strategy and how might the
vegetation change when alternative strategies, such as
occasional burning of the island, are implemented?
Also, a considerable amount of meandering of the

chute shoreline is expected. This meandering will
also remove vegetation and transport seeds.

For this study, the overall objective was to
develop and implement a vegetation sampling pro-
tocol that would provide baseline information about
the pre-chute development and immediate effects
after the chute is restored at the Lower Hamburg
Bend Conservation Area, on theMissouri side of the
state line near Hamburg, Iowa (see Fig. 1). The spe-
cific objective for this statistical study associated
with the overall project was to develop a hybrid
sampling approach that would combine design-
based sampling procedures with dynamic sampling

Fig. 1. Aerial photo of the Hamburg Bend chute under construction.
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techniques in order to reduce spatial and temporal
uncertainties in the time series of data collected on
this area. The reason that this hybrid approach was
needed is because no previous data were available;
nor was an underlying spatial/temporal model
available that reflected the situation at Lower Ham-
burg Bend. An important aspect of the approach
is that the data collected will ultimately be utilized
in a variety of studies with topics ranging from suc-
cessional community dynamics to invasibility of
exotic species. Therefore, it is of interest to collect the
data in such a manner that the overall uncertainty
about vegetation processes is reduced so that the re-
sulting data have maximal value for future research
efforts.

Hybrid sampling designs

A hybrid sampling design, in this sense, refers to
a set of monitoring locations that consist of both
a fixed subset and a roving subset. The fixed subset
contains monitoring locations that do not change
from one observation period to another (i.e. are
static in time), while the roving subset of monitors
are allowed to change location over time (i.e.,
dynamic in time). Both static and dynamic designs
(e.g. Cochran 1977; Wikle & Royle 1999, 2005)
have been employed in the past for monitoring
natural processes and each have advantages and
disadvantages. For example, fixed designs are gen-
erally more convenient and economically feasible,
while dynamic designs can better capture time-
evolving behavior in the process, but generally re-
quire constant attention and more resources.
Depending on the relative numbers of fixed versus
roving monitors, a hybrid design can conserve re-
sources by using the fixed monitors to efficiently
gather baseline data and static behavior in con-
junction with as many roving monitors as can be
afforded in the project to capture dynamic beha-
vior and reduce overall uncertainty in the measured
process.

In the case of the Hamburg Bend vegetation
monitoring project, the fixed monitoring portion of
the proposed hybrid sampling approach used a sys-
tematic sample procedure. The systematic sample
consisted of two independent grids of vegetation
plots. Vegetation plots were placed in aligned
squares for each grid (Cochran 1977, p 227–228),
and each plot was 125 m from its neighbors. Each
grid was randomly placed on the area using a ran-
dom two-dimensional starting point rounded to the
nearest meter within the 125 m � 125 m square on
the southwest corner of the study area (Fig. 2). Any

point outside of the study area was eliminated from
further consideration during data collection. The
boundaries of the study area were established as
the area inside permanent levees on the west and
east sides of Lower Hamburg Bend Conservation
Area, with the east side boundary being about 150 m
from the east levee. The study area is located
at 4013404200 latitude and 9514503800 longitude. The
fixed portion of the design consisted of two vegeta-
tion sampling grids, one containing 117 sampling
plots and the other containing 115 plots. The pur-
pose of using two sampling grids was to improve
sampling coverage over the entire area and supply
more information about the variability and spatial
autocorrelation among plots than would be avail-
able through the use of a single grid with all
sampling points an equidistance from neighboring
points (Cochran 1977).

In addition to the fixed set of monitoring loca-
tions, an equal number of potential roving monitor
locations were selected randomly throughout the
study area. Given that it would be too costly to
monitor at all of these additional locations each
year, an economically feasible subset could be
moved from year to year based on the characteristics
(represented by a ‘design criterion,’ as discussed in
the next section) of the process being studied. An
added benefit of using this hybrid design (i.e., both
fixed and roving monitors) is that more information
is made available concerning the inherent spatial
autocorrelation in the process being studied because
the roving monitor locations occur at varying dis-
tances from fixed monitoring locations (Müller
2000). Moreover, roving monitors that are allowed
to move throughout the study area are capable of
capturing important behavior in the process being
studied by taking advantage of its dynamic proper-
ties. For example, depending on the design criterion
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Fig. 2. Spatial plot of fixed design locations (circles) and
possible locations for roving monitors (stars).
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of choice (see the ‘General Methodology’ section
for additional detail), one may be able to reduce
measurement uncertainty in future monitoring peri-
ods by placing roving monitors closer to where
change is most likely to occur. Similarly, depending
on the dynamics of the process being studied and
choice of design criterion, it may be of benefit to lo-
cate future monitoring efforts furthest from each
other and possibly to move them from year to year
to avoid sampling redundant behavior.

In the following sections, we present the general
model specification that allows for hybrid sampling
designs and discuss the formulation for the mon-
itoring project at Hamburg Bend, and the specific
design criterion chosen by managers of this Con-
servation Area, as well as its properties. It should be
noted that many other types of design (both fixed
and dynamic) and design criteria are available for
use, each with its own properties. We refer the in-
terested reader to Le & Zidek (2006) for additional
detail and implications on other design methods and
criteria not discussed here.

General Methodology

In this section, we outline the methodological
approach for optimal hybrid design of monitoring
locations for natural processes. If a reduction of the
uncertainty in the measurements over time is de-
sired, one needs to have a good understanding of the
dynamic nature of the process under study. That is,
since many natural processes can be thought of as
systems that evolve (i.e. change) over time, a model
needs to be constructed that captures the dynamic
behavior of the system under study in order to pre-
dict what it is likely to do during future monitoring
periods. If we can predict its behavior, we can place
roving monitors in areas that help to reduce the un-
certainty in the measured process. This is the
fundamental notion behind the methods that follow.
Thus, to implement the hybrid design, the following
steps need to be taken:

(1) Collect baseline data whose purpose is to help
estimate the dynamic characteristics of the process
(i.e. plant community).
(2) Specify and fit a model that adequately repre-
sents the observational (i.e. data) and latent
dynamic processes (i.e. underlying laws governing
community spatio-temporal dynamics).
(3) Estimate the parameters involved in the model.
(4) Predict the likely future state of the latent
dynamic process.

(5) Use the information from (4) to select locations
for roving monitors that reduce the uncertainty
involved in the prediction.
(6) Collect data at new locations and repeat steps
(3)–(6) for future monitoring periods.

In what follows, we address the specific metho-
dological aspects of steps (2)–(6), presented above,
in a general manner so that they may be applied to
other situations. The details on the specific attri-
butes of the data under consideration here (e.g.
normalizing transformations), and their utilization
in the aforementioned general framework, can be
found at the beginning of the Application section.

General spatio-temporal model

Realistic models for naturally occurring spatio-
temporal processes must account for both temporal
and spatial dependence in the system. The dynamic
nature of the evolving system can often be modeled
in an autoregressive fashion. Such models are com-
mon for characterizing dynamic processes and are
discussed in detail in the temporal modeling litera-
ture (e.g. Caswell 2001 and Shumway & Stoffer
2006). In particular, for the application here, con-
sider a linear formulation describing the evolution
of the system (at, an [n�1] vector, where n is the
dimension of the full system of interest):

at ¼MtðfÞat�1; t ¼ 1; . . . ;T : ð1Þ
One can think of this vector at as a time-evol-

ving spatial process in the system being studied; for
example, if the natural system being studied is plant
abundance, then a1,t represents the abundance at the
first location of interest during time t and a2,t at the
second location of interest, for at ¼ ½a1;t; a2;t; . . .�0.
Note that the [n�n] evolution matrix Mt(f) allows
for system dynamics that vary in time; that is,Mt(f)
modifies the vector representing the process at the
previous time (at� 1) to yield the process at the cur-
rent time (at). Also called a ‘propagator’ or
‘transition’ matrix, Mt(f) is capable of exhibiting
very complex nonlinear spatio-temporal behavior
depending on the specification of its parameter f (a
vector that could be any dimension, but often less
than n2 for parsimony). In fact, various para-
meterizations of Mt(f) can be specified such that
they approximate physical process models for theo-
retical dynamic systems (e.g. integral and
differential equations; see Wikle 2003 and Hooten
et al. 2007 for details).

Assuming that any chosen model [i.e. para-
meterization of Mt(f)] is incapable of perfectly
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representing a natural system, one may want to ac-
commodate such uncertainty. Thus, consider the
process model in (1) in the presence of model error:

at ¼MtðfÞat�1 þ gt; t ¼ 1; . . . ;T ; ð2Þ
such that, gt in (2) represents the process error and
is distributed normally, with mean zero and de-
pendence structure given by the [n�n] covariance
matrix SZ.

Observations of the process (at) could be made
in a multivariate fashion (i.e. with more than one
piece of information monitored per spatial location
and time), thus let Yt denote the multivariate and
spatial observation matrix of dimension [mt�p],
with mt being the number of locations monitored at
time t, and p being the number of measurements ta-
ken at each location in the presence of measurement
error (say, «t). Thus, the observation portion of the
model can be written:

Yt ¼ Ktatw
0
t þ etw

0
t; t ¼ 1; . . . ;T ; ð3Þ

where wt is a [p�1] vector suitable for linearly
transforming the data matrix to a univariate spatial
observation. This transformation should be scienti-
fically motivated and could range from very simple
and supervised (i.e. wt is a vector of ones) to quite
complex and unsupervised (i.e. wt is the result of a
spectral decomposition such as that used in princi-
pal components analysis). In a situation where the
data represent ecological community structure, such
as a matrix of ones and zeros denoting species
occupancies at each location and time, the transfor-
mation where wt is a vector of ones implies that the
process being modeled is species richness (i.e. a
simple measure of biodiversity). The [mt�n] matrix
Kt, then, maps elements of the observed data matrix
to the process vector; note that the row dimension-
ality (mt) of the observed matrix (Yt) need not be the
same dimension (n) as the process vector (at). Let the
measurement error, «t, be normally distributed with
mean zero and [mt�mt] covariance matrix Se.

Dynamic and hybrid design methodology

The optimal design of experiments is a long-
standing area of research in statistics (e.g. see re-
views in Atkinson & Federov 1988; Federov &
Hackl 1997). In the environmental and ecological
sciences, there has also been a strong research em-
phasis on network design for monitoring spatial
processes (e.g. Le & Zidek 1994; Nychka & Saltz-
man 1998). In addition, work has been done to
consider spatially adaptive designs (e.g. Chao &
Thompson 2001). The notion of adaptive design is

similar to the design used here for the Hamburg
Bend monitoring project, except there is the addi-
tional complication that the spatial process is
changing over time. Thus, we seek to find the opti-
mal design, dynamically, so that information from
the previous times at which there were observations
plays a role in deciding the optimal designs for fu-
ture monitoring. Our approach is based on the
space–time dynamic design methodology first de-
veloped by Wikle & Royle (1999, 2005).

The specification in the previous section allows
the observation and process to have differing di-
mensionality as well as time-varying Kt, thus it
permits the sampling design to change over time.
That is, suppose at represents the process at a large
but finite set of n spatial locations. Additionally,
suppose that the set of n spatial locations is parti-
tioned into two sets, a fixed set ofmf locations where
the process will be measured at all T times, and an
additional set of mp locations at which the process
may be monitored at a given time (thus, n ¼
mf þmp).

The row dimension of the observation matrix Yt

can then be partitioned as:mt ¼ mf þmr;t (where the
subscript r merely indicates roving locations). The
process will then be observed at the fixed set of loca-
tions each time, while a possible additional set ofmr,t

roving locations will be observed at a given time t.
Therefore, the matrix Kt controls the sampling de-
sign because it links the observations and process.

Numerous methods have been developed for
fitting such models; in particular, hierarchical Baye-
sian methods have been used to simultaneously
estimate model parameters, variance components,
the underlying process, and the predicted process
(e.g. Wikle et al. 2001; Hooten & Wikle 2007). The
uncertainty pertaining to such predictions can be
evaluated with a criterion of choice and, ideally,
minimized by finding an appropriate sampling de-
sign for future times (i.e. T1j, for j5 1, . . . ,J).

Unfortunately, such methods are prohibitively
computationally intensive when the space of possi-
ble sampling designs is large (Chaloner & Verdinelli
1995; Müller 1999). In cases where Re, RZ, and
Mt(f) are known or can be estimated (in a similar
fashion as in traditional spatial prediction) a Kal-
man filtering approach can be used (Wikle & Royle
1999) and is much more efficient. Kalman methods
have enjoyed much success in the fitting of sophisti-
cated spatio-temporal models, and we refer the
interested reader to Shumway & Stoffer (2006, p.
330–339) for detailed information on its derivation
and utility for general purposes, as a full treatment
of the method is beyond the scope of this paper. The
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important aspect of using Kalman filtering for
the situation described here is that it allows us to
estimate the latent process (i.e. at) as well as its un-
certainty (which is critical for choosing a sampling
design that reduces the uncertainty and thus im-
proves predictive precision).

One key to taking the Kalman filtering ap-
proach here is that, because optimal sampling
designs are the main focus, we need only to evaluate
a design criterion that is based on the prediction er-
ror variance. The error variance for the jth
prediction (i.e. varðaTþjjyT ; . . . ; y1Þ ) can be found,
in this case, through the following recursive Kalman
equations:

At � varðatjyt; . . . ; y1Þ;
¼ Bt � BtK

0
tðKtBtK

0
t þ SeÞ�1KtBt;

ð4Þ

where,

Bt � varðatjyt�1; . . . ; y1Þ;
¼MtAt�1M

0
t þ RZ;

ð5Þ

where the initial value for A0 is generally specified
to be the unconditional covariance matrix of the
process (i.e. at) at the prediction locations. Ad-
ditionally, in the absence of significant information
concerning the process, various simplifying as-
sumptions must be made to aid in parameter
estimation. For example, the measurement errors
are often assumed to be independent (i.e. Re ¼ s2

eI),
the process error can be parameterized to account
for spatial dependence (i.e. ½RZ�i;j ¼ s2

Z expðdi;j=yÞ,
where di,j represents the Euclidean distance between
locations i and j), and the propagator matrix is
parameterized to be diagonal with a single auto-
regressive parameter f modeling the temporal
dependence.

For situations where the focus is on one-step
ahead sampling designs, equations (4) and (5) are
iterated for t5 1, . . . ,T, after which BT11 is calcu-

lated, a new sampling design is chosen, and K
ði¼1Þ
Tþ1 is

created. The prediction error variance (A
ði¼1Þ
Tþ1 ) is

then calculated using (4) and then utilized to create

the design criterion q
ði¼1Þ
d . In this case, let q

ðiÞ
d ¼

avgðdiagðAðiÞTþ1ÞÞ.
Then, to reduce uncertainty in the measured

process, we seek to minimize the sampling design
criterion that is based on prediction error variance.
Thus, we need to search the space of possible designs
for spatial arrangements of roving monitors that
provide small values of q

ðiÞ
d . This can be accom-

plished iteratively by incrementing i ¼ 1; . . . ; nd and

recalculating A
ðiÞ
Tþ1 and q

ðiÞ
d such that all possible

(nd) sampling designs will be evaluated and their
criteria compared to find the minimum. In practice,
the space of sampling designs is much too large
to loop through sequentially, and in such cases an
approximately optimal design is sought. A cumber-
some approach is to evaluate a finite set of designs
randomly. Fortunately, algorithms have been de-
veloped to search for near optimal designs more
efficiently. Here we employ an exchange algorithm
that iteratively swaps roving monitor locations with
neighboring locations and retains the design if the
swapping reduces the criterion (e.g. Nychka &
Saltzman 1998). The exchange algorithm can be it-
erated until the change in criterion drops below a
given threshold or until no better designs can be
found.

Once the optimal design is chosen for time T11,
new data can be collected (yT11), parameters can be
re-estimated, the Kalman equations (4) and (5) can
be iteratively computed, and the design space for
time T12 can be searched for optimality. This pro-
cess can be repeated indefinitely, thus providing
optimal sampling designs for each time at which
data are collected. In practice, it may be necessary to
retain the same sampling design for the first few
times so that model parameters can be effectively
estimated.

Application: Hamburg Bend Vegetation Monitoring

Project

The methods presented (generally) in the pre-
vious section serve as a framework that can be
applied to a specific situation. In this section, we
present details concerning the specific application of
the methodological framework to the Hamburg
Bend data. As such, we discuss the necessary trans-
formations of the data as well as project-specific
model specifications. Additionally, we present a
method of comparison between a fixed sampling
design approach versus the hybrid approach under a
large number of sampling schemes. The purpose of
this comparison is to illustrate the reduction of un-
certainty possible when utilizing designs with
dynamic components for monitoring systems that
dynamically evolve over time.

Hybrid sampling designs for the Hamburg Bend
vegetation monitoring project

The methods presented in the previous section
have been applied to the Hamburg Bend vegetation
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monitoring study, which has collected data annually
from 2002 to 2006, although the project is ongoing.
Specifically, the data used here consist of the ob-
served occupancy of a set of species (Yt) at a fixed
number of locations (Fig. 2) in the Hamburg Bend
Conservation Area (spanning approximately 12
km2) for the first 3 years. Due to time constraints on
this particular project, an initial monitoring period
of only 3 years was possible; however, it should be
noted that longer periods for preliminary data col-
lection will yield improved parameter estimates and
thus will allow for improved monitoring designs to
be found. Part of the rationale for employing an
optimal dynamic design in the Hamburg Bend pro-
ject was related to the limited resources, and thus,
managers sought to obtain as much information as
possible out of the data.

In this case, Yt is a binary data matrix as dis-
cussed in ‘General spatio-temporal model,’ and a
simple transformation vector of ones (i.e. wt 5 1)
was used to convert the occupancy data to species
richness data (Fig. 3). Thus, let yt ¼ Ytct (where, yt
is [mt�1]), then as a normalizing and autoregre-
ssive modeling transformation, we let zt ¼

ffiffiffiffi
yt
p �

ð1=TÞ
PT

t¼1
ffiffiffiffi
yt
p

. Note that this additional nonlinear
data transformation is used here mainly for nor-
malization and still fits into the framework
presented in the previous section. The result is that
we are modeling the dynamics on a normalized and
centered scale (a fairly common technique for auto-
regressive modeling). Now we can write the
observation portion of the model:

zt ¼ Ktat þ et; t ¼ 1; . . . ;T ; ð6Þ

A few (i.e. seven) sampling locations were omit-
ted from this analysis due to inaccessibility in all
monitoring years, thus after the preliminary 3-year
period of monitoring at the remaining 225 fixed lo-
cations, a subset of 17 locations were allowed to
‘rove’ and selected optimally from an additional set
of 225 possible roving locations in each of the fol-
lowing years (Fig. 2). Thus, for years beyond the
3-year preliminary period, the fixed set consists of 208
locations, and the 17 roving monitors were selected
from an additional set of 225 locations. Note that
there is much flexibility in the choice of the numbers
of fixed monitors versus roving monitors. More rov-
ing monitors allows for a better characterization of
dynamic behavior but is often more expensive and
time demanding. In the case of the Hamburg Bend
project, funding only allowed for an additional 17
locations to be monitored in each observation period.

This dataset is much larger spatially than tem-
porally, thus a parsimonious parameterization, such
as M(f) 5 f (yielding a first-order autoregressive
process model) is likely necessary. If the process (at)
is known, the following method of moments esti-
mator could be utilized to estimate the auto-
regressive parameter f:

f̂ ¼ tr
PT

t¼2 at a
0
t�1

� �

tr
PT

t¼2 at a0t
� � : ð7Þ
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Fig. 3. Species richness data (yt) at fixed locations for the years 2002–2005.
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In this case, the process is not known, and thus,
a surrogate must be used to estimate f. We used the
aforementioned centered square-root transforma-
tion of the richness data (zt) and assumed that the
estimated autoregressive parameter (f̂ ¼ �0:4367)
would be similar for an autoregression in zt as in at.
When data are limited temporally, such estimates of
autoregressive parameters are less certain; however,
as monitoring continues in longer studies, the esti-
mates will improve. Here, with only 3 years of
preliminary data, this estimate for f is all we know
about the dynamics of the system and has to suffice
until more data become available from which to find
new estimates.

A geostatistical model was fitted to zt5 3 in or-
der to estimate the variance components of the
spatio-temporal model (i.e. Re, RZ). Specifically,
covariance was estimated using weighted least
squares and an exponential spatial dependence
model with nugget effect (see Waller & Gotway
(2004), p. 280–288 for details on fitting such mod-
els). We found that exponential spatial dependence
provided an adequate fit (via AIC comparison with
other spatial models), and the resulting estimated
nugget effect (0.0693) was then used as a surrogate
for s2e , and represents measurement error and any
remaining small-scale variability not captured by
the spatially correlated error model for the process.
The estimated sill (s2Z ¼ 0:015) and range (y 5

149.8) parameters were then used to inform the
covariance matrix for the process, (i.e. RZ ¼ s2Z exp
ðdi;j=yÞ as defined in the Methods section). Estima-
tion of the inherent spatial and temporal structure of
the process under study allows us to more realisti-
cally model the dynamic nature of the temporal
process (Equations 2 and 3) and thus ultimately
choose sampling designs that best reflect the prob-
able future spatio-temporal behavior.

To select the optimal sampling designs, given
our estimated model parameters (discussed above)
and design criteria of choice for this project (e.g.
q
ðiÞ
d ¼ avgðdiagðAðiÞTþ1ÞÞ), the Kalman equations

were then recursively computed and yielded a set of
suboptimal roving locations for 2005. The afore-
mentioned exchange algorithm was employed to
efficiently search the space of sampling designs for
an approximately optimal configuration. The re-
sulting sampling design selected for 2005 included
all 208 fixed locations as well as the additional opti-
mal roving locations. The process was repeated
again in 2005 to determine the optimal design to use
for vegetation monitoring in 2006. Figure 4 spatially
illustrates these optimal sampling designs for the
years 2005 and 2006.

Comparison of static and hybrid sampling designs
for Hamburg Bend

One method for comparing the effect of allowing
for roving monitors with the effect of fixing the loca-
tions of all monitors is through simulation. That is,
given a similar spatial domain to the Hamburg Bend
study area (i.e. a simulation domain on the same scale
with representatively spaced monitoring locations)
coupled with a spatio-temporal process that evolves
dynamically in a similar fashion (i.e. using parameter
estimates from the Hamburg Bend data), we can as-
sess the difference in uncertainty when monitoring
the process with a fixed design versus an optimal hy-
brid design. We provide, in App. 1, a program
written in the R Statistical Programming Language
(RDevelopment Core Team 2007) that does precisely
this. Specifically, we utilize the parameter estimates
presented in the previous section and iteratively select
numerous sampling designs, then evaluate the pre-
diction uncertainty resulting from each design. This
approach for comparing multiple static designs with
their optimal hybrid counterparts is best described by
the following steps:

(1) Select the locations of all monitors for the
purpose of collecting baseline data for a number of
observation periods (we used four baseline observa-
tion periods in the App. 1 code). This full set of
monitoring locations is composed of both the fixed
monitors and the roving monitors. The actual selec-
tion of locations could be made by hand, utilizing
traditional sampling methods (e.g. Cochran 1977),
or even optimal static design methods (e.g. Le &
Zidek 2006); additionally, the subset of roving
monitor locations could follow the same design, or
be selected randomly (as in the App. 1 code), from a
large but finite number of additional monitoring
locations. In either case, the complete design (i.e.
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Fig. 4. Spatial plot showing optimal hybrid designs for the
years 2005 and 2006 (including fixed locations).
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the location of all monitors, fixed and roving) will
not change over time, and thus will be used for
comparison.
(2) After baseline data are collected, parameters in
the model are estimated (using methods discussed in
‘General spatio-temporal model’ and ‘Hybrid sam-
pling designs for the Hamburg Bend vegetation
monitoring project’). The parameter estimates ob-
tained from the Hamburg Bend data are utilized in
the App. 1 code.
(3) Calculate the design criterion (i.e. q

ðiÞ
d ¼ avg

ðdiagðAðiÞTþ1ÞÞ for current static design i) based on

the estimated model parameters (i.e. f;Re, and RZ)

and prediction error variance (i.e. A
ðiÞ
Tþ1).

(4) Using the static design as a starting point, utilize
the exchange algorithm to assess neighboring sam-
ple locations for their ability to reduce the design
criterion.
(5) Swap the static locations for the neighboring
monitoring locations that reduce the design criterion
the most; then, calculate the reduction in criterion
value for which to compare static versus hybrid
designs. When the number of neighbors searched is
large enough, the new design will be approximately
optimal and the difference in criteria will represent
the amount of uncertainty reduced in the predicted
process by using the optimal dynamic design.
(6) For comparison of multiple static designs versus
their optimal dynamic counterparts, repeat steps
(1)–(5), choosing a new static design each time.

Recall that the design criterion itself is a mea-
sure of the prediction uncertainty, thus large
positive differences between static and hybrid sam-
pling designs indicate a significant increase in
predictive precision by utilizing hybrid designs (via
the simulation-based Monte Carlo test). Figure 5 is
the result of running the code in App. 1 for com-
paring a total of 2000 static sampling designs with
their optimal hybrid counterparts. Additional de-
tails regarding the specific syntax in the code itself
can be found in App. 1.

Discussion

The rationale behind this monitoring project
is to best utilize available resources for the observa-
tion of the natural process. Monitoring the process
at fixed locations is physically and economically
more efficient, but roving monitoring locations bet-
ter allow for the observation of a dynamically
evolving spatio-temporal process and ultimately re-

sult in higher quality data (Wikle & Royle 1999,
2005). In the case of the Hamburg Bend Monitoring
Project, enough funding and time was available to
monitor 17 additional locations (beyond the 208
fixed monitoring locations) in each observation per-
iod. By allowing these additional 17 monitoring
locations to vary in space over time, we were able to
reduce the prediction uncertainty over the scenario
where a static design is used for the entire observa-
tional period. An illustration of this fact is provided
through the simulation setting, where numerous
static sampling designs are compared with their op-
timal hybrid counterparts (Fig. 5). The design
criterion chosen by the managers for this study is a
measure of the overall prediction uncertainty (i.e.
the average of the prediction error variance given in
Equation 4), thus a reduction in the value of the de-
sign criterion indicates a reduction in prediction
uncertainty. These simulations serve as a Monte
Carlo test for the null hypothesis, where static de-
signs and optimal hybrid designs are not different in
terms of the design criterion for this study. Since the
histogram in Fig. 5 does not overlap zero (i.e. in-
dicating a p-value for the test that is very small) we
have reason to believe that, in the case of Hamburg
Bend, optimal hybrid designs significantly improve
monitoring of the natural process under study. The

difference in design criteria (static − hybrid)
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Fig. 5. Histogram showing the difference in sampling de-
sign criteria (i.e. units are in terms of prediction error
variance for the latent process at) for 2000 fixed designs
versus the optimal hybrid design for each of the 2000 in-
itial design scenarios (x-axis notation: 1e-05 5 0.00001).
Note that smaller design criteria imply a reduction of un-
certainty in the measured process; thus, a positive
difference between fixed and hybrid design, in terms of
criteria (shown in the histogram), indicates a reduction of
uncertainty (and thus an increase in precision) by allowing
some monitors to move. The dashed line at a difference of
zero indicates the point below which there would be no
improvement in precision by allowing monitors to move.
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amount of improvement can be quantified by divid-
ing the difference in criteria by the average
prediction error variance of the fixed designs from
the simulations (i.e. qd). In this case, qd for the si-
mulated fixed designs averaged 0.0058, and thus we
were seeing up to approximately a 1% reduction in
uncertainty in the simulation without needing to
collect any additional data. This could be improved
by allowing for more roving monitors, however,
budget constraints often control this aspect of a
monitoring protocol (as was the case in the Ham-
burg Bend study). Since a purely fixed design was
not employed during the Hamburg Bend data col-
lection, we cannot know the exact reduction of
uncertainty, only that it was indeed significantly
improved by using a hybrid design, as evidenced by
the Monte Carlo simulation test.

The data presented in Fig. 3 for the Hamburg
Bend study area show evidence of spatial structure
when looking at the individual years of species rich-
ness, thus a geostatistical model for describing the
covariance of the process error (i.e. RZ) is reason-
able. We found that although the spatial structure is
similar from year to year, the pattern varies, in-
dicating a dynamic component in the process, and,
hence, the use of a spatio-temporal model (i.e.
Equations 2 and 3) for describing the system is war-
ranted. When fitting such a model to the Hamburg
Bend data, we find that there is negative auto-
correlation, suggesting the system is oscillating over
time. This oscillatory behavior provides valuable
information for choosing locations of roving moni-
tors in future observation periods.

As for the specific designs used in the Hamburg
Bend study area, we note that the optimal designs
for the roving monitors for 2006 are different than
those for 2005 (Fig. 4). This provides one justifica-
tion for the development and implementation of the
methodology, and illustrates further that fixed de-
signs are not optimal for spatio-temporal processes.
Based on the simulation study discussed above, we
also know that the optimal hybrid designs used for
data collection in the Hamburg Bend study area
have reduced the uncertainty in the observation of
the ecological process, and have thus resulted in
higher quality data for use in other studies than
would have been available through using a static
monitoring protocol.

Wikle & Royle (1999) used a similar design cri-
terion and found that optimal designs tend to favor
locations that have higher variance and low corre-
lation with other sites. Additionally, they show that,
for cases with moderate time and spatial depen-
dence, the optimal locations for roving sites should

change because information at the same site is
somewhat redundant over time. It should be noted
that the choice of design criterion will most certainly
result in a different optimal design (e.g. Berliner
et al. 1998); however, based on the above arguments
and the mathematical properties of common design
criteria (being measures of uncertainty regarding the
system under study), any choice of criterion still re-
duces uncertainty associated with observation of the
process and is thus better than none. This is espe-
cially true with temporally evolving systems such as
that presented here.

Conclusion

Although becoming more popular in atmo-
spheric and environmental studies, the consideration
of dynamic optimal sampling designs in ecological
endeavors has not been widely used. It could be said
that nearly every ecological monitoring study in-
volves, to some extent, the observation of a process
that is evolving in space over time.More sophisticated
collection of data will lead to more sophisticated eco-
logical models being employed in the presence of less
uncertainty.

Overall, the use of a model-based approach to
construct sampling designs can be thought of as
both more and less efficient. In terms of an a priori
time commitment, such sophisticated approaches
may require significantly more planning, prepara-
tion, and modeling than traditional approaches. On
the other hand, when monitoring resources are lim-
ited, managers and scientists may want to extract the
most information out of the data that they can af-
ford to collect; thus, if efficiency is expressed in
terms of the ratio of knowledge gained over the
amount of data obtained, then this is where optimal
hybrid designs can be more efficient.

Finally, to our knowledge, this is the first time a
hybrid fixed/roving spatio-temporal dynamic opti-
mal design approach has been used to collect data in
a real-world study. The results presented here are
very promising and suggest that this approach can
and should be considered in future long-term mon-
itoring projects.
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