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Abstract
Statistical models using partial differential equations (PDEs) to describe dynamically evolv-
ing natural systems are appearing in the scientific literature with some regularity in recent
years. Often such studies seek to characterize the dynamics of temporal or spatio-temporal
phenomena such as invasive species, consumer-resource interactions, community evolution,
and resource selection. Specifically, in the spatial setting, data are often available at varying
spatial and temporal scales. Additionally, the necessary numerical integration of a PDE
may be computationally infeasible over the spatial support of interest. We present an ap-
proach to impose advantageous changes of support in statistical implementations of PDE
models and demonstrate its utility through simulation.

Key Words: Approximation, Averaging, Hierarchical Bayesian Model, Multi-Scale Anal-
ysis, Partial Differential Equation, Spatio-Temporal Model

1. Introduction

With the exception of a few ground-breaking efforts (e.g., Hotelling 1927; Fisher
1937), the use of sophisticated ecological models involving derivatives in a rigorous
statistical setting has only gained ground recently (e.g., Wikle 2001; Hooten and
Wikle 2008; Cangelosi and Hooten 2009; Zheng et al. 2009). As these recent stud-
ies have shown, scientifically motivated statistical models can be specified and fit
readily in a hierarchical modeling context and often with a computational Bayesian
implementation (i.e., Markov Chain Monte Carlo, MCMC).

Such modeling efforts have shown great promise for making science-based infer-
ence on dynamic natural processes, though they are not without their challenges.
Issues that commonly arise include: the chosen form of stochasticity, numerical sta-
bility of the deterministic equations, and discrepancy between the measurements
and process in terms of spatial and temporal support.

With regard to the change of support issue in particular, the effects of spatial
support changes on statistical inference are well described in the literature (e.g.,
Gotway and Young 2002). In the case of up-scaling spatial support specifically,
common methods generally involve some form of spatial averaging or integration
of the variable of interest over space (Ferreira and Lee 2007). Despite numerous
suggestions in the literature to the contrary, many forms of aggregation in spatio-
temporal statistical modeling projects still rely on over-simplified and non-scientific
spatial and/or temporal scaling methods (i.e., arithmetic averaging) without regard
for the inherent properties or dynamic features of the process under study. When
more sophisticated approaches to handling the scaling are adopted, they are often
based on statistical or computational properties and less so on the mathematical
underpinnings of the process being modeled (e.g., Ferreira et al. 2006). In fact,
a popular method in the broader context of dimension reduction is to model the
process on some lower-dimensional manifold through the use of a transformation
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involving a set of basis functions (e.g., Royle and Wikle 2005; Hooten and Wikle
2007).

In what follows, we present a general approach to change of support that can
be advantageous when utilizing partial differential equation (PDE) models in a
statistical framework. The methodology we present reconciles the statistical and
mathematical forms of multi-scale analysis and can be beneficial, both in terms
of dimension reduction, as well as consistency with the dynamics implied by the
chosen mathematical model. A detailed presentation of the mathematical approach
to multi-scale analysis can be found in the mathematical literature (e.g., Murray
1980; Holmes 1995; Okubo and Levin 2001), thus, here we focus on the use of
multi-scale methods for approximating PDE solutions in a statistical context. We
illustrate both the mathematical and statistical analyses through a specific example
involving ecological diffusion and provide a simulation study and discussion of the
advantages and potential applications of this approach.

1.1 Partial Differential Equation Example: Ecological Diffusion

To begin, we will focus our analysis on the specific example of ecological diffusion.
To gain an understanding of how this form of mathematical model arises and how it
may be useful, we derive it from first principles. Following Turchin (1998), we first
consider an individual-based or Lagrangian understanding of animal movement. To
illustrate the approach, we will use a one-dimensional spatial domain throughout,
which easily generalizes to higher dimensions.

Suppose that, in a certain time interval, an animal can move left, right, or remain
where it is with probabilities: φL(x, t), φR(x, t), and φN (x, t), respectively (where,
φL(x, t) + φR(x, t) + φN (x, t) = 1). Then the probability of the animal occupying
location x at time t is:

p(x, t) = φL(x + ∆x, t−∆t)p(x + ∆x, t−∆t)
+ φR(x−∆x, t−∆t)p(x−∆x, t−∆t)
+ φN (x, t−∆t)p(x, t−∆t) , (1)

where the ∆ notation refers to changes in time and space. If we ultimately seek an
Eulerian model on the probability of occupancy, p(x, t), then we need to replace the
∆ notation with differential notation. Turchin (1998) proceeds by expanding each
of the probabilities in a Taylor series, truncating to remove higher order terms, and
then substituting the truncated expansions back into (1). This yields a recurrence
equation involving partial derivatives:

p = (φL + φN + φR)p−∆t(φL + φN + φR)
∂p

∂t
−∆tp

∂

∂t
(φL + φN + φR)

−∆x(φR − φL)
∂p

∂x
−∆xp

∂

∂x
(φR − φL)

+
∆x2

2
(φL + φR)

∂2p

∂x2
+ ∆x2 ∂p

∂x

∂

∂x
(φL + φR) + p

∆x2

2
∂2

∂x2
(φL + φR)

+ · · · ,

where we have defined p ≡ p(x, t) to simplify the expressions. Combining like terms
results in a PDE of the form:

∂p

∂t
= − ∂

∂x
(βp) +

∂2

∂x2
(µp) ,
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where, β = ∆x(φR − φL)/∆t and µ = ∆x2(φR + φL)/2∆t. This resulting model
is now Eulerian and known as the Fokker-Planck or Kolmogorov equation (Risken,
1989), and when thought of in an ecological setting, some number of total animals
(N) can be considered by letting u(x, t) ≡ Np(x, t). In this context, assuming for
the moment that there is no advection component, we have the ecological diffusion
equation:

∂u

∂t
=

∂2

∂x2
(Du) , (2)

where, the process of interest is u ≡ u(x, t), and D ≡ D(x, t) represents the diffusion
coefficients which can be thought of as animal motility. There are, of course, other
ways to arrive at this equation (e.g., Turchin 1998), however, we feel that this
perspective may be directly beneficial to those modeling spatio-temporal population
dynamics, as the recent literature suggests. The properties of (2) are quite a bit
different than those of plain or Fickian diffusions. The fundamental difference is
that the diffusion coefficient is on the inside of the two spatial derivatives rather
than between them (Fickian) or on the outside (plain). This results in a much
less smooth process u(x, t), and can be thought of as animals moving at varying
rates through different environments on a landscape. In some areas, they may move
slow, perhaps to forage, whereas in other areas they move fast, such as through an
exposed terrain. The resulting behavior shows a congregative effect in areas of low
motility (i.e., D ↓) and a dispersive effect in areas of high motility (i.e., D ↑). In fact,
depending on the boundary conditions, the steady-state solution has u proportional
to the inverse of D.

1.2 Statistical Implementation

Recent efforts in spatio-temporal statistical modeling (e.g., Wikle 2003; Hooten
and Wikle 2008) suggest that we can place the above deterministic equation into a
statistical context by assuming three things: first, that the dynamic process can be
measured, and those observations are subject to sampling error; second, that the
Eulerian model in (2) does not define the exact dynamics of the system, but rather,
serves as a well-founded scientific motivation for parameterizing the dynamics; third,
we seek to estimate the model parameters (e.g., D) given the observed data. Thus,
we have two explicit sources of uncertainty in the model, observation uncertainty
and process uncertainty. As discussed throughout the recent statistical literature on
the subject, this situation is ideal for the use of a hierarchical model (e.g., Berliner
1996; Cressie et al. 2009). In this setting, we can think of the measurements
as observed counts of animals, N(x, t), at a set of locations and times. Then,
by modeling the latent process u(x, t) we can learn about the dynamics. Thus,
using vector notation to denote finite sets of state variables and parameters (e.g.,
u(t) ≡ (u(1, t), . . . , u(x, t), . . . , u(n, t))′ for n spatial locations of interest), let the
statistical model be specified as,

N(x, t) ∼ [N(x, t)|u(x, t)] , ∀x, t ,

u(x, t) ∼ [u(x, t)|f(u(t−∆t),D)] , ∀x, t ,

where, the ‘[·]’ notation refers to a probability distribution and the ecological dif-
fusion model (2) is represented by a discretized approximation f(u(t − ∆t),D).
Typically the discretized approximation amounts to a difference equation, though
more sophisticated solvers could be employed. Note that, in some situations, the
specific form of f could facilitate estimation (i.e., if linear with Gaussian error, then
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conjugacy is a byproduct). Then, assuming that a finite set of unique coefficients
can be modeled by D ∼ [D], in a Bayesian framework we seek to find the condi-
tional distribution (i.e., posterior) of the parameters D and latent state variables
u(t) given the data N(t):

[{u(t)},D|{N(t)}] ∝ [Data|Process][Process|Parameters][Parameters]

∝
∏

t

[N(t)|u(t)]
∏

t

[u(t)|f(u(t−∆t),D)][D] , (3)

where, for the time being, a set of initial and boundary conditions are assumed. In
the generalized case, these conditions could be (and have been) further modeled.

This framework has proven to be a powerful means for directly incorporating
scientific information into the modeling process and provides an intuitive way to
account for observational and process uncertainty while estimating the parameters
that control the dynamics. In principle, this statistical framework could be employed
for any differential equation model if sufficient data were available to provide the
learning. In practice, several complications can arise when fitting such models.
First, if the model is fit using MCMC, the algorithm will require iterative evaluation
of the discretized forward model f ; this can be very computationally demanding if
the discretization is spatially and/or temporally fine. Additionally, there is often
a discrepancy between the support of the measurements and that of the process
but inference is desired at the finer of the two scales. In the specific situation of
a spatially heterogeneous set of diffusion coefficients (i.e., D(x)), the dimension
of the parameter space is potentially huge. Finally, there is the issue of stability
of the forward model (f) itself and the fact that ecological diffusion is inherently
less numerically stable than simpler forms (e.g., Fickian and plain diffusion). In
the following section, we take an analytical approach to change of support in PDE
modeling by introducing additional temporal and spatial scales in what is referred
to as “homogenization” in the PDE literature (Holmes 1994; Pavliotis and Stuart
2008). We will see that such analyses can lead to a choice of statistical quantities
that are consistent with the mathematics while inducing an advantageous change
of support in the inverse implementation of the model. The result is a faster, more
robust algorithm for fitting PDE models to data in a rigorous statistical framework.

2. Homogenization with Ecological Diffusion

In what follows, we use a compact mathematical notation for partial derivatives
where subscripts on variables pertain to partial derivatives; for example, ut ≡ ∂u

∂t

and ∂2
xu ≡ ∂2u

∂x∂x . Now, focusing on the PDE in (2), ut = ∂2
x(Du), we introduce

two new scales, a fast temporal scale (τ) and a small spatial scale (y). Thus,
the spatially varying diffusion coefficient can be written as: D = D(x, x/ε) =
D(x, y) and similarly u = u(x, y, t, t/ε2) = u(x, y, t, τ), where the (small) variable
ε represents the ratio of the scale at which D varies most rapidly and the scale on
which inference is desired. To accommodate long and short scales, the derivatives
are transformed (following Holmes 1996 and Powell and Zimmerman 2004) where,
for small ε, ∂x → ∂x + 1

ε ∂y and ∂t → ∂t + 1
ε2

∂τ .
Conventionally, in perturbation theory, a power expansion is employed so that

one can break a difficult problem up into a series of solvable problems: u = ε0u0 +
ε1u1 + ε2u2 + . . .. In this case, we substitute this expansion, along with both scales,
into ut = ∂2

x(Du) to yield:

(∂τ + ε2∂t)u = (∂2
y + 2ε∂xy + ε2∂2

x)(D(x, y)u) (4)
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Now, we need only to solve each order of (4) sequentially. In doing so, we first
concentrate on O(ε0): ∂τu0 = ∂2

y(D(x, y)u0). Note that this equation involves a
partial derivative with respect to the fast time scale τ , so it decays rapidly to the
steady state solution: ∂2

y(Du0) = 0. Integrating once yields, ∂y(Du0) = c0(x, t) and
then integrating again we have: Du0 = c1(x, t)+yc0(x, t). This latter term, yc0(x, t),
grows unbounded on the short scale (termed “secular” in the perturbation theory
literature) which is not consistent with the expected PDE behavior. Consequently,
we set c0 = 0 to yield u0 = c1(x, t)/D(x, y). Note that this latter result yields
densities that are proportional to D−1, so that the population aggregates in regions
of lower motility.

Next, we focus on the problem in O(ε1). In this order, one can show that (4)
simplifies to: ∂τu1 = ∂2

y(D(x, y)u1). This equation also decays to the steady state
solution rapidly and the solution to this problem, ∂2

y(D(x, y)u1) = 0, is similar to
that of O(ε0): u1 = b1(x, t)/D(x, y). As we will see in the next result, this term
will not contribute to the ultimate solution so we can set u1 = 0.

The O(ε2) solution now becomes the critical part of the homogenization. From
(4) we now have: ∂tu0 + ∂τu2 = ∂2

y(D(x, y)u2) + 2∂xy(D(x, y)u1) + ∂2
x(D(x, y)u0).

Notice that the middle term on the right hand side goes away because u1 = 0. Since
τ is a fast variable, all terms based on ∂τu2 must vanish to avoid secularity in τ ;
in other words, we need only to find the steady state solution with respect to τ .
Substituting our earlier result for u0 = c1(x, t)/D(x, y) we have:

∂2
y(D(x, y)u2) = ∂t

(
c1(x, t)
D(x, y)

)
− ∂2

xc1(x, t) . (5)

Integrating (5) once yields:

2∂y(D(x, y)u2) =
∫ y

y0

(
∂t

(
c1(x, t)
D(x, s)

)
ds− ∂2

xc1(x, t)
)

+ a0(x, t)

= a0(x, t) + ∂tc1(x, t)
∫ y

y0

1
D(x, s)

ds− 2y∂2
xc1(x, t) . (6)

To ensure that (5) is non-secular, we require:

lim
y→∞

2y

[
∂tc1(x, t)

1
2y

∫ y

y0

1
D(x, s)

ds− y∂2
xc1(x, t)

]
= 0 . (7)

The condition in (7) can now be rewritten as:

∂2
xc1(x, t) = ∂tc1(x, t)

(
lim

y→∞

1
2y

∫ y

y0

1
D(x, s)

ds

)
. (8)

For notational convenience, we define the statistical quantities in (8) as D̄ ≡[
limy→∞

1
2y

∫ y
y0

1
D(x,s)ds

]−1
and ū ≡ c1. Statisticians might recognize the former

quantity D̄ as the harmonic mean over some compact spatial support, and the
latter quantity (ū) then represents a form of potential. Finally, we rewrite (8) as:

∂ū

∂t
= D̄

∂2

∂x2
ū . (9)

Notice that this is a plain diffusion PDE, with the coefficient D̄ on the outside of the
two partial derivatives rather than the inside, as in the ecological diffusion case (2).
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The implications of this result are that our original ecological diffusion model can be
well-approximated by a plain diffusion model on coarser spatial-temporal support
where the new coefficient is the harmonic mean of the old coefficient over the change
of support. The above derivation shows that the specific form of averaging employed
here is mathematically consistent with PDE behavior and, since u0(x, t) = ū(x,t)

D(x,y) ,
we can recover the approximate small scale process. Also, the practical benefit to
using the harmonic mean in this situation is that it will be a smaller quantity than
both the geometric and arithmetic means and is well-suited for averaging rates (e.g.,
diffusion coefficients).

From a deterministic perspective, the result derived above allows one to solve
the PDE with a spatially varying diffusion coefficient over large domains with an
efficient computational algorithm. The averaging alone can dramatically reduce
calculations, however the homogenized equation (9) also describes the dynamics
of a smooth potential field and this increases computational stability. One can
then use a coarser discretization in the numerical solver for the forward problem.
However, from a statistical perspective, we need to solve the inverse problem. That
is, having observed u(x, t) (or some discrete representation of it), we seek to learn
about the parameters controlling the dynamics of the system (i.e., D(x)). If a Monte
Carlo based estimation method (e.g., MCMC or importance sampling) were used,
the above result would be absolutely necessary if inference were desired over large
spatial domains due to the required iterative evaluation of a PDE solver.

In terms of implementation, one can proceed as described in Section 1.2 where,
depending on the type of observations that are made, a suitable data model can
be chosen along with an error distribution for the process model and prior for the
parameters. To make the appropriate homogenization transformations, we can treat
the harmonic mean as an operator (i.e., D̄ ≡ D̄(D)) in the following way:

N(x, t) ∼ [N(x, t)|ū(x, t)] , ∀x, t

ū(x, t) ∼ [ū(x, t)|fh(ū(t−∆t), D̄(D))] , ∀x, t

D ∼ [D] ,

where, the function fh represents the plain diffusion solver as a difference equation.

3. Simulation: 1-D Ecological Diffusion with a Finite Set of Distinct
Environments

In order to illustrate the methods presented above, we consider a simulation of
animal movement in a 1-D spatial setting with three different land types. The idea
would be that animal motility is homogeneous within each distinct land type, but
the landscape itself could be made up of irregular patterns involving those land
types. This is a relatively realistic scenario where covariate information may be
available for a certain spatial domain (e.g., remotely sensed data) and animals are
counted at a set of locations over that landscape.

Suppose we code the distinct land types using dummy variables in an n × p
design matrix X, then we could write the spatial field of diffusion coefficients for
our domain of interest as D = Xd, where d is a vector of dimension p (p << n)
containing the unique coefficients. As a simulation landscape, Figure 1 illustrates
the irregularity of the land types and their associated diffusions. In this case,
though we evaluated numerous scenarios, the specific one presented here has d =
(0.5, 1, 1.5)′. For comparison, we have also shown the harmonic mean D̄, averaged
over one twenty-fifth of the spatial domain or two units in the discretized case.
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Figure 1: Spatial landscape (x-axis) with ecological diffusion coefficients (y-axis)
shown in black (D) and red (D̄) where the averaging is one twenty-fifth of the
spatial domain or two units of space in this case.

To simulate data, we first need to simulate the u process. Using no-flux boundary
conditions and an initial state where a population is placed in the center of the
spatial domain and allowed to spread out over time through the PDE in (2), we
can visualize the solution as a spatio-temporal process (Figure 2) where the x -axis
represents space, the y-axis represents mass (or population size in this case), and the
intensity of the shaded lines correspond to the time evolution of the system. That is,
in Figure 2, lighter shaded lines illustrate the process u(x, t) at earlier stages of the
temporal evolution and darker shaded lines correspond to the latter time periods.
In Figure 2, we can see the mass spreading out in such a manner that there tends
to be congregation in areas of low motility and dispersal in areas of higher motility.
Also note that we are focusing on the transient dynamics here and thus the process
has not reached the steady-state in the period of time being considered. This is for
two reasons, first because most real data are only available for the transient period
of a natural dynamical system, and second, a different estimation procedure could
be used if the steady state were observed directly due to the relationship between D
and the steady state of u. In order to visualize the differences between u(x, t) and

Figure 2: Forward simulation of ecological diffusion with u(x, t) shown on the
y-axis, through space (x-axis) and over time (gray shading). Lighter shading repre-
sents the state of the system at earlier time points, whereas darker shading repre-
sents later times.

ū(x, t) notice the smoothness of ū(x, t) in Figure 3 as compared to Figure 2. Also,
notice that we can recover the approximation to u(x, t) by dividing ū/D (Figure 4).

Now, assuming a Poisson distribution for a data model, we can “observe” the
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Figure 3: Forward simulation of ū(x, t) via plain diffusion, shown on the same
spatial domain. Time points are again indicated by intensity of gray shading.

Figure 4: Approximation of u(x, t) over time as recovered from ū(x, t) and D.

simulated process by sampling N(x, t) ∼ Pois(u(x, t)) for some finite set of locations
x and times t. These observations will serve as simulated data and can be visualized
in the same manner as the underlying dynamical processes (Figure 5). Note that
there is substantially more noise in the observations than in the underlying process.

Figure 5: Simulated data, N(x, t) ∼ Pois(u(x, t)), used to illustrate statistical
implementation.

For clarity in this example and because we wish to compare the homogenized
statistical model with the non-homogenized model in terms of parameter estimation,
we will consider a simplified Bayesian model where the process stage is integrated
over, and thus, collapsed into the likelihood. In both the homogenized and non-
homogenized cases, we use a vague Gaussian prior on the diffusion coefficients d ∼
N(1, 10002I). The likelihoods for the original PDE and homogenized PDE are then
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conditionally independent Poissons: N(t) ∼ Pois(f(u(t − ∆t), D̄(d)) and N(t) ∼
Pois(fh(ū(t−∆t), D̄(d))),∀t, respectively.

Conditioning on the initial state and no-flux boundary conditions, we then seek
the posterior distribution for the diffusion coefficients from each model, both of
which are conditional distributions of the form: [d|{N(t), ∀t}]. Due to the non-
linearities in the PDE solver as well as the specific forms of the likelihood and
prior, the posterior distribution will not be conjugate, and thus, not analytically
tractable. Following previous approaches to implementing such models (e.g., Wikle
2001), an MCMC algorithm can easily be constructed to sample from the posterior
using Metropolis-Hastings updates for the diffusion coefficients d.

For this simulation study, we obtained 10, 000 MCMC samples and discarded
the first 2, 000 as the burn-in. The resulting chains for each model were converged,
though we noticed better mixing in the case of the homogenized PDE model. We
attributed this to the improved stability of the plain diffusion solver as compared
with the ecological diffusion solver. Figure 6 illustrates the marginal posterior dis-
tributions for each of the coefficients with the original PDE results in black, the
homogenized in red, and the truth shown as green vertical lines. Notice that each
model captured the truth well and resulted in a high degree of posterior similarity,
with the homogenized PDE posterior exhibiting a slightly reduced precision.

Figure 6: Marginal posterior distributions for each of the three diffusion (motility)
coefficients. The results of the original PDE model fit are shown in black whereas
the homogenized PDE appear in red and the “truth” is represented as vertical green
lines.

In terms of computational performance, the homogenized PDE model took only
40% of the time it took the original PDE model to be fit. Clearly, the gain in
computing efficiency is increased as the extent of averaging increases. That is, in
this case, we only averaged over one twenty-fifth of the spatial domain. Through
simulation we also evaluated the change in compute time as a function of both the
change of support for averaging and the magnitude of the diffusion coefficients (i.e.,
max(D)). The latter is important for the stability of the numerical PDE solver
being employed; in this case, the solver is a centered difference equation. Figure 7
illustrates the empirical changes as a ratio of homogenized model computing time
to original model computing time. Though some inconsistencies exist due to the
empirical nature of the simulations, we can see that the computational savings
generally improve with larger diffusion coefficients and larger changes in support.
Notice however, that the improvement is asymptotic in both cases and for this
simple 1-D ecological diffusion example, the best we can do with homogenization is
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an algorithm that is 5 times faster. In the 2-D spatial setting, we might expect to
improve on that by a power of two.

Figure 7: Computational improvements measured as the ratio of homogenized PDE
to original PDE compute time (y-axis). The magnitude of the diffusion coefficients
is shown on the x-axis and increases in change of support are shown in terms of
gray shading intensity; larger scale averaging corresponds to darker shades.

4. Conclusion

In summary, by taking a mathematical approach to change of support in PDE mod-
els, we can obtain similar statistical inference on parameters controlling the dynam-
ics of the process with a fraction of the computational effort. Though traditionally
employed in engineering settings, the specific type of second order perturbation
theory known as homogenization has both a statistical interpretation and utility.
Homogenization allows for an accurate and efficient implementation of PDE models
while still accommodating small scale structure in the underlying environment and
is harmonious with existing multiscale statistical methods. In the approximation
procedure for ecological diffusion, a natural, but uncommon, statistical quantity
arises as a means for changing the support (i.e., the harmonic mean) and as a
byproduct, we are left with a smoother dynamical system that can be implemented
on a coarser spatial scale. Through simulation, we have demonstrated the use and
effectiveness of this method and illustrated the potential savings in computation.

It is important to note that perturbation theory is applicable to most differential
equations. In fact, in the epidemiological/ecological setting, we have found that a
similar approach yields advantageous results in the implementation of 2-D ecological
diffusion PDEs with growth terms as well as more complicated coupled PDE models
(Garlick et al. 2009). Other applications of the methodology presented here include
modeling of spatio-temporal atmospheric and environmental processes as well as
epidemiological processes where the spread of disease is a primary concern.
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