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Summary

1. Analyses based on utilization distributions (UDs) have been ubiquitous in animal space

use studies, largely because they are computationally straightforward and relatively easy to

employ. Conventional applications of resource utilization functions (RUFs) suggest that esti-

mates of UDs can be used as response variables in a regression involving spatial covariates of

interest.

2. It has been claimed that contemporary implementations of RUFs can yield inference about

resource selection, although to our knowledge, an explicit connection has not been described.

3. We explore the relationships between RUFs and resource selection functions from a hue-

ristic and simulation perspective. We investigate several sources of potential bias in the esti-

mation of resource selection coefficients using RUFs (e.g. the spatial covariance modelling

that is often used in RUF analyses).

4. Our findings illustrate that RUFs can, in fact, serve as approximations to RSFs and are

capable of providing inference about resource selection, but only with some modification and

under specific circumstances.

5. Using real telemetry data as an example, we provide guidance on which methods for esti-

mating resource selection may be more appropriate and in which situations. In general, if

telemetry data are assumed to arise as a point process, then RSF methods may be preferable

to RUFs; however, modified RUFs may provide less biased parameter estimates when the

data are subject to location error.
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Introduction

Resource utilization function (RUF) analyses (Marzluff

et al. 2004) are widely employed in the study of animal

space use and enjoy the advantages of being relatively

intuitive and comparatively easy to implement. Based on

the estimation of an individual-based ‘utilization distribu-

tion’ (UD; e.g. Millspaugh et al. 2006), RUF analyses are

commonly intended to obtain inference about the relation-

ship between an animal or population’s use of space and

the underlying environmental niche. This desired inference

is a critical component in the field of ecology (Krebs

1978). In linking the UD to the underlying environment,

RUF analyses go beyond that of home range and core

area (e.g. Wilson et al. 2010) estimation and also relate to

resource selection analyses, where desired inference per-

tains to whether the use of resources is disproportionate

to those available (Manly et al. 2002). One potential

advantage of the RUF approaches is that they may

improve selection inference when the telemetery data are

subject to measurement error (Millspaugh et al. 2006).

Resource utilization function analyses hold an appeal

because of their simplicity, but the specific connection in

how they relate to resource selection functions (RSFs) has

not been described. In this paper, we attempt to reconcile

RUF analysis with RSF analysis and examine several

sources of potential bias in doing so. We begin by*Correspondence author. E-mail: Mevin.Hooten@colostate.edu
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describing the RUF and RSF analyses as they are tradi-

tionally employed. We then explore several potential

sources of bias that could affect RUF analyses and use

simulation to demonstrate our findings. Finally, we sug-

gest a few simple diagnostics that could be employed in

selection analyses and illustrate them using a real data set

pertaining to the spatial ecology of mountain lions (Puma

concolor) in Colorado, USA.

resource util ization functions

The conventional perspective in animal space use studies

is that the UD is a spatial probability distribution that

gives rise to a spatial point process (i.e. the observed

telemetry locations). That is, one assumes there is a sur-

face over a spatial domain (S) of interest that specifies

the likelihood (f) an animal will occur at any given

location (s) in the domain. Thus, for a finite set of times

at which an animal’s location is observed, say t = 1,…,T,

we have a statistical model for location where

st � fðsÞ; for st 2 S.
The RUF procedure outlined by Marzluff et al. (2004)

assumes that the probability distribution f (i.e. the UD)

then depends on the underlying environment X (i.e. f(s)≡f
(s|X,b)) and adopts a two-stage estimation approach for

the coefficients b. The first step in the analysis is con-

cerned with estimating the UD (with say, f̂), while the

second stage links the UD to a set of underlying covari-

ates X.

To estimate the UD, a wide variety of density estima-

tion techniques can be employed to find f̂ based on the

telemetry data (st); however, we will focus on kernel

density estimation (KDE), because (i) this is a commonly

applied technique familiar to many animal ecologists and

(ii) Marzluff et al. (2004) employed this approach in

their seminal paper on the topic. It should be noted,

however, that many of the following results would apply

to RUFs based on any form of UD estimation

technique.

In KDE, one takes a nonparametric approach to esti-

mating f whereby for any location of interest c ¼ ðc1; c2Þ0
in the spatial domain S, the estimate of the UD is as

follows:

f̂ðcÞ ¼
PT

t¼1 kððc1 � s1;tÞ=b1Þkððc2 � s2;tÞ=b2Þ
Tb1b2

eqn 1

where st ¼ ðs1;t; s2;tÞ0, k represents the kernel (which we

assume to be Gaussian) and the parameters b1 and b2 are

bandwidth parameters that control the diffuseness of the

kernel (Venables & Ripley 2002, Chapter 5). There are

various ways to choose the bandwidth parameters, and

these are well described in the literature (e.g. Silverman

1986). In practice, the UD, fðciÞ, is estimated for a large

but finite set of points (or grid cells, i = 1,…,m) in the

spatial domain S for the purposes of graphical display or

further use in a RUF model.

Consider, as an illustration, the situation where there is

a single covariate of interest x and telemetry locations are

simulated from fðsjx; b0; b1Þ (Fig. 1). In this case, the coef-

ficients were chosen to provide a positive relationship

between the covariate and the UD (i.e. b1 > 0, where b0
only has an effect on the total number of observed telem-

etry locations T). Figure 1 depicts a large-scale spatial

pattern in the covariate where the telemetry data are con-

strained to the unit square region shown; this constraint

serves as the ‘home range’ and could take any shape, but

the rectangular shape is used here for display purposes

only. We will show that the spatial pattern in the covari-

ate, which is only a function of the spatial arrangement of

the landscape, will prove to be an important factor in the

spatially explicit models that follow.

A conventional RUF analysis typically proceeds by fit-

ting a linear model with f̂ðciÞ as the response variable and

xðciÞ, a p 9 1 vector, representing the covariates (i.e. envi-

ronmental resources) at location ci. That is, the second

stage of the RUF analysis for an individual involves

fitting the regression model:
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Fig. 1. (a) Spatial covariate x, (b) simulated telemetry locations st, for t = 1,…,400, and (c) the log transformed KDE representing the

estimated UD based on the simulated data.
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f̂ðciÞ ¼ b0 þ xðciÞ0bþ ei; eqn 2

for i=1,…,m and ei �Nð0;r2Þ, where the regression coeffi-

cients b control the linear relationship between the envi-

ronmental covariates and the UD, and b0 corresponds to

an intercept parameter that is not typically interpreted.

At the individual level, RUF analysis provides inference

about the regression coefficients b in terms of significance

and possibly subset selection, thereby illuminating the

potential environmental influences on space use. In a pop-

ulation-level analysis, where telemetry data exist for multi-

ple individuals (say, sj;t for j = 1,…,J individuals) one

would index the regression coefficients bj such that they

are labelled for each individual. Then, the focus shifts

towards the expectation or variance in coefficient esti-

mates b̂j among individuals; for example, we may be inter-

ested in learning about lb ¼ Eðb̂jÞ for all j = 1,…,J

animals. In this latter case, the individual becomes the

sample unit and the sample size J most heavily influences

the uncertainty concerning lb.

In implementing the RUF approach described previ-

ously, Marzluff et al. (2004) wisely noticed that there

may be lurking forms of dependence in the regression

errors ei. They posited that such forms of dependence

might arise from the smoothing induced by the KDE

approach for estimating the UD (eqn 1) [in addition to

other possible sources of latent autocorrelation such as

missing covariates in eqn (2)]. Marzluff et al. (2004) pro-

pose a geostatistical approach (Cressie 1993) that involves

modelling the covariance structure between the errors ei
in a spatially explicit manner. A simple geostatistical

model for the RUF analysis is the exponential spatial

model given by:

covðei; elÞ ¼ r2
e þ r2

s expð�
jjci � cljj

/
Þ; eqn 3

where the numerator in the exponential refers to the

Euclidean distance between cell i and cell l, and the

denominator / is a range parameter that controls the

decay in the spatial structure of ɛ with distance. The two

variance components r2
e (nugget) and r2

s (sill) account for

the variance associated with a non-spatially structured and

spatially structured source of error, respectively. In matrix

notation, the model for the errors is then often expressed

as ɛ�N(0,Σ), where e ¼ ðe1; . . .; emÞ0 and the ði; lÞth ele-

ment of the covariance matrix Σ is equal to (3). Often, the

covariance matrix is written as R ¼ r2
eIþ r2

sRð/Þ.
The conventional procedure used to fit geostatistical

models to continuous spatial data involves a multi-step

process of first (i) fitting the linear regression model

assuming independent errors, then (ii) characterizing the

spatial structure in the residuals using variogram estima-

tion (Cressie 1993), and finally (iii) using generalized (or

weighted) least squares (GLS) to estimate the regression

coefficients (b) while taking into account the correlated

errors. Other approaches such as maximum likelihood can

also be used, but for simplicity, we retain the GLS

method in our simulations.

resource selection functions

Resource selection is the differential use of resources given

those resources available. In describing the conventional

approach for estimating RSFs (e.g. Manly et al. 2002;

Johnson et al. 2006), we note that most recent applica-

tions of RSFs take a weighed distribution approach where

the probability distribution of use fuðxÞ can be expressed

as an updated distribution of availability faðxÞ given the

RSF g(x,b) which is usually expressed in an exponential

form as g(x,b)= exp (x′b) (although other functional

forms are possible, e.g., Lele & Keim 2006). This equiva-

lence between use and the updated version of availability

can be written as:

fuðxÞ ¼ gðx; bÞfaðxÞR
gðm; bÞfaðmÞdm ; eqn 4

because the distribution of use fuðxÞ is not observed

directly, a maximum likelihood approach can be taken to

maximize a product over the right-hand-side of eqn (4)

with respect to b:

YT

t¼1

gðxðstÞ; bÞfaðxðstÞÞR
gðm; bÞfaðmÞdm : eqn 5

Various tricks can be employed to maximize (eqn 5) with-

out having to analytically solve the integral in the denomi-

nator (e.g. Johnson et al. 2006; Lele 2009). The most

common approach involves taking a ‘background’ sample

(sometimes referred to as an availability sample) of loca-

tions from S and labelling those as zeros in a binary

response vector with the ones corresponding to the

observed telemetry locations. A logistic regression is then

fit to the binary data using the covariates at all of the used

and available locations. Under certain conditions, the

parameter estimates b̂ have been shown to be equivalent to

those obtained by maximizing (eqn 5). Incidentally,

Warton and Shepherd (2010) and Aarts et al. (2012) have

recently shown that maximizing (eqn 5) is equivalent to

maximizing the likelihood of an inhomogeneous spatial

point process for the purpose of estimating b. Furthermore,

Aarts et al. (2012) show that the required maximization

can be achieved using a Poisson generalized linear model

(GLM), with an offset term corresponding to availability.

To fit the Poisson GLM, one bins the telemetry loca-

tions into a large set of grid cells spanning the spatial

domain S, and the resulting response variable yðciÞ (for

i = 1,…,m grid cells) consists of cell counts where the

model is expressed as yðciÞ�PoisðkðciÞaðciÞÞ, and a log

link is used to model the intensities kðciÞ:

logðkðciÞÞ ¼ b0 þ xðciÞ0b; eqn 6
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where if the availability weights aðciÞ are all equal (i.e.

even availability within the region S), then this procedure

becomes a regular Poisson log-linear regression of the cell

counts on the covariates without weights. In what follows,

we set all aðciÞ ¼ 1; however, if aðciÞ are set to be the area

of the grid cells, then kðciÞ can be interpreted as the aver-

age number points per unit area.

Reconciling RUFs and RSFs

From one perspective, some might argue that the big dif-

ference between the RUF and RSF analyses is that a UD

(i.e. f̂) is estimated prior to fitting the RUF model,

whereas in the RSF approach, the UD is implicitly esti-

mated as a function of the spatial covariates (i.e.

k̂ ¼ expðx0b̂)) based on the data directly. On the other

hand, even though it may not be obvious, the Poisson

regression employed to fit the RSF is also estimating the

UD first as a 2-D spatial histogram (i.e. yðciÞ, for i = 1,

…,m) at the scale of the underlying grid. In this sense, the

grain size (i.e. aðciÞ) of the cells in the grid over which the

telemetry locations are summed is equivalent to the band-

width parameters in the KDE for the RUF approach.

That is, if aðciÞ increases, then yðciÞ becomes a smoother

process over S (similar to increasing the bandwidth in the

KDE). In both cases, as the smoothness in the estimated

point process density increases, it yields a more biased

density estimate; however, it also decreases the variance;

therefore, the choice in the amount of smoothing to apply

involves some notion of optimality.

Perhaps, a bigger concern is how the RUF fitting pro-

cedure affects the estimation of selection coefficients b, as
these coefficients are typically our main focus. When pop-

ulation-level inference is desired, some have argued that

the uncertainty associated with our knowledge of bj for

individual animals j = 1,…,J, is a minor concern com-

pared with the sample size of individuals J (e.g. Otis &

White 1999); for this reason, we focus only on bias in the

estimation of bj at the individual-level herein. That is,

individual-level bias will have the biggest and most dubi-

ous effect on population-level inference when the number

of telemetered individuals is large; thus, it is our focus

here.

In an examination of RUFs and RSFs, we discovered

the following important differences between methods

when used to estimate resource selection:

1. The use of f̂ instead of logðf̂Þ in conventional RUFs.

2. The characterization of availability via the choice of

S.
3. The marginal smoothing induced by the UD KDE.

4. The pattern of covariates in the spatial RUF.

5. The possibility of location error in telemetry data.

We discuss each of these items in turn, providing some

insight into how they play a role in the estimation of

resource selection, and we also suggest some modifications

for reconciling RUFs and RSFs.

the use of f̂ instead of logðf̂Þ in conventional
rufs

Based on the assumptions of the Poisson point process

model, the density f and intensity k are related by:

fðciÞ ¼ kðciÞ=
R
S kðsÞds, where the denominator is the

expected number of points in the study area S. Thus, the
Poisson intensities kðciÞ governing the point process (i.e.

telemetry data) are proportional to the densities fðciÞ
being modelled in the RUF analysis. That is,

kðciÞ ¼ const� fðciÞ; eqn 7

where the ‘const’ term is related to the number of teleme-

try locations T in the data set. Thus, because of the two-

stage fitting procedure in the RUF analysis, it would be

considered an approximation to the RSF analysis if the

log transformation was applied to the estimated density

function f̂ðciÞ (at least in terms of estimating b). That is, if
the second stage (eqn 2) of the RUF model was modified

such that

logðf̂ðciÞÞ ¼ b0 þ xðciÞ0bþ ei; eqn 8

where b0 implicitly includes ‘-log(const),’ then the main

difference between the RSF (eqn 6) and the RUF (eqn 8)

would be the Poisson instead of Gaussian error, respec-

tively. Furthermore, from a practical perspective, the log

transformation expands the support of the response vari-

able in the RUF model (eqn 8) from the positive to the

real numbers. Thus, in the remainder of the article, we

refer to eqn (8) as the RUF model and examine its

properties.

the characterization of availabil ity v ia the
choice of S
Recall that resource selection is the degree of use given

resource availability. If RUFs are approximations to

RSFs, then how does availability play a role in RUF

analyses? A surprising amount of variation in the estima-

tion of b can be observed by simply changing how the

background sample is taken. This background sample

provides a Monte Carlo approximation of the integral in

the weighed distribution (eqn 4, and associated point pro-

cess model), and the spatial extent of the integral (S) is

what controls availability in the RSF under the assump-

tion of uniform availability in that region. Millspaugh

et al. (2006) recommend defining S based on the UD

itself. We agree that areas outside of the natural availabil-

ity to the individual animal should not be considered in

RSF analyses. The region of potential space use or home

range is typically thought to be a function of external

and/or internal biological forces either constraining (e.g.

territorial behaviour) or attracting (e.g. central place for-

agers) movement. Thus, assuming uniform availability

over S, both RSF and RUF analyses account for
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availability simply by limiting the spatial support of the

response variable in the model in question. If one takes a

Poisson GLM approach to fitting a RSF, then the extent

of the grid over which the telemetry locations are counted

acts as the spatial support in the model and, in the case

of the RUF (eqn 8), it is the grid over which the UD is

estimated. Given that overly conservative availability

extents can cause a dramatic bias in the results, the rec-

ommendation by Millspaugh et al. (2006) to use a large

isopleth of the estimated UD is sensible.

the marginal smoothing induced by the ud
kde

As Marzluff et al. (2004) point out, there is an inherent

marginal (i.e. not explicitly considering the covariates)

smoothing that is induced in the estimation (eqn 1) of the

point process density f̂ based on the telemetry locations

st. It is not easy to see how this smoothing manifests itself

when the log UD (eqn 8) is used as a response variable in

the RUF model because of the complex nature of the KDE

procedure. However, we can write out a heuristically simi-

lar model that is based on smoothing the response variable

directly. In this case, to simplify the notation, let y repre-

sent a non-smoothed representation of the log UD, then

suppose the log UD is generated as y�NðXb;r2IÞ. Now, if

we apply a linear smoother to the log UD (Wy) that is

based on a weighing of the y at all locations, then using the

properties of a multivariate normal distribution, we have

the correct model for the smoothed log UD:

logð̂fÞ � Wy�NðWXb;r2WW0Þ: eqn 9

Using similar notation, the RUF model (eqn 8) is akin to

Wy�NðXb;r2IÞ. Thus, if the log UD is obtained via

marginal smoothing of the point process, the RUF model

(eqn 8) is misspecified. In fact, a more appropriate specifi-

cation would be similar to that presented in eqn (9). The

problem is that we do not know the exact form of the

smoother matrix W, and it will vary with the choice of

marginal density estimator.

The effect of using the misspecified RUF model (eqn 8)

on the estimation of the selection coefficients b is that the

smoothing operator will be applied to the log UD but not

to the mean field Xb, hence inducing a bias in b̂. This

implies that regardless of whether ordinary least squares

(OLS) or GLS is used to estimate b, we will obtain biased

selection coefficients. A possible remedy for this situation,

because the exact form of W is unknown, is to try to

induce a similar operator on Xb by simply smoothing the

covariates X before fitting the model; this yields the model

logðf̂Þ�NðsmoothðXÞb;r2IÞ: eqn 10

This would not yield the correct model (eqn 9), but it

would be an improvement. If the post hoc smoother

smoothðXÞ ¼ ~WX could be written as a linear smoother,

then it could also be easily employed in the covariance

structure yielding the model logð̂fÞ�Nð ~WXb;r2 ~W ~W
0Þ.

Alternatively, one could assume that a second-order

covariance matrix estimated from the data in the geosta-

tistical sense would serve as an approximation. This latter

modification would yield:

logð̂fÞ�NðsmoothðXÞb;RÞ; eqn 11

a model quite similar to the spatial RUF proposed by

Marzluff et al. (2004), but with covariates smoothed to

the same degree as the log UDs.

the pattern of covariates in the spatial ruf

The previous sections show, at least heuristically, how a

modified version of the RUF analysis could be considered

as an approximation of the RSF analysis. Continuing the

example using our simulated data from Fig. 1, we fit the

linear model in eqn (8) assuming independent errors and

then estimated the variogram and modelled it using the

exponential form of spatial structure (eqn 3) previously

discussed. The resulting variogram fit (Fig. 2) indicated

that residual autocorrelation exists in our data even

though it was simulated based on the relationship with

the covariate alone. As Marzluff et al. (2004) suggest, this

residual autocorrelation is likely due to the smoothing

induced by the KDE of the UD. Because latent spatial

autocorrelation exists in our simulated data, we would be

wise to account for it so that we may obtain accurate

inference about the parameters b in the RUF.

We make a slight modification to the specification of

the spatially explicit RUF model such that, using matrix

notation, we now have:

logðf̂Þ ¼ b0 þ Xbþ e;

¼ b0 þ XbþHzþ g;
eqn 12

where each of the vectors is concatenated over all cells in

S, and the original error vector e ¼ ðeðc1Þ; . . .; eðcmÞÞ0 is
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Fig. 2. Semi-variogram (points) and weighted least squares fit

(line) of the exponential covariance model (eqn 3) resulting from

the residuals of the linear regression using our simulated data.
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now split into two pieces ɛ = Hz+g; the first (i.e. Hz) con-

trolling the spatial dependence and the second (i.e. g)
accounting for any unstructured error. In fact, the spa-

tially correlated errors arise from a normal distribution

Hz�Nð0; ðsQÞ�1Þ where the precision matrix τQ is the

inverse of the former covariance matrix (i.e.

ðr2
sRÞ�1 ¼ sQ) and the unstructured errors g are inde-

pendent and identically normal such that g�Nð0;r2
eIÞ.

This reparameterization makes it easier to illustrate how

second-order spatial dependence can impose a bias on the

estimates of b.
From eqn (12), it is apparent that the model contains

two sets of covariates (i.e. X and H). This implies that the

covariates (i.e. columns) in H are spatial maps that may

influence the log UD depending on a new set of regres-

sion coefficients z. It can be shown that these ‘spatial

maps’, acting as unobserved covariates, are actually eigen-

vectors of the aforementioned Q in the precision matrix,

where Q=HΛH′ (Clayton, 1993; Paciorek 2010). In other

words, the spatial structure imposed by the geostatistical

model (eqn 3) implies that there are an entire set of cova-

riates in our model aside from those measured environ-

mental variables X! The parameters z then act as

regression coefficients that control the relative importance

of the latent covariates in H for predicting the log UD.

Further, it can be shown that z�Nð0; ðsKÞ�1Þ are random

effects, where Λ is the diagonal eigenvalue matrix result-

ing from the spectral decomposition of Q. The subtle but

important consequence of having additional covariates H

in the model is that they may be collinear with the known

environmental covariates X. This is potentially a big prob-

lem that is well described in the statistical literature (e.g.

Clayton, 1993; Reich et al. 2006; Hodges & Reich 2010;

Paciorek, 2010), although has received little attention in

the ecological literature.

In our continued example with the simulated data shown

in Fig. 1, we have computed the implied spatial covariate

matrix H based on the variogram fit in Fig. 2 and illustrate

the correlation with our covariate x using a few of the most

important eigenvectors in H (Fig. 3). These three eigenvec-

tors represent the second, third and fourth most important

spatial patterns implied by the autocorrelation (Fig. 2) in

the residuals of our simulated data. As implied spatial co-

variates in H, each indicates an absolute correlation of

approximately 0�5 with our simulated covariate x.

Several potential modifications have been suggested to

alleviate the bias induced by collinearity between the cova-

riates and spatially correlated errors (e.g. Reich et al.

2006; Hodges & Reich 2010; Hughes & Haran 2013); how-

ever, each of them would ‘correct’ the bias in the selection

coefficients such that it is exactly equal to the non-spatial

model fit using OLS. The suggested modifications (i.e. spa-

tially restricted regression) have the additional effect of

appropriately adjusting the variance of the estimators, but

because we are primarily concerned with the bias here, we

refer the interested reader to the cited literature herein.

the effect of location error in telemetry
data

Hepinstall et al. (2004) hint that RUF methods were

developed as an ad hoc procedure for fitting point process

models. Before it was recognized that resource selection

parameters could be estimated using readily available

GLM fitting software, the required integration in the

point process likelihood (eqn 4) made it challenging to fit

point process models directly. If RSF methods are now

just as accessible as RUFs, given their relationship, then

what, if anything, do we gain when analysing telemetry

data using the RUF approach? In this light, Millspaugh

et al. (2006) claim that the RUFs are better able to han-

dle measurement error in the telemetry data (i.e. with less

bias). It seems reasonable that the marginal smoothing

would help account for noise in the data; thus, using sim-

ulation, we evaluate this claim in the following section.

Data analysis

simulation study

We constructed a large simulation study to empirically

verify the differences among the various methods for

(a) (b) (c)

Fig. 3. (a) Second most important eigenvector in H; correlation with x is 0�503 (b) third most important eigenvector in H; correlation

with x is �0�504, and (c) fourth most important eigenvector in H; correlation with x is 0�468.
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estimating resource selection. In doing so, we used a

range of covariates (scaled to have mean zero and vari-

ance 1 on a 20 9 20 regular grid) from small-scale to

large-scale, we varied the sample size from 25 to 400 inde-

pendent telemetry points resulting from the intensity sur-

face defined by k ¼ eb0þb1x, we varied the bandwidth in

the KDE of the UD, and we used 3 different levels of

measurement error by adding Gaussian noise to the simu-

lated telemetry locations (with a variance of 0, 0�05 and

0�1, respectively). Further, we used a range of selection

coefficient values from 0 to 2 and compared each of the

following estimation procedures where the modified RUFs

incorporate a degree of covariate smoothing that best

improves the model fit (via R2), and when we use the term

‘spatial’ here we are referring to the explicit spatially

structured covariance version of the model:

1. PGLM: Poisson GLM described in Section Resource

selection functions and eqn (6).

2. NSRUF: non-spatial RUF described in Section The

use of f̂ instead of logðf̂Þ in conventional RUFs and

eqn (8) assuming independent and identically distrib-

uted errors ei.
3. SRUF: spatial RUF described in Section The use of f̂

instead of logðf̂Þ in conventional RUFs and eqn (8)

assuming correlated errors following the model (eqn

3).

4. NSMRUF: non-spatial modified RUF described in

Section The marginal smoothing induced by the UD

KDE and eqn (10) assuming independent and identi-

cally distributed errors ei.
5. SMRUF: spatial modified RUF described in Section

The marginal smoothing induced by the UD KDE

and eqn (11) assuming correlated errors following the

model (eqn 3).

All analyses were carried out using the R Statistical

Computing Environment (R Core Team, 2012; with R

functions ‘glm, ‘variog’ and ‘variofit’ from the ‘geoR’

package; Ribeiro & Diggle 2001). A subset of the results

from the simulation study is presented in Table 1. The

biases reported in Table 1 were approximated using 1000

simulations of point processes with a sample size of 100,

b1 ¼ 1, large-scale covariates (i.e. range of spatial struc-

ture was approximately two- thirds of the maximum dis-

tance in the spatial domain), the plug-in bandwidth for

the KDE estimate of the UD and over three different lev-

els of location error in the data (i.e. none, small and mod-

erate). To maintain the same sample size in each

realization of the point process, we used an inflated value

for b0 and then thinned the simulated points. An alterna-

tive simulation approach would be to choose b0 such that

the desired sample size was merely the expected number

of points (i.e. EðTÞ ¼ R
S kðsÞds), but this would not main-

tain a constant sample size across simulations.

The results presented in Table 1 hold generally across

the full range of simulations performed and are represen-

tative of a broad range of scenarios. Overall, the most

obvious pattern we notice is that the SRUF is the most

biased method for estimating resource selection across all

scenarios; we attribute this to two sources of bias: the

marginal smoothing of the UD and the potential spatial

confounding. The NSMRUF performs the best across all

scenarios shown in Table 1; however, it was not unbiased

in all simulations (not shown here), but it was always the

second best method compared with the PGLM. In cases

where there is measurement error, the NSMRUF and

SMRUF do quite well in terms of bias, although no

method stays completely unbiased when location error is

present. The SRUF and SMRUF appear to pick up an

additional source of bias that does not effect the non-

spatial estimation procedures. Based on the literature and

the high degree of correlation with the second-order

spatial error (which was nearly always greater than 0�6,
indicating collinearity), we suspect this additional bias

may be caused by spatial confounding (e.g. Hodges &

Reich 2010). Overall, these simulations support the argu-

ments made in Section Reconciling RUFs and RSFs con-

cerning the differences between methods and possible

sources of bias.

mountain l ion data

To illustrate a diagnostic approach for performing a

resource selection analysis using non-simulated data, we

consider an individual mountain lion and a single covari-

ate. The telemetry data are comprised of global position-

ing system (GPS) locations at a fairly regular fix interval

of approximately 3 h in an ongoing Colorado Parks and

Wildlife (CPW) monitoring effort. We focused on a single

individual (# AF50, an adult female) to demonstrate a

potential diagnostic procedure for determining the best

resource selection approach for inference. We thinned the

Table 1. The first three columns display the results of the simula-

tion study showing the bias incurred when estimating the

resource selection coefficient b1 using each of the methods under

varying amounts of location error. The small and large location

error corresponds to an additive symmetrical error with standard

deviation of 1=20th and 1=10th of the maximum distance in the

spatial domain, respectively. Bias values close to zero indicate the

method is relatively unbiased for estimating resource selection.

The last column shows the resource selection parameter estimates

under the different methods. It is important to note that the last

column displays the estimates themselves, whereas the previous

three columns represent bias values

Bias Estimate

Amount of location error

Mountain lion

None Small Moderate b̂1

PGLM �0�008 �0�246 �0�402 �0�242
NSRUF �0�288 �0�343 �0�428 �0�109
SRUF �0�931 �0�943 �0�963 0�001
NSMRUF �0�007 �0�077 �0�182 �0�317
SMRUF �0�103 �0�175 �0�361 �0�145
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original data, keeping only those points greater than 10

days apart to alleviate any concerns due to temporal

autocorrelation (e.g. Swihart & Slade 1985). We used the

topographical covariate of solar exposure (i.e. modified

Beers’ aspect transform; Beers 1966) for the analyses as

this is a potentially important resource on the Colorado

Front Range for these large carnivores (Fig. 4).

In using each of the methods to estimate resource

selection, we found great variability in the point esti-

mates for the parameter b1 (Table 1; far right column).

The SRUF demonstrated similar results as in our simula-

tions, estimating b1 far from any of the other estimates

(and positive), while the spatial modified RUF estimate

for b1 seemed to improve (but was still not equivalent

with the other methods). There did appear to be a slight

difference between the estimates using the NSMRUF and

the PGLM. Both performed well in our simulations

where no location error was present. Given that these

data were GPS telemetry locations, we would not expect

location inaccuracy at the scale of our covariates. How-

ever, because the relationship between exposure and the

UD may not be causal (which is not explored in our

simulations), there may be missing covariates that could

help explain resource selection. As a substitute for mea-

surement error, this type of misspecification error may be

accounted for in the RUF (but not in the RSF),

although this is mostly speculative. It should be noted

that the NSMRUF, SMRUF and the PGLM indicate

that there is a negative effect of exposure on selection,

implying that this individual is selecting for more pro-

tected aspects.

Both functions are trivial to estimate, but with the

added smoothing for the covariates in the NSMRUF and

SMRUF, the GLM is slightly more straightforward. It is

clear that using the spatial models for this data set is not

advised due to the additional bias. Further simulation

based on the exposure covariate and a range of b1 values

encompassing those estimated here could provide addi-

tional guidance as to whether the RUF or RSF provides

less biased resource selection inference. However, in this

scenario, with no obvious source of measurement error,

we would choose the RSF point process model (i.e.

PGLM) for inference.

Conclusion

In an examination of the properties of both RUFs and

RSFs, we find that generally the RSF is preferred because

it is slightly easier to implement and yields unbiased infer-

ence about selection coefficients when no measurement

error exists in the telemetry data. However, we note that

when there is location uncertainty in the data, a modified

version of the RUF can outperform the traditional RSF

in terms of less bias in the estimation of selection coeffi-

cients. This advantage was mentioned by Millspaugh

et al. (2006) but was not demonstrated, nor was the RUF

reconciled with the RSF to provide inference about the

same coefficients.

The residuals resulting from RUF models will typically

indicate latent spatial autocorrelation, and normally, it

would be a good idea to account for this; however, when

using large-scale covariates, there is a high likelihood of

multi-collinearity between the covariates and second-order

spatial structure (i.e. spatial eigenvectors) inducing a bias

in the resource selection coefficients. Thus, the spatial

RUFs do not seem to provide valid inference about

resource selection, at least in the conventional sense and

in the range of scenarios we simulated.

Overall, it is evident that the original RUFs do, in fact,

attempt to model some form of resource selection but that

the coefficients obtained could not be expected to be com-

parable with those arising from fitting an RSF without

some modification. Perhaps, the biggest finding we offer,

aside from the potential spatial confounding induced by

the second-order structure in the SRUF and SMRUF, is

that the RUF approach can be modified (NSMRUF) such

that it is a better estimator of resource selection (in terms

of bias) than the traditional RSF when the data are subject

to measurement error. This may be valuable in the analy-

sis of VHF or ARGOS satellite telemetry data (which

usually have more location uncertainty than GPS data).

Although we have focused on simpler models herein, an

Log(UD) Exposure Smoothed Exposure Spatial Eigenvector

(a) (b) (c) (d)

Fig. 4. The (a) mountain lion KDE log UD, (b) spatial covariate x (exposure), (c) smoothed covariate, and (d) spatial eigenvector that

correlates most strongly with the covariate (correlation: �0�5).
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alternative framework could be constructed to explicitly

account for any measurement error when making inference

about resource selection (e.g. Johnson et al. 2008).

Finally, as a reminder, we note that the general RUF

approach requires a two-stage procedure where the

‘response’ variable (i.e. the KDE) is first estimated using

the original data and then it is statistically linked to cova-

riates in a second-stage analysis. Like with all two-stage

analyses, a potential shortcoming of the approach is that

the uncertainty associated with the estimated density sur-

face in the first stage is not accomodated in the second-

stage analysis. One way to remedy this would be to

employ either a bootstrapping, data augmentation or mul-

tiple imputation procedure to help account for any uncer-

tainty in the KDE; however, at that point, one could

argue that the RUF method may have lost its simple and

straightforward appeal.
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