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Guest Editor’s Introduction to the Special
Issue on ‘“‘Animal Movement Modeling”

Mevin B. HOOTEN, Ruth KING, and Roland LANGROCK

In this introduction, we provide a brief overview to statistical models for animal
trajectories and then summarize the set of invited articles that comprise the issue.

INTRODUCTION

The study of individual animal trajectories is ancient, with a written record dating back
more than 2000 years (Nussbaum 1978). The mathematics of trajectories also have a long
history (Turchin 1988), but rigorous statistical methods development for animal trajectory
data (i.e., telemetry data) only dates back approximately 50 years (e.g., Dunn and Gipson
1977). In more recent times, the technology to collect a massive amount and variety of
telemetry data has increased dramatically, leading to unprecedented information on the
spatial ecology of animal populations (Cagnacci et al. 2010; Kays et al. 2015). The sheer
availability, variety, and volume of telemetry data sets present golden opportunities for the
development of new statistical methods that can provide deeper, more meaningful inference
about animal ecology. However, the volume, veracity, and velocity of the data coupled with
the complexity of the trajectory processes and underlying animal behaviors themselves
present formidable challenges for statisticians.

Whereas there are several examples of recent compilations pertaining to animal move-
ment, including a new journal devoted to the subject, this special issue on Animal Move-
ment Modeling is timely in that it captures an important subset of the new and innovative
developments in statistical methodology and practice associated with the analysis of animal
telemetry data. This special issue contains nine articles aimed at topics clustered naturally
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into two main categories: continuous-time models and discrete-time models. Most telemetry
data associated with animal tracking involve a spatial component (geographic position) and
a temporal component (temporal position). Associated statistical models for telemetry data
usually are formulated in discrete time or continuous time in the way the temporal dynamics
are expressed (McClintock et al. 2014). A third category that could be associated with either
time formulation is the class of models for point processes (e.g., Johnson et al. 2013), but
these methods (e.g., resource selection and step selection models) are not explicitly repre-
sented in this special issue. For more details on the use of point process models for animal
telemetry data, see Hooten et al. (2017) and Hooten and Johnson (2017a) for overviews,
and Johnson et al. (2013) and Brost et al. (2015) for specific examples.

This special issue contains a variety of approaches that address important issues within
each type of time formulation, including multi-scale temporal processes, interactions among
conspecifics, computational efficiency improvements using multistage modeling proce-
dures, barriers and constraints to movement, intractable movement model likelihoods, and
movement in patchy landscapes. The articles in this special issue involve applications to a
diverse set of organisms including insects, mammals (both marine and terrestrial), reptiles,
and fish.

In what follows, we summarize each article in this special issue in the context of either
discrete-time or continuous-time formulations. We also provide background on the prior
research in this area and highlight the novel contributions of the special issue articles.

DISCRETE-TIME MODELS

Statistical models for temporally referenced data are most commonly formulated in dis-
crete time. These include time series models with autoregressive and moving average for-
mulations. The simplest discrete-time model one might envision for animal telemetry data
is a first-order vector random walk model s, = s,_| + &;, where s; represents the animal
position at time ¢ and &, are white noise vectors with variance o2. Of course, such a model
relies on independence and nonstationarity assumptions as well as regularly spaced data that
are collected at a resolution that is well modeled by the random walk. This simple time series
model is surprisingly easy to fit to data, but does not account for measurement error and is
purely phenomenological. It may also contain dynamics that are not smooth enough to char-
acterize real animal trajectories. Jonsen et al. (2005) proposed to use a generalized version
of the random walk model for the velocity process (i.e., the first-order difference of position
in time) which provided more generality and smoothness to the resulting trajectories, better
accommodating real data. This new model was couched in a hierarchical statistical modeling
framework and therefore better able to explicitly incorporate a measurement error process.

Taking a different approach, Morales et al. (2004) proposed a mixture model for telemetry
data that was based on a transformation of the velocity data to polar coordinates—effectively
the animal’s step lengths and turning angles—and classified the data into a set of “states”
depending on their characteristics. This approach has persisted in the literature, and the gen-
eral concept of state-switching models still serves as a dominant theme for animal movement
modeling approaches (e.g., Langrock et al. 2012; McClintock et al. 2012; Patterson et al.
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2017). This special issue contains five articles focused on methods and practical guidance
associated with discrete-time animal movement models. These articles provide a wide range
of novel statistical contributions that are directed at solving long-standing questions per-
taining to animal movement modeling.

The issue of scale has been a long-standing concern in the study of animal space use.
Johnson (1980) is often credited with developing a framework for thinking about spatial scale
in studies of space use and resource selection, and others have tackled similar scale issues in
the temporal domain (e.g., Hooten et al. 2014). However, temporal multi-scale specifications
in a state-switching hidden Markov model framework have not been addressed, until now.
In this special issue, Leos-Barajas et al. (2017) tackle the problem by using multiple latent
processes operating at different time scales within an HMM framework. Leos-Barajas et al.
(2017) formulate an HMM using a nested structure where the data depend on a fine-scale
hidden Markov process, which in turn depends on a coarse-scale process. In this way, they
are capable of capturing patterns in animal behavior that manifest themselves at multiple
scales (e.g., migration as long-term behavioral strategy versus foraging or resting behavior
as short-term behaviors). They apply their models to study harbor porpoises and garter
snakes and their shifts in behavior over time.

Discrete-time movement models from the class of HMM are proliferating in the literature,
due at least in part to the availability of statistical software to fit the models to data and
their intuitive nature (Michelot et al. 2016). However, discrete-time formulations have an
associated set of challenges. Among them is the fact that telemetry data are often irregularly
spaced in time and often subject to measurement error. While these features of the data can
be accommodated in hierarchical implementations of HMMs, they add to the computational
requirements to fit the models to larger datasets. Similar challenges have been addressed in
continuous-time models for animal movement using imputation approaches (Hooten et al.
2010; Hanks et al. 2015; Scharf et al. 2017). In this special issue, McClintock (2017) assesses
the performance of multistage model fitting procedures using data imputation approaches
within HMMs. Using interpolated tracks resulting from an initial model fit to the data and
then a second-stage HMM that integrates over the uncertainty in the tracks, McClintock
(2017) found it naturally solves the irregular time issue for the data and performs well
for parameter estimation. He does note that, in certain pathological situations with large
measurement error and low temporal resolution in the data, biases can arise in parameter
estimation.

A common issue with clustering models in general, and state-switching animal movement
models in particular, is that the number of clusters (or states) can be notoriously difficult to
estimate. Morales et al. (2004) used DIC to select among the relatively small set of parsimo-
nious candidate models they considered, but in more recent studies, it became apparent that
traditional model selection procedures have tended to select models that are too complex
(i.e., involve too many states; see Langrock et al. 2015; DeRuiter et al. 2017; Li and Bolker
2017). In this special issue, Pohle et al. (2017) perform a thorough inspection of model
selection issues arising in state-switching models, in particular HMMs. They demonstrate
why traditional model selection criteria tend to favor state-switching models with overly
complex state architectures and provide step-by-step practical guidance for selecting a suit-
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able number of states. They illustrate their procedure using telemetry data from muskox in
Greenland involving several different behaviors.

Agent-based models (ABMs) have been used to mimic a variety of ecological processes
and have been applied in movement analyses to test null hypotheses about animal behavior
and space use. However, only recently have ABMs appeared in the statistical animal move-
ment modeling literature, both in the individual-level (Hooten et al. 2010) and population-
level (Hooten and Wikle 2010) contexts. In each previous case, however, the model formu-
lations were tractable enough that the likelihood could be calculated analytically. However,
it is relatively easy to construct simulation-based stochastic ABMs that result in intractable
likelihoods. In such cases, typical parametric Bayesian methods are difficult or impossible
to apply. In this issue, McDermott and Wikle (2017) specify an ABM for multiple individ-
uals that mechanistically involves interactions among several trajectories. They develop an
approximate Bayesian computation (ABC) approach to fit the ABM to observational data
on a set of guppies moving in an experimental setting.

Several new developments in collective movement have appeared in recent years (e.g.,
Scharf et al. 2016), but few have used explicit potential function specifications (Russell
et al. 2016). Potential functions have been traditionally used in continuous-time stochastic
differential equation (SDE) models (Brillinger 2010). In this issue, Russell et al. (2017)
describe a collective movement model based on potential functions that is motivated by an
SDE, but implemented in discrete time. They couple individuals together in their model
using dependent latent behavioral states and apply their models to study the movement of
carpenter ants in an experimental setting where individuals can leave or stay in the study
area during the observational period. In this case, the data are collected by observing the
positions of individual ants over time.

CONTINUOUS-TIME MODELS

Traditionally, continuous-time movement models are similar to discrete-time formu-
lations in that they involve parameterizations of the position process directly, but with
infinitely many small steps. Integrating the sequence of steps results in a stochastic process
with long-range structure, and formal specifications of such processes are referred to as
Wiener processes or Brownian motion (Hooten et al. 2017). Johnson et al. (2008) imposed
additional smoothness on the resulting stochastic processes by letting a stationary form of
Brownian motion (i.e., the Ornstein—Uhlenbeck process) describe the velocity process and
then integrating it a second time to result in the position process. This idea to use an inte-
grated form of Brownian motion inspired a class of generalized models using basis function
specifications to yield different amounts and types of smoothness in the process to model
more realistic animal movement trajectories (Hooten and Johnson 2017b). In this special
issue, there are four articles focused on modeling trajectories in continuous time.

Brillinger (2010) described a suite of approaches to incorporate spatial covariates in
continuous-time models using potential surfaces that control the rate and direction of the
trajectory on the surface. Potential surface models can be challenging to implement because
they involve a gradient of the potential function that is not analytically tractable for real-
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istically complex model specifications. Thus, in this special issue, Scharf et al. (2017)
examined imputation approaches that involve multistage model fitting procedures similar
to those explored by McClintock (2017; also in this special issue) and previously used in
continuous-time discrete-space models (Hooten et al. 2010; Hanks et al. 2015). Scharf et al.
(2017) applied what they refer to as “process imputation” to fit potential function models
using a two-stage procedure. In the first stage, they interpolated the data (with uncertainty)
using a simplified continuous-time movement model like the functional movement model
of Buderman et al. (2016) and then integrated over the posterior predictive track distribution
when fitting the potential function model in the second stage of the procedure. They found
that imputation approaches account for complicated measurement error processes and work
remarkably well for recovering interpretable model parameters, but appear to show bias for
other nuisance model parameters that are not usually used for inference. They demonstrate
their approach using telemetry data from northern fur seals near Alaska, USA.

Few true barriers completely impede the movement of airborne animals like birds. How-
ever, terrestrial and aquatic animals are often constrained to land and waterscapes. In such
cases, it can be critical to formally account for barriers to movement when analyzing teleme-
try data to make inference on space use and resource selection. For example, in a study of
harbor seals in Alaska, USA, Brost et al. (2015) found dramatic differences in inference
when properly accounting for barriers to movement using a spatio-temporal point process
model. In continuous-time stochastic process models, some approaches to account for bar-
riers to movement have been suggested, but few, if any, are used in practice. In this special
issue, Hanks et al. (2017) investigated approaches to account for barriers to movement
using reflected SDEs. In reflected SDEs, Brownian motion is reflected when it encounters a
boundary and the reflection process is specified mathematically in the model. Hanks et al.
(2017) examined the performance of their model in simulation and demonstrate it using
Steller sea lion telemetry data in a marine environment with many boundaries in the form
of a complex shoreline and several islands that impede the movement of the sea lions.

While state-switching models have become popular in discrete-time movement analyses,
continuous-time models have mostly focused on track interpolation and the influence of
spatial covariates on movement via potential functions. Because true animal trajectories are
continuous in time and individuals may switch behaviors among a finite set of potential
states (e.g., resting, foraging, migrating), there is a need for continuous-time formulations
of state-switching models. Parton and Blackwell (2017) explored such models in this special
issue. Specifically, they developed models for steps and turns, in the same spirit as Morales
et al. (2004) and McClintock et al. (2012), but using continuous-time stochastic process
specifications. They used data augmentation approaches to fit the models and apply them
to the movement trajectories of elk based on the telemetry data analyzed by Morales et al.
(2004) and show how their inference is similar but relevant for the continuous-time domain.

So far, in this special issue, all of the articles have focused on the continuous-space setting.
By contrast, Morales et al. (2017) are interested in transitions among patches of habitat in
a discrete-space domain. While previous statistical models for discrete-space transitions
have appeared in the literature (e.g., Hooten et al. 2010; Hanks et al. 2015), they have
been formulated for a regular grid of pixels in which the individual animal resides. In this
special issue, Morales et al. (2017) constructed a transition model that provides inference
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on patch transitions in a landscape with irregularly sized and shaped patches. Their model
also accounts for memory and is based on earlier theoretical work by Ovaskainen and
Cornell (2003). They applied their model to understand the movement of domestic sheep in
experimental paddocks.

CONCLUSION

In summary, this special issue is comprised of a variety of modern approaches for sta-
tistically modeling animal movement processes. The field of animal movement modeling is
evolving rapidly, and new forms of telemetry data require new statistical methods. Thus, it
is a golden era for statisticians to make useful contributions to the field by finding ways to
obtain new types of inference based on telemetry data and efficient ways to analyze massive
tracking data sets. The future of animal movement modeling will continue to see a need for
advancements in models for multiple individuals (Langrock et al. 2014; Hooten et al. 2016)
while incorporating measurement error, environmental covariates, and real-time tracking
data. Also, the analyses of auxiliary telemetry data such as accelerometer data that can pro-
vide deeper insights into animal behavior and health are still nascent (Leos-Barajas et al.
2017), and reconciling these data with more traditional spatially referenced tracking data
will be key for tying animal movement models to management and conservation decision
making.

REFERENCES

Brillinger, D.R. (2010), Modeling spatial trajectories. In Gelfand, A. E., P. J. Diggle, M. Fuentes, and P. Guttorp,
editors, Handbook of Spatial Statistics, chapter 26, pages 463-475. Chapman & Hall/CRC, Boca Raton, Florida,
USA.

Brost, B.M., M.B. Hooten, E.M. Hanks, and R.J. Small. (2015), Animal movement constraints improve resource
selection inference in the presence of telemetry error. Ecology, 96:2590-2597.

Buderman, FE., M.B. Hooten, J.S. Ivan, and T.M. Shenk. (2016), A functional model for characterizing long
distance movement behavior. Methods in Ecology and Evolution, 7:264-273.

Cagnacci, F,, L. Boitani, R.A. Powell, and M.S. Boyce. (2010), Animal ecology meetings GPS-based radioteleme-
try: A perfect storm of opportunities and challenges. Philosophical Transactions of the Royal Society of London
B: Biological Sciences, 365:2157-2162.

DeRuiter, S.L., R. Langrock, T. Skirbutas, J.A. Goldbogen, J. Calambokidis, A.S. Friedlaender, and B.L. Southall.
(2017), A multivariate mixed hidden Markov model for blue whale behaviour and responses to sound exposure.
Annals of Applied Statistics, 11:362-392.

Dunn, J.E. and P.S. Gipson. (1977), Analysis of radio-telemetry data in studies of home range. Biometrics, 33:85-
101.

Hanks, E.M., M.B. Hooten, and M. Alldredge. (2015), Continuous-time discrete-space models for animal move-
ment. Annals of Applied Statistics, 9:145-165.

Hanks, E.M, D.S. Johnson, and M.B. Hooten. (2017), Reflected stochastic differential equation models for con-
strained animal movement. Journal of Agricultural, Biological and Environmental Statistics, doi:10.1007/
s13253-017-0291-8.

Hooten, M.B., D.S. Johnson, E.M. Hanks, and J.H. Lowry. (2010), Agent-based inference for animal movement
and selection. Journal of Agricultural, Biological and Environmental Statistics, 15:523-538.


http://dx.doi.org/10.1007/s13253-017-0291-8
http://dx.doi.org/10.1007/s13253-017-0291-8

INTRODUCTION TO THE SPECIAL ISSUE ON “ANIMAL MOVEMENT MODELING”

Hooten, M.B., E.M. Hanks, D.S. Johnson, and M.W. Alldredge. (2014), Temporal variation and scale in movement-
based resource selection functions. Statistical Methodology, 17:82-98.

Hooten, M.B., F.E. Buderman, B.M. Brost, E.M. Hanks, and J.S. Ivan. (2016), Hierarchical animal movement
models for population-level inference. Environmetrics, 27:322-333.

Hooten, M.B. and D.S. Johnson. (2017b), Basis function models for animal movement. Journal of the American
Statistical Association, 112:578-589.

Hooten, M.B., D.S. Johnson, B.T. McClintock, and J.M. Morales. (2017), Animal Movement: Statistical Models
for Telemetry Data. Chapman and Hall/CRC.

Hooten, M.B. and D.S. Johnson. (2017a), Modeling Animal Movement. Gelfand, A.E., M. Fuentes, and J.A.
Hoeting (eds). In Handbook of Environmental and Ecological Statistics. Chapman and Hall/CRC.

Hooten, M.B. and C.K. Wikle (2010), Statistical agent-based models for discrete spatio-temporal systems. Journal
of the American Statistical Association, 105:236-248.

Johnson, D.H. (1980), The comparison of usage and availability measurements for evaluating resource preference.
Ecology, 61:65-71.

Johnson D.S., J. London, M. Lea, and J. Durban. (2008), Continuous-time correlated random walk model for
animal telemetry data. Ecology, 89:1208-1215.

Johnson, D.S., M.B. Hooten, and C.E. Kuhn. (2013), Estimating animal resource selection from telemetry data
using point process models. Journal of Animal Ecology, 82:1155-1164.

Jonsen, 1., J. Flemming, and R. Myers. (2005), Robust state-space modeling of animal movement data. Ecology,
45:589-598.

Kays, R., M. Crofoot, W. Jetz, and M. Wikelski. (2015), Terrestrial animal tracking as an eye on life and planet.
Science, 384(6240):aaa2478.

Langrock, R., J.G.C. Hopcraft, P.G. Blackwell, V. Goodall, R. King, M. Niu, T.A. Patterson, M.W. Pedersen,
A. Skarin, and R.S. Schick. (2014), Modelling group dynamic animal movement. Methods in Ecology and
Evolution, 5:190-199.

Langrock, R., T. Kneib, A. Sohn, and S.L. DeRuiter. (2015), Nonparametric inference in hidden Markov models
using P-splines. Biometrics, 71:520-528.

Langrock, R., R. King, J. Matthiopoulos, L. Thomas, D. Fortin, and J. Morales. (2012), Flexible and practical
modeling of animal telemetry data: Hidden Markov models and extensions. Ecology, 93:2336-2342.

Leos-Barajas, V., EJ. Gangloff, T. Adam, R. Langrock, J.M. Morales, FM. van Beest, and J. Nabe-Nielsen.
(2017a), Multi-scale modeling of animal movement and general behavior data using hidden Markov models
with hierarchical structures. Journal of Agricultural, Biological and Environmental Statistics, doi:10.1007/
$13253-017-0282-9.

Leos-Barajas, V., T. Photopoulou, R. Langrock, T.A. Patterson, Y. Watanabe, M. Murgatroyd, and Y.P. Papastama-
tiou. (2017b), Analysis of animal accelerometer data using hidden Markov models. Methods in Ecology and
Evolution, 8:161-173.

Li, M. and B. Bolker. (2017), Incorporating periodic variability in hidden Markov models for animal movement.
Movement Ecology, 5:1.

McClintock, B.T. (2017), Incorporating telemetry error into hidden Markov models of animal movement
using multiple imputation. Journal of Agricultural, Biological and Environmental Statistics, doi:10.1007/
$13253-017-0285-6.

McClintock, B.T., D.S. Johnson, M.B. Hooten, J.M. Ver Hoef, and J.M. Morales. (2014), When to be discrete: the
importance of time formulation in understanding animal movement. Movement Ecology, 2:21.

McClintock, B.T., R. King, L. Thomas, J. Matthiopoulos, B. McConnell, and J. Morales. (2012), A general discrete-
time modeling framework for animal movement using multistate random walks. Ecological Monographs,
82:335-349.

McDermott, P., and C.K. Wikle. (2017), Hierarchical nonlinear spatio-temporal particle models for animal move-
ment. Journal of Agricultural, Biological and Environmental Statistics, doi:10.1007/s13253-017-0289-2.
Michelot, T., R. Langrock, and T.A. Patterson. (2016), moveHMM: An R package for analysing animal movement

data using hidden Markov models. Methods in Ecology and Evolution, 7:1308-1315.


http://dx.doi.org/10.1007/s13253-017-0282-9
http://dx.doi.org/10.1007/s13253-017-0282-9
http://dx.doi.org/10.1007/s13253-017-0285-6
http://dx.doi.org/10.1007/s13253-017-0285-6
http://dx.doi.org/10.1007/s13253-017-0289-2

M. B. HOOTEN ET AL.

Morales, J.M., D. Haydon, J. Friar, K. Holsinger, and J. Fryxell. (2004), Extracting more out of relocation data:
Building movement models as mixtures of random walks. Ecology, 85:2436-2445.

Morales, J., A. di Virgilio, M. Delgado, and O. Ovaskainen. (2017), A general approach to model movement in
(highly) fragmented patch networks. Journal of Agricultural, Biological and Environmental Statistics, doi:10.
1007/s13253-017-0298-1.

Nussbaum, M. (1978), Aristotle’s De Motu Animalium: Text with Translation, Commentary, and Interpretive
Essays. Princeton University Press, Princeton, New Jersey, USA.

Ovaskainen, O. and S.J. Cornell. (2003), Biased movement at a boundary and conditional occupancy times for
diffusion processes. Journal of Applied Probability, 40:557-580.

Parton, A., and P.G. Blackwell. (2017), Bayesian inference for continuous time animal movement based on steps
and turns. Journal of Agricultural, Biological and Environmental Statistics, doi:10.1007/s13253-017-0286-5.

Patterson, T.A., A. Parton, R. Langrock, P.G. Blackwell, L. Thomas, and R. King. (2017), Statistical modelling of
individual animal movement: an overview of key methods and a discussion of practical challenges. Advances
in Statistical Analysis, doi:10.1007/s10182-017-0302-7.

Pohle, J., R. Langrock, EM. van Beest, and N.M. Schmidt. (2017), Selecting the number of states in hidden
Markov models: pragmatic solutions illustrated using animal movement. Journal of Agricultural, Biological
and Environmental Statistics, doi:10.1007/s13253-017-0283-8.

Russell, J.C., E.M. Hanks, M. Haran, and D.P. Hughes. (2016), A spatially-varying stochastic differential equation
model for animal movement. arXiv:1603.07630.

Russell, J., EM. Hanks, and D. Hughes. (2017), Modeling collective animal movement through interac-
tions in behavioral states. Journal of Agricultural, Biological and Environmental Statistics, doi:10.1007/
$13253-017-0296-3.

Scharf, H.R., M.B. Hooten, B.K. Fosdick, D.S. Johnson, J.M. London, and J.W. Durban. (2016), Dynamic social
networks based on movement. Annals of Applied Statistics, 10:2182-2202.

Scharf, H., M.B. Hooten, and D.S. Johnson. (2017), Evaluating process imputation approaches in continuous-
time animal movement models. Journal of Agricultural, Biological and Environmental Statistics, doi:10.1007/
$13253-017-0294-5.

Turchin, P. (1998), Quantitative Analysis of Movement. Sinauer Associates, Inc. Publishers. Sunderland, Mas-
sachusetts, USA.


http://dx.doi.org/10.1007/s13253-017-0298-1
http://dx.doi.org/10.1007/s13253-017-0298-1
http://dx.doi.org/10.1007/s13253-017-0286-5
http://dx.doi.org/10.1007/s10182-017-0302-7
http://dx.doi.org/10.1007/s13253-017-0283-8
http://arxiv.org/abs/1603.07630
http://dx.doi.org/10.1007/s13253-017-0296-3
http://dx.doi.org/10.1007/s13253-017-0296-3
http://dx.doi.org/10.1007/s13253-017-0294-5
http://dx.doi.org/10.1007/s13253-017-0294-5

	Guest Editor's Introduction to the Special Issue on ``Animal Movement Modeling''
	Introduction
	Discrete-Time Models
	Continuous-Time Models
	Conclusion
	References




