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Hierarchical animal movement models for
population-level inference�

Mevin B. Hootena*, Frances E. Budermanb, Brian M. Brostb,
Ephraim M. Hanksc and Jacob S. Ivand

New methods for modeling animal movement based on telemetry data are developed regularly. With advances in telemetry
capabilities, animal movement models are becoming increasingly sophisticated. Despite a need for population-level infer-
ence, animal movement models are still predominantly developed for individual-level inference. Most efforts to upscale
the inference to the population level are either post hoc or complicated enough that only the developer can implement the
model. Hierarchical Bayesian models provide an ideal platform for the development of population-level animal movement
models but can be challenging to fit due to computational limitations or extensive tuning required. We propose a two-stage
procedure for fitting hierarchical animal movement models to telemetry data. The two-stage approach is statistically rig-
orous and allows one to fit individual-level movement models separately, then resample them using a secondary MCMC
algorithm. The primary advantages of the two-stage approach are that the first stage is easily parallelizable and the second
stage is completely unsupervised, allowing for an automated fitting procedure in many cases. We demonstrate the two-
stage procedure with two applications of animal movement models. The first application involves a spatial point process
approach to modeling telemetry data, and the second involves a more complicated continuous-time discrete-space animal
movement model. We fit these models to simulated data and real telemetry data arising from a population of monitored
Canada lynx in Colorado, USA. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION
The field of movement ecology is booming, in large part, because of the increased availability of telemetry data sources (Cagnacci et al.,
2010). Contemporary telemetry data are acquired via satellite communication devices affixed to individual animals. These devices often
collect many types of data, but most studies are focused on the position data, primarily to learn about environmental influences on individual-
level movement. Many new statistical models for animal trajectories have been proposed in recent years, and they vary in form depending on
the motivation for the project and type of inference desired (Hooten et al., in press). For example, most individual-based statistical models
for telemetry data fall into one of three classes: point process models, discrete-time models, or continuous-time models, with each being
appropriate in certain settings (McClintock et al., 2014).

Statistical inference arising from fitting animal movement models to telemetry data is sometimes focused on the individual level. For
example, a movement ecologist might ask how a specific individual animal responded to environmental cues while migrating between
summer and winter home ranges (e.g., Hooten et al., 2010a). However, many animal movement studies are concerned with population-
level inference. That is, for several individuals, is there evidence of consistent behavioral responses to environmental variables? To obtain
population-level inference, the well-accepted approach is to use a hierarchical model with random effects for individuals that are pooled at
the population level. For example, consider the Bayesian hierarchical model

yj � Œyj jˇj ;�j � (1)
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ˇj � Œˇj j�ˇ ;†ˇ � (2)

�ˇ � Œ�ˇ � (3)

†�1ˇ �
h
†�1ˇ

i
(4)

�j � Œ�j � (5)

where yj are measurements associated with each individual j (j D 1; : : : ; J ) and we use ‘Œ: : :�’ to denote a probability distribution
or mass/density function as necessary (Gelfand and Smith, 1990). The priors in (3)–(5) are for the auxiliary data-level parameters �j ,
population-level coefficients �ˇ , and precision matrix †�1

ˇ
, forming the familiar three-level hierarchical model (Berliner, 1996). The hier-

archical model in (1)–(5) provides a straightforward and intuitive means for obtaining inference for �ˇ , which is the ultimate goal of many
animal movement studies. Similar hierarchical models have become popular, and now standard, tools for obtaining upscaled inference in
many other fields such as atmospheric science (Cressie and Wikle, 2011), ecology (Hobbs and Hooten, 2015), and sociology (Gelman and
Hill, 2006).

The complexity of modern animal movement models makes implementation challenging. Furthermore, increases in the quantity of data
resulting from newer telemetry devices has outpaced computational methods for fitting animal movement models. Animal ecologists may
wish to extend individual-level models to provide statistically rigorous population-level inference, but, in many cases, the algorithms required
to fit such models become prohibitively challenging to program or are too slow in settings with large data sets and/or many individuals. For
example, Hanks et al. (2011) performed a post hoc meta-analysis to obtain population-level inference for northern fur seals (Callorhinus
ursinus) because the implementation of a full hierarchical movement model was not computationally feasible. Furthermore, in the Bayesian
setting, Markov Chain Monte Carlo (MCMC) algorithms for most animal movement models require tuning from the user due to lack of
conjugacy. In cases where data sets from tens or hundreds of individuals are available, it may not be feasible to tune individual-level
Metropolis-Hastings updates for all parameters.

We present a statistically rigorous two-stage procedure for economizing hierarchical animal movement models to provide exact
population-level inference using a sequence of algorithms that are fast, stable, and require little or no tuning by the user. Our approach is
simple. First, we fit individual-level models (1) independently using a preferred stochastic sampling algorithm. Independent model fits in the
first stage allow for parallel processing, leading to an improvement in computational efficiency that scales with the number of processors.
Second, we obtain exact population-level inference using a secondary MCMC algorithm that requires no tuning. The secondary algorithm
is based on a little-known technique for Bayesian meta-analysis proposed by Lunn et al. (2013). We found that our two-stage procedure
provides substantial computational improvements in both speed and ease of use in cases with large data sets and/or complicated data models.

In what follows, we present a general two-stage procedure for fitting a broad class of hierarchical animal movement models. We then
demonstrate the approach for a basic point process model for telemetry data (i.e., resource selection function model) and verify it using sim-
ulation. In our second application, we show how the approach can be applied to a continuous-time discrete-space (CTDS) animal movement
model using telemetry data with complicated error structure. We apply the CTDS model to satellite telemetry data from a population of
Canada lynx (Lynx canadensis) in Colorado, USA. Finally, we close with a summary and discussion of the approach and future directions.

2. TWO-STAGE PROCEDURE
Many animal movement models have been constructed solely for individual-level inference (e.g., Jonsen et al., 2005; Johnson et al., 2008b;
Hooten et al., 2010a; Brost et al., 2015; Buderman et al., 2016). However, the desired scientific inference is usually at the population
level to assess if the population, as a whole, is responding to certain environmental cues. Hierarchical statistical models provide a natural
framework for obtaining upscaled population-level inference (Gelman and Hill, 2006; Hobbs and Hooten, 2015). As the complexity of animal
movement models increases, hierarchical models that include nonlinear components become challenging to implement due to computational
limitations and user supervision requirements. It is often much simpler to fit individual-level models to data, as long as individuals are
assumed independent. Following Lunn et al. (2013), we propose a simple two-stage procedure for obtaining population-level inference under
the full hierarchical model. The two-stage procedure only requires independent individual-level model fits and an unsupervised resampling
algorithm to obtain population-level inference without any user tuning.

The first stage in the procedure involves fitting a data model like (1) independently for each individual j (j D 1; : : : ; J ). In addition to
the prior for auxiliary data-level parameters �j from (5), we also specify a prior for the individual-level parameters ˇj as ˇj � Œˇj � (where
the priors for �j and ˇj can differ by individual). The priors for ˇj are only used in the first stage of the two-stage procedure and do not
affect the final inference. The posterior distribution for individual j is

Œ�j ;ˇj jyj � D
Œyj j ǰ ;�j �Œ ǰ �Œ�j �’

Œyj j ǰ ;�j �Œ ǰ �Œ�j �d ǰ d�j
: (6)

In principle, any stochastic sampling algorithm can be used to obtain samples from the posterior distribution in (6), but those relying on
MCMC are most commonly applied in the animal movement literature. However, because we treat the models in (6) for all J individuals
independently in the first stage, they can be fit in parallel using readily available software (e.g., the ‘parallel’ R package; R Core Team,
2016). Additionally, if we choose a sampling algorithm for fitting the models in (6) that is unsupervised (i.e., requiring no supervised tuning),
then the entire two-stage procedure can be automated. An unsupervised fitting procedure will be used much more often by ecologists in
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situations where data exist for a large number of individuals. Thus, automatic MCMC algorithms like BUGS (Lunn et al., 2009), JAGS
(Plummer, 2003), or STAN (Carpenter et al., 2016) can be used to fit the individual-level models in (6), or alternatively, importance sampling
or particle filtering (e.g., LibBi; Murray, 2013) methods can also be employed. Finally, the choice of priors Œˇj � can also lead to fully
automatic and parallelizable first-stage algorithms. For example, if the data model (1) is Poisson (i.e., yj � Pois.exp.Xjˇj //, where Xj is
a design matrix of covariates for the j th individual), then �j is empty because the Poisson does not have a separate dispersion parameter.
A multivariate log-gamma prior distribution (Crooks, 2010; Bradley et al., 2015) for ˇj facilitates the use of a Monte Carlo sampler to
obtain posterior samples from (6). For non-conjugate priors, adaptively tuned MCMC algorithms (e.g., Givens and Hoeting, 2012) are
straightforward to implement and provide a way to obtain unsupervised stage-one samples for ˇj .

The second stage in the two-stage procedure involves an MCMC algorithm resembling that used to fit the full hierarchical model but with
a critical simplification. To fit the full hierarchical model in (1)–(5), we sequentially sample from the full-conditional distributions Œˇj j�� for

j D 1; : : : ; J , Œ�ˇ j��, and
h
†�1
ˇ

ˇ̌̌
�
i
, using an MCMC algorithm. In our second stage algorithm, we use the MCMC algorithm for the full

hierarchical model as a template but modify the updates for ˇj . Updates for the individual-level auxiliary parameters, �j , are automatically
coupled with those from ˇj but are only necessary if we desire inference for �j . In fact, if �j are considered nuisance parameters, it is not
necessary to store samples for them in our two-stage procedure.

The full-conditional distributions for population-level parameters �ˇ and †�1
ˇ

in the second stage model remain the same as in the
MCMC algorithm to fit the full hierarchical model in (1)–(5):

Œ�ˇ j�� /

0
@ JY
jD1

Œˇj j�ˇ ;†ˇ �

1
A Œ�ˇ � ; (7)

h
†�1ˇ

ˇ̌̌
�
i
/

0
@ JY
jD1

Œˇj j�ˇ ;†ˇ �

1
Ah†�1ˇ

i
: (8)

If the model for ˇj and prior for �ˇ are multivariate Gaussian and the prior for †�1
ˇ

is Wishart, then the full-conditional distributions in
(7) and (8) are multivariate Gaussian and Wishart, respectively. These specific distributions are commonly used in many animal movement
models for population-level parameters and permit conjugate Gibbs updates in our second-stage algorithm.

The joint full-conditional distribution for the data-level auxiliary parameters, �j , and individual-level parameters, ˇj , is

Œ�j ;ˇj j�� / Œyj jˇj ;�j �Œˇj j�ˇ ;†ˇ �Œ�j � (9)

which, depending on the form of data model Œyj jˇj ;�j �, would normally require a Metropolis-Hastings update. In this case, the Metropolis-
Hastings ratio for the joint update of �j and ˇj is

rj D

h
yj
ˇ̌̌
ˇ�j ;�

�
j

i h
ˇ�j

ˇ̌̌
�k
ˇ
;†k

ˇ

i h
��j

i h
�k�1j ;ˇk�1j

ˇ̌̌
��j ;ˇ

�
j

i
h

yj
ˇ̌̌
ˇk�1j ;�k�1j

i h
ˇk�1j

ˇ̌̌
�k
ˇ
;†k

ˇ

i h
�k�1j

i h
��j ;ˇ

�
j

ˇ̌̌
�k�1j ;ˇk�1j

i (10)

where, the ‘�’ superscript represents the proposal for ˇj and the ‘k’ and ‘k � 1’ superscripts correspond to the MCMC sample for the k

or k � 1 iteration of the MCMC algorithm (for k D 2; : : : ; K). Typically, the proposal distribution,
h
��j ;ˇ

�
j

ˇ̌̌
�k�1j ;ˇk�1j

i
, is chosen to

be a multivariate Gaussian random walk such that
�
��j ;ˇ

�
j

�0
� N

��
�k�1j ;ˇk�1j

�0
; Q†j

�
that requires tuning for each individual j by

adjusting Q†j using trial and error or an adaptive MCMC approach (e.g., Roberts and Rosenthal, 2009).
However, if we use the posterior samples for �j and ˇj from the first stage (6) as the proposal in the second stage update for ˇj , then the

proposal distribution is

h
��j ;ˇ

�
j

ˇ̌̌
�k�1j ;ˇk�1j

i
�

h
yj
ˇ̌̌
ˇ�j ;�

�
j

i �
ˇ�
� h
��j

i
R R

Œyj jˇj ;�j �Œˇj �Œ�j �dˇj d�j
(11)

which does not depend on the previous �k�1j and ˇk�1j . The Metropolis-Hastings ratio from (10) simplifies to

rj D

h
ˇ�j

ˇ̌̌
�k
ˇ
;†k

ˇ

i h
ˇk�1j

i
h
ˇk�1j

ˇ̌̌
�k
ˇ
;†k

ˇ

i h
ˇ�j

i (12)

while the updates for �ˇ and †�1
ˇ

remain unchanged. Thus, we keep the samples for ��j and ˇ�j , from the first stage, with probability
min.rj ; 1/. However, we only need to explicitly save samples for the auxiliary individual-level parameters (�j ) in the first or second
stages if we desire inference on them because rj , from (12), does not depend on �j . Furthermore, Lunn et al. (2013) note that, when the

stage one priors for ˇj are diffuse, the ratio simplifies further to rj D
h
ˇ�j

ˇ̌̌
�k
ˇ
;†k

ˇ

i.h
ˇk�1j

ˇ̌̌
�k
ˇ
;†k

ˇ

i
, a mere quotient involving the
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individual-level process distributions. However, we retain the form in (12) so that we can use prior information when available. Because
there is no Markov dependence in the proposal for ˇj , we select ˇ�j (and ��j , if desired) uniformly at random from the output resulting
from the first-stage model fits. More importantly, the Metropolis-Hastings ratios (rj , for j D 1; : : : ; J ) in (12) do not contain a tuning
parameter, resulting in unsupervised updates. Paired with the Gibbs updates for �ˇ and†�1

ˇ
, the second-stage algorithm is fully automatic,

and samples from the full-conditional for ˇj can be obtained in parallel (within the broader second-stage MCMC algorithm) creating the
potential for additional computational efficiency. Critically, the Metropolis-Hastings ratio, rj in (12), is not a function of the data. Therefore,
complicated data models do not need to be reconsidered in the second-stage algorithm. The utility of the simple two-stage procedure is that
it is intuitive, facilitates parallelization, and can result in algorithms that are fully automatic.

In what follows, we provide two example applications where the two-stage procedure for obtaining population-level animal movement
inference is valuable. The first application involves a spatial point process modeling approach for telemetry data commonly referred to as
“resource selection function” (RSF) analysis (e.g., Manly et al., 2007). The second application involves a continuous-time discrete-space
animal movement model proposed by Hooten et al. (2010a) and Hanks et al. (2015a).

3. APPLICATIONS
3.1. Hierarchical point process models

Perhaps the most common model fit to temporally independent telemetry data is the RSF model. The RSF model is a heterogeneous point
process model that conditions on the number of telemetry observations. Assuming there is no measurement error associated with the teleme-
try data sij (typically a 2 � 1 vector) for observations i D 1; : : : ; nj and individuals j D 1; : : : ; J , the data model takes the form of a
weighted distribution (Patil and Rao, 1977) such that sij � Œsij jˇj � and

Œsij jˇj � �
g.x.sij /;ˇj /f .sij /R
g.x.s/;ˇj /f .s/d s

(13)

where g.x.s/;ˇj / is the “selection” function and f .s/ is the “availability” function. Thus, the animal movement interpretation of (13) is
that inference for ˇj provides insight about how individual j selects resources (i.e., covariates, x) from those available to it. The selection
function is often chosen to be exponential (i.e., g.x.sij /;ˇj / � exp.x.sij /0ˇj /) and the availability function is typically assumed to be
uniform on the support of the point process (i.e., f .sij / � unif.S/ for sij 2 S � < �<).

Warton and Shepherd (2010) and Aarts et al. (2012) showed that the RSF model in (13) can be fit using a variety of approaches, including
a Poisson likelihood. The Poisson likelihood can be considered by first preprocessing the data such that yj � .y1;j ; : : : ; ym;j /

0 represents
counts of telemetry locations in grid cells corresponding to a discretization of the support S. As the grid cell size decreases with respect to
the resolution of the covariates x, a Poisson data model coincides with the point process model. Thus, the corresponding hierarchical model

yj � Pois.exp.Xjˇj // (14)

ˇj � N.�ˇ ;†ˇ / (15)

�ˇ � N.�0;†0/ (16)

†�1ˇ �Wish..S�/�1; �/ (17)

assumes the same form as (1)–(5) and allows for population-level resource selection inference on �ˇ . To fit the full hierarchical model
directly using MCMC, we sample from the full-conditional distributions for ˇj , �ˇ , and †�1

ˇ
, sequentially. Standard Metropolis-Hastings

updates for ˇj require tuning, but the model can be fit using a single MCMC algorithm for moderately sized data sets. Alternatively, the
weighted least-squares proposal approach of Gamerman (1997) could be used to acquire samples for ˇj from the posterior distribution.
However, to adequately approximate the point process model, the grid cells often need to be quite small, resulting in a fine-scale discretization
of the support S and increasing the computational burden.

The two-stage procedure we described in the previous section can easily be employed to fit the hierarchical model in (14)–(17). For the
first stage, we can use an MCMC or Hamiltonian Monte Carlo algorithm (via BUGS, JAGS, or STAN; Lunn et al., 2009; Plummer, 2003;
Carpenter et al., 2016) to fit the individual level models in parallel. For our spatial point process setting, the individual-level models are

yj � Pois.exp.Xjˇj // (18)

ˇj � N.�0;†0/ (19)

for j D 1; : : : ; J , independently. Note that the individual-level parameter model in (19) is an exchangeable prior for all j D 1; : : : ; J . Also,
if the individual data sets yj and Xj are so large that they are difficult to store in memory simultaneously for all J individuals, the first-stage
model fitting can be fully distributed among separate machines or performed in sequence. This highlights another primary advantage of the
two-stage procedure.
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Figure 1. (a) Simulated animal positions (points) based on a spatial point process (13) with one simulated covariate (background image, dark shading
represents larger values). (b) A zoomed in spatial map (from inset white box in (a)) showing positions from five individual animals as different point types

(i.e., ˘,4,5,C, �)

The second-stage algorithm for obtaining population-level inference is an MCMC algorithm with Gibbs updates for �ˇ and †�1
ˇ

as
described in the previous section and updates for ˇj using Metropolis-Hastings based on the acceptance ratio in (12), which becomes

rj D
N
�
ˇ�j

ˇ̌̌
�k
ˇ
;†k

ˇ

�
N
�
ˇk�1j

ˇ̌̌
�0;†0

�

N
�
ˇk�1j

ˇ̌̌
�k
ˇ
;†k

ˇ

�
N
�
ˇ�j

ˇ̌̌
�0;†0

� : (20)

Within the second stage MCMC algorithm, the updates for ˇj can also be parallelized because they are independent, although this model
is simple enough that parallelization is not necessary in the second stage algorithm. Thus, the data, yj for j D 1; : : : ; J , which could include
counts for 10s or 100s of thousands of grid cells and 100s of individuals, do not appear in the second stage algorithm. The absence of yj
leads to a more computationally efficient second stage algorithm than the original algorithm to fit the full hierarchical model directly.

We simulated point process data from 20 individuals (Figure 1), resulting in approximately 30 simulated telemetry fixes per individual,
and fit the hierarchical RSF model using: 1.) a single MCMC algorithm, and 2.) our two-stage procedure. We compared the population-level
results from the fits resulting from each procedure.

For the first-stage algorithm in our two-stage procedure, we fit the individual-level models independently using an adaptive MCMC
algorithm in parallel using R (R Core Team, 2016) and assumed N.0; 100�I/ priors for ˇj , a N.0; 100�I/ prior for�ˇ , and a Wish..3�I/�1; 3/
prior for†�1

ˇ
. Our first-stage algorithm uses a multivariate Gaussian proposal for ˇj and adapts the tuning using a single variance parameter,

resulting in an unsupervised algorithm for the individual-level model fits. We could have also used BUGS or JAGS to fit the first-stage
models, but our adaptive MCMC algorithm required less computing time.

The single MCMC algorithm to fit the full hierarchical model required 2.62 min to obtain 20,000 MCMC samples in R, whereas the
first-stage algorithm required 0.57 min to obtain the same number of samples using an adaptive MCMC algorithm in parallel for the 20
individuals. The second-stage algorithm required only 1.49 min in R, which implies that the total compute time to fit the model using the
two-stage procedure was 2.06 min (0.56 min less than the single MCMC algorithm). Also, the two-stage procedure requires no tuning and
results in much larger effective MCMC sample sizes for parameters. The effective MCMC sample sizes for �ˇ and ˇj were 8560 and 1398
(averaged across individuals) for the single MCMC algorithm, but were 17,590 and 15,184 for the two-stage algorithm (out of 20,000 total
samples). Thus, to obtain the same effective MCMC sample size using MCMC for all parameters, we would need an order of magnitude
more samples from the single MCMC algorithm.

Figure 2 illustrates the similarities in inference for the slope parameters �ˇ1 and ˇj1 for j D 1; : : : ; 20 when fitting the hierarchical RSF
model using a single MCMC algorithm (black) versus the two-stage procedure (gray). Notice that the single MCMC algorithm and the two-
stage procedure provide very similar inference. In terms of inference, there exists some variability among individuals, but the population-level
inference (Figure 2, top) suggests a consistent overall positive population response to the covariate.

3.2. Hierarchical continuous-time discrete-space models

The previous application, involving spatial point process models, involves a commonly used model specification and desired type of infer-
ence in ecological research, but more contemporary methods have been developed to explicitly model the dynamics of animal movement
based on temporally dependent telemetry data with observations close in time. Among these methods are discrete-time and continuous-time
approaches to modeling the individual animal trajectories (McClintock et al., 2014). We focus on the continuous-time class of models in
what follows.
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Figure 2. Posterior means (points) and 50% and 95% credible intervals for �ˇ1 and ˇj1 for j D 1; : : : ; 20. Single MCMC algorithm results are shown in
black, and two-stage procedure results are shown in gray

Continuous-time statistical models for animal movement processes have existed for decades (e.g., Dunn and Gipson, 1977; Blackwell,
1997) and are usually based on Brownian motion (i.e., Wiener processes). Up until the late 1990s, most Brownian motion models for
trajectories utilized an Ornstein–Uhlenbeck process (i.e., a Wiener process with attraction to a central position). Johnson et al. (2008b) also
proposed an Ornstein–Uhlenbeck model but for the velocity (i.e., temporally differentiated position) rather than the position process. Hooten
and Johnson (2016a) generalized the continuous-time velocity models of Johnson et al. (2008b) in the context of Gaussian processes with
covariance structure induced by temporal basis functions. Buderman et al. (2016) used a simplified basis function parameterization to model
Canada lynx (Lynx canadensis) movement while accounting for measurement error in the telemetry data. Buderman et al. (2016) refer to
their model as a “functional movement model” and use it to provide inference for the true underlying continuous position process (i.e., �.t/,
for time t ) of an individual.
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The approach developed by Buderman et al. (2016) assumes that the telemetry data sij are observed with error. In fact, for the Canada lynx
in our study, the bivariate measurement error follows an unusual X-shaped pattern because the telemetry data are collected by Service Argos
(Costa et al., 2010) that relies on polar orbiting satellites. Thus, Brost et al. (2015) and Buderman et al. (2016) developed a measurement
error model based on a mixture distribution to account for the X-shaped Argos pattern (see Appendix A for details). Properly accounting for
measurement error adds another level to the hierarchical model in (1)–(5) such that

sij � Œsij j�j .ti /;�j � (21)

yj � Œyj jˇj ;�j � (22)

ˇj � Œˇj j�ˇ ;†ˇ � (23)

�ˇ � Œ�ˇ � (24)

†�1ˇ �
h
†�1ˇ

i
(25)

�j � Œ�j � (26)

�j � Œ�j � (27)

for j D 1; : : : ; J individuals, and where yj is an mj � 1 vector that represents a latent process that is linked to the true continuous position
process f�j .t/;8tg by a deterministic functional h such that yj D h.f�j .t/;8tg/ and �j are measurement error covariance parameters.

Hooten et al. (2010a) developed an individual-level animal movement model based on (21) and (22) where the latent variables yj represent
a sequential multinomial process indicating transitions among grid cells on a discretization of the spatial support S. The latent process model
in (22) relies on a continuous-time discrete-space (CTDS) representation of the position process. However, because the functional h.�/, which
links the position process with the data, is non-invertible in their model, Hooten et al. (2010a) proposed a Bayesian multiple imputation
procedure to account for uncertainty in the true position process when making inference on ˇj . The multiple imputation procedure used by
Hooten et al. (2010a) differs from the two-stage procedure we described herein because it does not allow for feedback from the individual-
level parameters ˇj to the position process f�j .t/;8tg or measurement error parameters �j . Hooten et al. (2010a) used an imputation
model to interpolate the position process and then integrated over the uncertainty in the position process while fitting (22) to provide posterior
inference for the individual-level parameters ˇj .

Hanks et al. (2015a) showed that the multinomial process of Hooten et al. (2010a) could be reparameterized such that Œyj jˇj ;�j � can
be modeled using Poisson regression. Specifically, let �cj represent the amount of time individual j remains in a grid cell for the cth
“stay/move” pair associated with the discretization of the individual’s path through a landscape (for c D 1; : : : ; nj ). Then let yclj �

Pois
�
�cj exp

�
x0
clj
ˇj

��
where the index l D 1; 2; 4; 5 (l D 3 is not necessary because it corresponds to the middle cell that is captured by

�cj ) denotes moves to neighboring grid cells in each cardinal direction (i.e., north, east, south, west). That is, if individual j moved north for
“stay/move” pair c, then the data point yc1j D 1 and yc2j D yc3j D yc4j D 0 (see Appendix B for details). The Poisson reparametrization
dramatically improves computational efficiency at the individual level because the total number of observations used in the model (4mj ) is a
function of the grid cell size rather than the position process discretization as used in Hooten et al. (2010a). Thus, Hanks et al. (2015a) were
able to fit the CTDS model to large telemetry data sets in a fraction of the time required by the multinomial method developed by Hooten et
al. (2010a). However, neither Hooten et al. (2010a) nor Hanks et al. (2015a) attempted to fit a hierarchical model like that in (21)–(27) to
obtain population level inference for �ˇ .

In our application involving population-level inference for Canada lynx, we use the model developed by Buderman et al. (2016) to obtain
the imputation distribution for the true individual-level position process

˚
Q�j .t/;8t

�
and hence Qyclj for all c, l , and j , while accounting

for the complicated nature of Argos telemetry error (see Appendix A for details). In what follows, we combine all Qyclj into a single vector
representing the latent process Qyj and use Qyj as data in a two-stage implementation of the hierarchical model in (21)–(27).

To fit the hierarchical model using the two-stage procedure described in Section 2, we apply the same two stages of algorithms as in
the previous application. For the first stage, we use the data model in (22) and specify multivariate Gaussian priors for the individual-level
parameters ˇj � N.�0;†0/. We use an adaptively tuned MCMC algorithm to obtain samples from the posterior distributions

Œˇj jfsij ;8i; j g� D
Z �

ˇj jQyj
� �
Qyj jfsij ;8i; j g

�
d Qyj (28)

for j D 1; : : : ; J , and where
�
Qyj jfsij ;8i; j g

�
represents the imputation distribution for the latent Poisson process. To perform the integration

in (28), we sample Qykj �
�
Qyj jfsij ;8i; j g

�
on the kth MCMC iteration and then let the Metropolis-Hastings update ˇkj depend on Qykj as

described in Hooten et al. (2010a) and Hanks et al. (2015a). As in the first application, we can fit the J models for all individuals in parallel,
dramatically reducing the required computational time.
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Figure 3. (a) Colorado, USA, with major highways and the city of Denver shown. The telemetry data spanning a year of time for 18 individual Canada lynx
are shown as points. A shaded relief map is shown as the background image to illustrate the topography of the area. (b) and (c) close-up views of the predicted

paths for two individual Canada lynx. For clarity, only the posterior mean path is shown

For the second stage of the two-stage procedure, we use the posterior samples for fˇj ;8j g, from the first stage, as proposals in the
MCMC algorithm to fit the hierarchical model in (22)–(25). In doing so, we update fˇj ;8j g, �ˇ , and †�1

ˇ
sequentially in a completely

unsupervised second-stage MCMC algorithm. Recall that the Metropolis-Hastings acceptance ratio for ˇj is identical to that used in the
previous application (20). As a result of the two-stage implementation and the adaptive tuning in the first-stage algorithm, the procedure is
completely automatic after the data are preprocessed to obtain the imputation distribution, and population-level inference for �ˇ can easily
be obtained.

Using telemetry data from J D 18 individual Canada lynx in Colorado, USA (Figure 3(a)), we applied the two-stage procedure to fit the
hierarchical model in (22)–(25). We used the functional movement model of Buderman et al. (2016) to obtain the imputed path distribution
(Figure 3(b,c)) for each individual and used nearly continuous imputed path realizations to create the latent Poisson data realizations Qykj
(resulting in approximately 450 discrete-space transitions per individual, nj 	 450). Canada lynx are a subalpine species that tend to prefer
forested ecosystems (McKelvey et al., 2000); thus, we focused on two covariates: elevation and distance to forest (Figure 4). Each covariate
was included in the model as a “static” driver, rather than a gradient-based driver of movement (Hanks et al., 2015a). Static drivers can be
interpreted as affecting overall motility in the CTDS model. For priors in the first stage, we used ˇj � N.0; 100I/ for all j D 1; : : : ; 18. We
used �ˇ � N.0; 100I/ and †�1

ˇ
� Wish..3 � I/�1; 3/ as priors for the population-level parameters and precision matrix. See Appendix B

for additional details on the CTDS animal movement model.
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Figure 4. Images of covariates with telemetry observations overlaid as black points: (a) Elevation and (b) distance to forest. Light shading corresponds to
larger values

Figure 5. Posterior estimates for the population-level parameters �ˇ and individual-level parameters ˇj . The posterior mean is shown as a central point,
and the 50% and 95% credible intervals are shown as the thick and thin black lines. (a) Results for the elevation covariate and (b) results for the distance from

forest covariate

We fit the overall hierarchical model using the two-stage procedure, and the resulting algorithms required 0.86 min for the first stage
(using an adaptive MCMC algorithm in parallel) and 1.62 min for the second stage. Figure 5 shows the results of the model fit in terms of
posterior means, and 50% and 95% credible intervals for the population-level parameters �ˇ and individual-level parameters ˇj .

While there exists substantial variability among individual Canada lynx, with some individuals exhibiting clear relationships with the
covariates (e.g., individuals 2, 4, and 5), the posterior distributions for � did not indicate a population-level effect for either covariate at the
95% level (but both did at the 50% level). For the individuals that did show evidence of an effect (i.e., 95% credible intervals not overlapping
zero), the negative response to elevation indicates that overall motility decreases at higher elevations, leading to greater residence times in
those regions, as opposed to lower elevations (Figure 5(a)). Similarly, for individuals with significant effects related to distance from forest
we see positive influence on motility implying that those Canada lynx have higher motility (and hence lower residence time) in regions
farther from forest (Figure 5(b)). Thus, the inference in our application involving Canada lynx agrees with that obtained in other studies
(e.g., McKelvey et al., 2000).

4. CONCLUSION
Our findings indicate that the two-stage procedure we described herein holds tremendous value for fitting hierarchical animal movement mod-
els to telemetry data for population-level inference. We applied the two-stage procedure to two types of commonly used animal movement
models of varying complexity and found that it worked well in both cases.

The spatial point process modeling approach we described in the first application is a commonly used model, but still fairly simple.
Much more complicated spatio-temporal point process models have been used to model temporally correlated telemetry data (e.g., Johnson
et al., 2008a; Johnson et al., 2013; Brost et al., 2015), and adapting the two-stage procedure to those models is the subject of ongoing
research. For example, Brost et al. (2015) developed a model with a time-varying dynamic availability component that depended on an
additional smoothness parameter. Thus, the data model developed by Brost et al. (2015) required substantially more computation time than
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the simulated example we presented in Section 3.1 and would benefit from a two-stage implementation where individual-level models could
be fit independently on separate processors and then recombined using the second-stage MCMC algorithm to yield population-level inference
for �ˇ .

In our example involving Canada lynx, the continuous-time discrete-space reparameterization developed by Hanks et al. (2015a) already
provides significant improvements in computational efficiency over the motivating model developed by Hooten et al. (2010a). However,
additional computational gains can be achieved using the two-stage fitting procedure to provide population-level inference.

Despite the wide range of potential applications to many types of hierarchical models, we found it surprising that the two-stage fitting
procedure of Lunn et al. (2013) is not more well known. For our situations with large amounts of telemetry data and potentially complicated
data models, we found the two-stage procedure works very well and is trivial to implement. We also found it very helpful to be able to use
different data models, first-stage fitting algorithms, and easy parallelization. As a potential caveat, the two-stage procedure described by Lunn
et al. (2013) may not be very efficient when the population induces extreme amounts of shrinkage in the individual-level parameters. Thus,
in these cases, more samples would be needed in the first-stage algorithm. However, in a preliminary simulation study, we found that the
two-stage procedure performs poorly only for data sets with very small amounts of data (i.e., < 20 observations for a subset of individuals).

Animal movement models have also been developed to account for more mechanistic interactions among individuals (e.g., Russell et
al., 2016; Scharf et al., 2015), and while we did not address those specifically, the approach we presented may also be beneficial in those
settings. Furthermore, Bayesian animal movement models have been fit using integrated nested Laplace approximation (INLA; Rue et al.,
2009; Illian et al., 2012; Illian et al., 2013; Ruiz-Cárdenas et al., 2012; Jonsen, 2016), and one could use INLA to fit the hierarchical point
process model in our first example. However, the two-stage MCMC approach presented herein allows for the following: inference on joint
relationships among model parameters, easy parallelization in the first stage, and the ability to use Bayesian multiple imputation techniques,
such as in our second example involving the CTDS movement model.
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APPENDIX A. THE IMPUTATION DISTRIBUTION
Buderman et al. (2016) developed a phenomenological statistical model for estimating an individual’s underlying continuous-time path based
on Argos telemetry data and a semiparametric regression using temporal basis functions. We used this model to precalculate an imputation
distribution for the true path. For the j th individual, the FMM developed by Buderman et al. (2016) is

Figure A1. (a) The telemetry data (large points) and imputation distribution (lines) for the individual’s path
n
�k
j
.t/;8k; j; t

o
using the posterior predictive

distribution of the FMM (Buderman et al., 2016). (b) A close-up view of the imputation distribution showing the temporal discretization of the imputed path
realizations. (c) A close-up view of a single imputed path realization crossing through the first-order neighborhood of the center grid cell

wileyonlinelibrary.com/journal/environmetrics Copyright © 2016 John Wiley & Sons, Ltd. Environmetrics 2016; 27: 322–333

332



POPULATION-LEVEL INFERENCE FOR ANIMAL MOVEMENT Environmetrics

sij �
	

N.�j .ti /;†i / with prob. p
N.�j .ti /;H†iH

0/ with prob. 1 � p
(A1)

�j .ti / DWj .ti /˛ (A2)

˛ � N.0;†˛/ (A3)

where sij represents the i th telemetry observation, �j .ti / is the true individual position at time ti , †i is an error covariance matrix on the
first axis, and H†iH0 is the error covariance matrix on a rotated axis (H is a rotation matrix). The probability p allows the telemetry data to
arise from a bivariate Gaussian mixture that captures the X-shaped error pattern inherent to Argos data. The matrix Wj .ti / contains basis
vectors (i.e., b-spline basis vectors) at time ti for individual j , and ˛ is a set of regression coefficients corresponding to the temporal basis
functions. Buderman et al. (2016) set †˛ � Diag



� 2˛
�

and tuned � 2˛ to induce regularization in the model and improve predictive ability
(i.e., ridge regression).

The imputed path distribution is obtained by sampling from the posterior predictive distribution of Œ�j .t/jfsij ;8i; j g� for a large, but
finite, set of times t 2 T to obtain posterior realizations �kj .t/ for k D 1; : : : ; K MCMC iterations. Figure A1(a)shows an example set of
path realizations (lines) that could result from fitting the FMM from Buderman et al. (2016) to telemetry data (points).

Figure A1(b) shows a zoomed in section of the path realizations that highlight the temporal discretization. At a finer spatial resolution, we
can see that the path realizations cross through an example grid cell and its associated neighborhood (Figure A1(c)). This idea is critical for
processing the path realizations for use with the CTDS model.

APPENDIX B. CTDS MODEL
For each individual j in the original CTDS model, each segment (between points) in Figure A1(c) served as a multinomial data vector
yij � .y1i ; y2i ; y3i ; y4i ; y5i /

0
j , where yij � MN.1;pij / (Hooten et al., 2010a). The multinomial vectors were constructed using the

function yij D h.f�j .t/;8tg/ based on the imputed path realizations by coding a transition as either a stay or a move in a certain direction
according to the schematic in Figure B1.

Figure B1. Discrete set of possible transitions at any time t , used to create the multinomial vector y.t/, based on the function h.f�j .t/;8tg/. (a) Move
up: y.t/ D .1; 0; 0; 0; 0/0, (b) move right: y.t/ D .0; 1; 0; 0; 0/0, (c) stay: y.t/ D .0; 0; 1; 0; 0/0, (d) move down: y.t/ D .0; 0; 0; 1; 0/0, and (e) move

left: y.t/ D .0; 0; 0; 0; 1/0

Hanks et al. (2015a) reparameterized the multinomial imputation data using sufficient statistics. They denoted residence time as �lj
(approximated by �t times the number of consecutive stays in the current grid cell, Figure A1(c)) for l D 1; : : : ; L “stay–move” pairs
and then defined the probability of staying in the current grid cell for time �lj as p

�lj =�t

3ij D .1 � plj;move/
�lj =�t , where plj;move is the

probability of moving. Hanks et al. (2015a) let plj;move D �t � �lj;move and �t ! 0 yielding

lim
�t!0

.1 � pj;move/
�lj =�t D e��lj�lj;move (B1)

which implies that �lj � Exp.�lj;move/.
Similarly, Hanks et al. (2015a) showed that the movement probability to neighboring grid cell c is pclj =plj;move D �clj =�lj;move.

Thus, combing the residence probability model with the movement probability yields a likelihood for the sufficient statistic
.�lj ; y1lj ; y2lj ; y4lj ; y5lj /

0 equal to
QL
lD1

Q
c¤3 �clj exp.��lj�clj /. The likelihood for this reparameterized CTDS model coincides with

a Poisson where �clj is the movement rate to neighboring cell c and �lj is an offset. Thus, any software capable of fitting a Poisson
generalized linear model with an offset can fit the CTDS model if the true path is observed at a fine enough temporal resolution.

Hanks et al. (2015a) used a multiple imputation approach to account for the uncertainty in the path distribution based on (28). The
movement rates can then be linked to the environmental covariates by a log-linear link �clj D x0

clj
ˇj , where the covariates x0

clj
can

be specified in several meaningful ways to capture either differential movement rates (i.e., motility) or gradient-based directional bias in
movement relative to environmental covariates (see Hanks et al., 2015a for details). The reparameterized CTDS model of Hanks et al.
(2015a) is much more computationally efficient than that of Hooten et al. (2010a) because the dimensionality of the data 4L depends on the
grid cell size instead of the temporal discretization of the path.
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