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Abstract

Vital rates such as survival and recruitment have always been important in the study of popula-
tion and community ecology. At the individual level, physiological processes such as energetics
are critical in understanding biomechanics and movement ecology and also scale up to influence
food webs and trophic cascades. Although vital rates and population-level characteristics are
tied with individual-level animal movement, most statistical models for telemetry data are not
equipped to provide inference about these relationships because they lack the explicit, mechanis-
tic connection to physiological dynamics. We present a framework for modelling telemetry data
that explicitly includes an aggregated physiological process associated with decision making and
movement in heterogeneous environments. Our framework accommodates a wide range of
movement and physiological process specifications. We illustrate a specific model formulation in
continuous-time to provide direct inference about gains and losses associated with physiological
processes based on movement. Our approach can also be extended to accommodate auxiliary
data when available. We demonstrate our model to infer mountain lion (Puma concolor; in Col-
orado, USA) and African buffalo (Syncerus caffer; in Kruger National Park, South Africa)
recharge dynamics.
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INTRODUCTION

Energetics has been a dominant theme in ecological and bio-
logical science for centuries (Zuntz 1897; Nussbaum 1978)
because an improved understanding of metabolics and energy
acquisition provides insights about fundamental similarities
and differences among species (Taylor et al. 1982). An under-
standing of the connection between energetics and movement
is critical for all aspects of biology and leads to improved
management and conservation of wildlife because physiologi-
cal processes and vital rates are indicative of animal health
(Nathan et al. 2008; Wilmers et al. 2017). Healthy wildlife
individuals and populations are an essential ecosystem service
and have intrinsic anthropogenic and ecosystem value (Ingra-
ham & Foster 2008).
While much research has focused primarily on the ties

between energy and locomotion, myriad other factors influence
animal decision-making processes (Alcock 2009). Decisions
made by animals directly affect their movement rates and hence
indirectly affect their energy as well as other physiological pro-
cesses (Houston & McNamara 1999; Morales et al. 2005, 2010).
In what follows, we use the term ‘recharge’ as a general refer-
ence to physiological processes that require replenishment for
an organism to maintain its physical health and normal activi-
ties. The recharge concept is a simplification of complex

physiological changes over time; it reduces the complexity
enough that we can account for aggregate physiological signals
while inferring environmental influences on animal movement
given telemetry data. We describe examples of physiological
processes that may be connected with animal movement deci-
sions and show how they accumulate in a recharge function that
can be statistically inferred using tracking data. Our approach
to account for recharge dynamics relies on a long-memory sta-
tistical model specified to mimic physiological processes and
can be applied to animal tracking data to test hypotheses about
animal behaviour as well as estimate parameters associated with
changes in physiological processes over time.
Many former studies of animal movement have used experi-

mental laboratory approaches to measure oxygen intake and
energy expenditure directly (Alexander 2003; Halsey 2016).
These studies provided a foundational kinematic understand-
ing of animal movement in controlled environments (Full
et al. 1990). More recent research has examined connections
between movement and energetics in natural settings (Karasov
1992) and how terrain and environmental factors influence
movement (e.g. Humphries & Careau 2011; Shepard et al.
2013; Williams et al. 2014). Biotelemetry technology has facili-
tated regular measurement of movement and led to improved
understanding of individual-based physiological processes (e.g.
Cooke et al. 2004; Green 2011).
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Improvements in high-quality animal tracking data are
occurring at an increasing rate (Cagnacci et al. 2010). Wildlife
tracking devices have allowed researchers to collect unprece-
dented data sets that contain valuable information about ani-
mal movement, and hence energetics and other physiological
processes that require recharge (Kays et al. 2015; Wilmers
et al. 2015). Statistical approaches have been developed to
characterise the variation within and among individual animal
trajectories (Scharf et al. 2016, 2018; Hooten et al. 2017; Hoo-
ten & Johnson 2019). These approaches include the use of
environmental information and methods to identify the por-
tions of animal trajectories that indicate distinctly different
patterns (e.g. Whoriskey et al. 2017). For example stochastic
differential equations (SDEs; Brillinger 2010) allow research-
ers to make inference on the importance of environmental
covariates on movement in continuous time. Some discrete-
time models also incorporate covariates and focus on phe-
nomenological clustering of movement processes that are
linked to possible behavioural changes over time (e.g. Morales
et al. 2004; Langrock et al. 2012; McClintock et al. 2012;
McKellar et al. 2015).
Despite the proliferation of statistical animal movement

models, few are based on specific mechanisms related to physi-
ology (e.g. Schick et al. 2013). In contrast, purely mathemati-
cal animal movement models are almost always mech-
anistically motivated (Turchin 1998), but are often too
complex to allow for statistical learning using location-based
telemetry data alone. Some statistical models have been used
to make post hoc inferences concerning physiological processes
such as memory (e.g. Avgar et al. 2013; Oliveira-Santos et al.
2016) and energetics (e.g. Merkle et al. 2017; Hooten et al.
2018), including some that rely on auxiliary data from
accelerometers (e.g. Wilson et al. 2012). However, they often
lack the mechanistic mathematical specifications to account
for recharge dynamics directly when inferring movement
dynamics. Demographic models based on capture–recapture
data, such as Cormack–Jolly–Seber (CJS) models, explicitly
consider individual health and body condition when inferring
vital rates (Pollock 1991; Lebreton et al. 1992), but are often
focused on large spatial and temporal scales (Schick et al.
2013).
In what follows, we broaden the current scope of ‘energy

landscapes’ (Wilson et al. 2012; Shepard et al. 2013) and
‘landscapes of fear’ (Laundr�e et al. 2001; Bleicher 2017) to
include all physiological processes that require recharge. We
consider accumulations of these physiological landscapes that
result in individual-based recharge functions and link them to
decision-making processes of individual organisms as they
move. We show how to use telemetry data to make inference
about both the decision and recharge processes in heteroge-
neous environments and account for their effect on move-
ment. We demonstrate our recharge movement model with
case studies involving telemetry data for a mountain lion
(Puma concolor) in Colorado, USA and African buffalo (Syn-
cerus caffer) in South Africa. We also discuss possible ways to
extend the model to account for conspecific and allospecific
interactions among individuals as well as accommodate auxil-
iary data sources such as individual-level health and
accelerometer data.

MATERIAL AND METHODS

Physiological landscapes

Critical to our approach is the concept of recharge, a time-vary-
ing process involving an individual physiological characteristic
v. Physiological recharge can be expressed as a function g(v, t)
that increases (i.e. charges) and decreases (i.e. discharges) over
time depending on the decision-making process of the individ-
ual, the resulting behaviour, and the environmental conditions
it encounters. We refer to a combination of spatially explicit
covariates that affect the recharge function g(v, t) over time as
the ‘physiological landscape’. For a physiological characteristic
v, we define the physiological landscape as w0(l)h(v) for any
location l � (l1, l2)0 in region D (e.g. the study area).
The coefficients h(v) � (h1(v), . . ., hp(v))0 appropriately

weight each of the landscape variables (e.g. elevation, land type,
etc.) in w(l) � (w1(l), . . ., wp(l))0 so that they combine to
result in a surface that modulates the state of the physiological
process v as an individual moves throughout the space (Fig. 1).
For example if v refers to the energetic component of a larger
suite of physiological processes, then w0(l(t))h(v) represents the
physiological landscape value that influences the energy
recharge dynamics as the individual under study moves to posi-
tion l(t) at time t.
In fact, for a given individual trajectory l(t) (for all t 2 T

in the study period), the physiological landscape w0(l(t))h(v) is
accumulated as the individual moves. This accumulation over
time results in what we refer to as a physiological recharge
function that can be expressed as the line integral of the phys-
iological landscape

gðv; tÞ ¼ g0ðvÞ þ
Z t

0

w0ðlðsÞÞhðvÞds; ð1Þ

where the lower limit (i.e. zero) on the integral in eqn 1 corre-
sponds to the beginning of the study period. Fig. 1c depicts
the physiological recharge function as the line integral associ-
ated with the trajectory. At times when g(v, t) is large, the
individual is in a charged state with respect to physiological
process v. Conversely, when the physiological recharge func-
tion g(v, t) is small, it indicates that the physiological process
v is discharged and the individual may alter its behaviour in
an attempt to recharge.
While energy is among the most commonly studied physio-

logical characteristic (Wilson et al. 2012), there exists a large
set of other individual-based physiological characteristics (i.e.
v 2 V) that contribute to individual, population, community
and ecosystem health and larger scale vital rates (Matthiopou-
los et al. 2015). For example in addition to energy intake and
expenditure (Spalinger & Hobbs 1992; Stephens et al. 2007),
most animals require periodic hydration (e.g. Tshipa et al.
2017), sleep (Savage & West 2007), heat (Humphries & Car-
eau 2011) and shelter (Eggleston & Lipcius 1992). Less obvi-
ous physiological processes requiring recharge that transcend
the individual level may include activities such as reproduction
(Proaktor et al. 2008), care for young (Dudeck et al. 2018)
and ‘security’ in the context of landscapes of fear (Laundr�e
et al. 2001; Bleicher 2017). Thus, we can express an aggre-
gated physiological recharge process as an integral over the
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set of all physiological processes V:

gðtÞ ¼
Z
V
gðv; tÞdv; ð2Þ

¼ g0 þ
Z t

0

w0ðlðsÞÞhds; ð3Þ

where we show that the initial aggregated charge is

g0 �
Z
V
g0ðvÞdv; ð4Þ

and the aggregated recharge coefficients are

h �
Z
V
hðvÞdv ð5Þ

in Online Appendix A. As we describe in what follows, the
aggregated recharge process in eqn 3 provides a fundamental
mechanistic link between environmental characteristics and
the physiology and sociality of moving individuals as they

seek to recharge – a link that is missing in most other contem-
porary models for animal movement and one that allows us
to examine the evidence for physiological signals in animal
movement trajectories. Furthermore, in the absence of a strict
connection to specific physiological processes, the recharge
function in eqn 3 can be used to generalise movement models
to accommodate long-range temporal dependence that may go
unaccounted for otherwise. Finally, the recharge function we
specified in eqn 3 can be generalised easily to accommodate
time-varying coefficients (i.e. h(t)), nonlinearity in the physio-
logical landscape and alternatives to the convolution form of
aggregation (e.g. based on the principle of limiting factors).
For example to account for optima in the environmental gra-
dients that comprise the physiological landscape, we can
include polynomial transformations of environmental vari-
ables w as we would in a conventional regression model.

Movement decisions based on physiological processes

General framework
Most modern statistical models for animal trajectories account
for both measurement error and movement dynamics using a
hierarchical framework (Schick et al. 2008; Hooten et al. 2017).
Thus, we employ a hierarchical structure to build a general
modelling framework that reconciles animal trajectories and
physiological processes while accounting for measurement error
and uncertainty in movement dynamics (Fig. 2). To develop a
general recharge-based movement modelling framework, we
consider a model for the telemetry data that depends on the
true, underlying animal trajectory. Our movement model char-
acterises the structure of the trajectory, and hence the
perception of the landscape by the animal, depending on a bin-
ary decision process z(ti) of the animal over time. This decision
process arises stochastically according to a probability function
that depends on the underlying aggregated physiological
process. For telemetry observations s(ti) (for i = 1, . . ., n) and
associated trajectory l(ti) we formulate the hierarchical model

sðtiÞ� ½sðtiÞjlðtiÞ�; ð6Þ

lðtiÞ�
M0; zðtiÞ ¼ 0;
M1; zðtiÞ ¼ 1;

�
ð7Þ

for i = 1, . . ., n, where the bracket notation ‘[ � ]’ denotes a
generic probability distribution (Gelfand & Smith 1990) that
may include additional parameters. We introduce continuous-
time models for M0 and M1 in the example specification that
follows.
The mixture movement model in eqn 7 depends on a latent

binary decision z(t) that represents the individual’s choice to
recharge when z(t) = 1 (where z(t) = 1 corresponds to a dis-
charged state and z(t) = 0 corresponds to a charged state).
The instantaneous probability of the decision to recharge (q
(t)) can be related to the latent physiological recharge process
g(t) through an appropriate link function. Thus, in the case
studies that follow, we express z(t) � Bern(q(t)) with q
(t) = 1 � Φ(g(t)), where Φ( � ) represents the standard normal
cumulative distribution function (i.e. the inverse probit func-
tion; another option is the logit). This relationship between q
(t) and g(t) implies that the decision to recharge will increase

Figure 1 (a) Simulated environmental covariates w(l) that may influence

the recharge function (left: large scale spatial process, middle: small scale

spatial process, right: patch; (b) an example physiological landscape based

on the environmental covariates with example individual trajectory (l(t),
for all t 2 T ) shown as solid line beginning at solid point and ending at

the arrow; (c) physiological recharge function arising from the path

integral of the physiological landscape associated with trajectory.

Numbered circles represent time points at which the simulated individual

is charged (red) and discharged (green).
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in probability when the aggregated physiological process g(t)
decreases. For example, as an individual ventures far from
resources that allow it to recharge, g(t) will decline and the
individual will eventually need to make an effort to replenish
its physiological processes, hence increasing q(t) and changing
its movement behaviour (Fig. 2). By connecting an animal
decision process z(t) with movement and resources, our model
formulation explicitly accounts for the relationship between
stimuli and motivation, which is a primary focus of ethology
(Colgan 1989).

A continuous-time recharge-based movement model
In the continuous-time setting, SDE models are a popular
option to account for diffusion and drift across heterogeneous
landscapes (Brillinger 2010). Thus, we provide an example
specification using the hierarchical framework by formulating
the specific components of our recharge-based movement
model in eqns 6–7. We consider Gaussian error for telemetry
observations such that s(ti) � N(l(ti), r2

s I) (for i = 1, . . ., n)
and a mixture SDE with components

dlðtÞ ¼ r0db0ðtÞ; zðtÞ ¼ 0
�5 pðlðtÞ; bÞdtþ r1db1ðtÞ; zðtÞ ¼ 1

�
; ð8Þ

for the set of times in the study period t 2 T , where, p repre-
sents a potential function (so-called because of its connections
to potential energy in physics; Preisler et al. 2013) controlling
the drift of the individual trajectory l(t) based on landscape
covariates and associated coefficients b. The diffusion aspects
of the movement process are controlled by the two Gaus-
sian white noise terms db0(t) and db1(t) that are scaled by r0

and r1.
The movement process model in eqn 8 can be interpreted in

the following way. When the decision to recharge is made (z
(t) = 1) at time t, the individual will respond to the environ-
ment as dictated by the potential function p(l(t), b) by taking
steps that are aligned approximately with its gradient surface
(i.e. downhill on the surface; M1 in Fig. 2). Conversely, when
z(t) = 0, the individual may roam freely without needing to
respond to the environment (M0 in Fig. 2). Thus, in this par-
ticular model specification, we would obtain biased inference

Figure 2 Schematic of recharge and movement model components. The observed telemetry data (s(ti), red and green points along trajectory) at time ti are

measurements (with error) of the true positions l(ti) (blue triangle, left, for a given observation time ti). The underlying continuous-time trajectory l(t) is
shown as the solid blue line and is conditionally modelled based on the movement dynamics (incorporated in models M0 and M1) and possibly changes in

the environment (incorporated in model M1). In this example, the brown circle in the middle of the study area represents a recharge region or patch where

the individual may recharge its energy (e.g. a prey kill area). The binary decision z(t) to recharge indicates when the individual responds to the underlying

landscape (in this case, it may be attracted to the recharge region). While z(t) is represented as a continuous-time binary process in our model, this figure

shows the subset of decisions associated with the observed telemetry data (numbered points in bottom plot). In the figure, decisions to recharge (z(t) = 1)

are green and are otherwise shown in red (z(t) = 0). The stochastic binary decision process is governed by the probability function q(t) (shown as solid

black line in bottom plot), which is, in turn, a function of the recharge process g(t) (not shown).
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about the movement parameters b if the individual was
assumed to move according to the SDE with potential func-
tion p(l(t), b) without considering the underlying physiologi-
cal process (i.e. z(t) = 1 always). Most studies investigating
resource selection assume only a single movement model.
Thus, the movement model specification in eqn 8 allows us to
infer when a physiological signal is present in our telemetry
data (i.e. when z(t) switches between zero and one at some
point along the trajectory).
It is worth noting that our model formulation fits into a

broader class of models for movement using the basis func-
tion approach proposed by Hooten & Johnson (2017) to con-
nect the telemetry data to the underlying trajectory. This
framework provides opportunities to extend the model in
future studies to accommodate other types of smoothness and
heterogeneity in the trajectory process (see Scharf et al. 2018
and Hooten et al. 2018 for further details). Also, to fit the
model to data, we must solve the SDE for l(t) based on a dis-
crete approximation. This solution is more intuitive than the
SDE itself because it assumes a discrete-time form where the
process components of the model for l(tj) in eqn 7 can be
written as M0 ¼ Nðlðtj�1Þ;r2

0IDtÞ and M1 ¼ Nðlðtj�1Þ�
5pðx0ðlðtj�1ÞÞbÞDt;r2

1IDtÞ for a fine grid of time points,
t1, . . ., tm, spaced Dt apart, using an Euler-Maruyama discreti-
sation scheme (Kloeden & Platen 1992).
As a result of our specifications for the hierarchical model,

the full parameter set includes the latent position process l(tj)
for all j = 1, . . ., m, as well as three sets of parameters: (1) the
drift coefficients in the potential function, b, (2) the initial
recharge state g0 and recharge coefficients h and (3) the vari-
ance parameters r2

s , r20 and r21. To estimate the parameters
and make inference, we can fit the model using maximum
likelihood if we are able to derive the integrated likelihood, or
we can use Bayesian methods. In what follows, we use a
Bayesian approach that allows us to specify priors for the
three sets of parameters described above (Online Appendix C)
and obtain a Markov chain Monte Carlo (MCMC) sample
from the posterior distribution

½flðtjÞ; for j ¼ 1; . . .;mg; b; g0; h;r2
s ;r

2
0;r

2
1jfsðtiÞ; i ¼ 1; . . .; ng� /

Yn
i¼1

½sðtiÞjlðtiÞ;r2
s �
Ym
j¼1

½lðtjÞjlðtj�1Þ;r2
0�
1�zðtjÞ

½lðtjÞjlðtj�1Þ; b;r2
1�
zðtjÞ½zðtjÞjg0; h�

� ½b�½g0�½h�½r2
s �½r2

0�½r2
1�;

ð9Þ

for a fine discretisation of the latent position process l(tj) at
times t1, . . ., tm.
We applied specific formulations of our hierarchical move-

ment model to infer recharge dynamics based on telemetry
data for two contrasting species: a mountain lion in the Front
Range of the Rocky Mountains in Colorado, USA and an
African buffalo in Kruger National Park, South Africa
(Fig. 3). Also, for illustration, we demonstrate the approach
based on simulated data in Online Appendix B. Using simu-
lated data, we showed that the modelling framework allows
us to recover parameters and identify the data generating

model compared to a set of alternatives that consider only
M0 and M1 individually (Online Appendix B).

RESULTS

Mountain lion

In the western USA, mountain lions (P. concolor) are apex
predators that mostly seek mule deer (Odocoileus hemionus) as
prey. In the Front Range of the Rocky Mountains in Color-
ado, USA (Fig. 3), many approaches have been used to model
the individual-based movement of mountain lions (e.g. Hanks
et al. 2015; Hooten & Johnson 2017; Buderman et al. 2018),
but none have modelled connections between physiological
dynamics and movement. Front Range mountain lions navi-
gate a matrix of public and privately owned land comprised
of wildland-urban interface, roads and trail systems (Blecha
2015; Buderman et al. 2018). Previous research has shown
that prey availability and cached carcasses are important fac-
tors influencing mountain lion movement (Husseman et al.
2003; Blake & Gese 2016). Thus, we specified a recharge-
based movement model for the telemetry data (global posi-
tioning system [GPS] with 3 h fixes; n = 150) from an adult
male mountain lion in Colorado during 25 April 2011 – 17
May 2011 (Fig. 3).
This particular trajectory includes a period at the beginning

and end of the time interval where the individual occupied a
prey kill area (top centre of mountain lion data in Fig. 3;
using methods to identify kills sites described by Knopff et al.
2009). On c. 1 May 2011, the individual mountain lion left
the prey kill area to traverse a large loop to the south before
returning to the prey kill area. After a few more days at the
prey kill area, the individual left again to traverse a small loop
to the north. We hypothesised that the mountain lion individ-
ual recharged at the prey kill area and mostly discharged
otherwise.
We used the same movement model structure as specified in

the previous section, with M0 implying no drift when charged
and p(l(t), b) = x0(l(t))b to account for drift when discharged.
To formulate the recharge component of the full model, we
used an intercept (h0), and six spatial covariates: presence in
the prey kill area, elevation, slope, sine and cosine of aspect
and the interaction of elevation and slope. For movement
covariates in the full model, we used five: elevation, slope, sine
and cosine of aspect and distance to prey kill area.
We fit the full recharge-based movement model to the

mountain lion telemetry data shown in Fig. 3. The set of pri-
ors and hyperparameter settings, as well as pseudocode and
computational details to fit the recharge-based movement
model, are provided in Online Appendix C. We also examined
a set of simpler models including model M0 and M1 sepa-
rately as well as the recharge-based model with only prey kill
area covariates and the associated submodel M1 with only
the prey kill area covariates. We scored each of the models
using the negative log posterior predictive score based on
cross-validation (Hooten & Hobbs 2015; Online Appendix C)
and found the recharge-based model with only prey kill area
covariates was the best predictive model. The associated mar-
ginal posterior distributions for the model parameters b1
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(coefficient for distance to prey kill area), h0 (recharge inter-
cept coefficient) and h1 (coefficient for inside prey kill area)
are shown in Fig. 4.
In this case, the left half of Fig. 4 (labelled ‘behaviour’)

indicates that there is evidence for the individual to move
toward the prey kill area when the decision to recharge is
made (because of the negative coefficient associated with

distance to prey kill area) and the recharge function itself
(and hence the decision to recharge) increased with the indi-
vidual’s presence in the prey kill area (i.e. convex polygon
with 1 km buffer from kill site clusters).
In terms of the estimated recharge function for the individ-

ual mountain lion, the posterior median for g(t) is shown
superimposed on the trajectory in Fig. 5. The results of fitting

Figure 3 World map depicting the regions where the telemetry data in our examples arise from a global positioning system collared mountain lion and

African buffalo. Telemetry data are shown as black points on blown up maps, with elevation shown as background shading; high (relative) elevations

shown as lighter shading.
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Figure 4 Marginal posterior violin plots for the mountain lion model parameters (a) b and (b) h.
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the recharge-based movement model to the mountain lion
telemetry data indicate that the individual is charged (blue)
when near the prey kill area (green region) and discharges as
it moves farther from the kill area, both to the south and the
north (Fig. 5a).
Visualised longitudinally, the posterior marginal trajectories

as well as posterior median for g(t) and q(t) are shown in
Fig. 5. The posterior inference indicates that the mountain

lion individual we analysed was mostly recharging during the
early portion of the study period (25 April 2011 – 1 May
2011). However, as the recharge function g(t) exceeded a value
of approximately three, the individual left the prey kill area.
During the week that the individual was away from the prey
kill area, our analysis shows that the aggregated physiological
process discharged until the behavioural decision process was
dominated by z(t) = 1, at which point the individual actively
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Figure 5 Posterior median associated with the mountain lion data analysis for the a) recharge function g(t) shown as colour on top of the posterior median

trajectory l(t). Prey kill area (i.e. convex polygon with 1 km buffer from prey kill site clusters) shown as green region indicating area associated with

recharge. Distance to prey kill area is shown in the background for reference (with small distances indicated by darker shades). Map in (a) oriented such

that north is up. Posterior median trajectories (b, c) and (d) recharge function g(t) and (e) decision probability q(t) with 95% credible intervals shown in

grey with posterior mean for the decision z(t) shown as black points. Colour corresponds to the value of the recharge function. Profile of distance to prey

kill area shown as grey line in (b) and (c) for reference. Green rug at the bottom of (b) represents times when recharge occurred.
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sought to recharge. This decision process was characterised
largely by a tendency of the individual to orient back toward
the prey kill area on 9 May 2011 (Fig. 5). Then, after another
few days of recharging at the original prey kill area, the indi-
vidual left the prey kill area again (this time to the north) and
its physiological process began to discharge again until near
the end of the study period when the individual returned to
the prey kill area (Fig. 5).

African buffalo

In contrast to the western hemisphere predator we described
in the previous section, the African buffalo is a large grazing
ungulate that ranges throughout sub-Saharan Africa (Sinclair
1977). In Kruger National Park, South Africa, the African
buffalo is an important species because it fills a niche in terms
of tall and coarse grazing preference (Corn�elis et al. 2014), is
a source of prey for lions (Panthera leo; Sinclair 1977; Prins
1996; Radloff & Du Toit 2004), and is one of the desirable
species for tourism in the region. African buffalo are strongly
water dependent because they lack the capacity to subsist on
the moisture available from their forage alone (Prins & Sin-
clair 2013). Previous studies of the movement of African buf-
falo found that water resources can strongly influence their
space use (Redfern et al. 2003). In some cases, African buffalo
may undergo large interseasonal movements when resources
are limited (e.g. Naidoo et al. 2012), but there is variability in
dry vs. wet season movement characteristics across regions
(Ryan et al. 2006; Corn�elis et al. 2014). Repetitive use of
areas is common among African buffalo and some of these
patterns in space use may be a result of maintaining physio-
logical balance among resources (Bar-David et al. 2009).
We used the same movement model (8) that we applied to

the mountain lion data (but with different environmental vari-
ables) to analyse a set of telemetry data arising from an adult
female African buffalo in southern Kruger National Park
(Getz et al. 2007) obtained using hourly GPS fixes (n = 361)
and spanning the period from 1 October 2005 – 14 October
2005 (Fig. 3). The transition from dry to wet season typically
occurs during late September and October in South Africa,
and the year 2005 had slightly more rainfall than the climate
average for Kruger National Park (MacFadyen et al. 2018).
The African buffalo movement data we analysed indicates
that the individual mostly occupied the northern and western
extent of the region during the 2 weeks time period, but trav-
elled c. 15 km between major surface water sources to the
southeastern portion of the region during 7–9 October 2005.
We specified the recharge function to include an intercept

(h0) and covariates for elevation, slope, surface water proxim-
ity (< 0.5 km buffer to nearest surface water) and an interac-
tion for elevation 9 slope to examine the evidence for an
effect of water and other resources for which topography may
serve as a surrogate on physiological recharge during a time
when it is difficult to predict the widespread availability of
water and forage during the transition from dry to wet season
in this region. For movement covariates, we used elevation,
slope and distance to nearest surface water.
We fit recharge-based hierarchical movement models to the

African buffalo telemetry data shown in Fig. 3. The full set of

priors and hyperparameter settings, as well as pseudocode and
computational details to fit the full recharge-based movement
model, are provided in Online Appendix C. As in the moun-
tain lion data analysis, we also examined a set of simpler
models, including hierarchical models that incorporate M0

and M1 separately with all covariates as well as M1 with only
surface water covariates both together with M0 and sepa-
rately.
Similar to our mountain lion results, the reduced recharge

model based only on surface water covariates had a better
predictive score than the other models we fit (Online
Appendix C). The left half of Fig. 6 (labelled ‘behaviour’),
which shows the marginal posterior distribution for the move-
ment parameter, indicates that the African buffalo orients
toward surface water when it makes the decision to recharge
during this time period. Furthermore, the right half of Fig. 6
indicates that surface water proximity increased the recharge
function itself. These results agree with previous findings (e.g.
Redfern et al. 2003) that surface water in this region is an
important predictor of African buffalo movement.
Displayed in the same way as the mountain lion results,

Fig. 7 shows the posterior marginal trajectories as well as pos-
terior median for g(t) and q(t) for the African buffalo. The
posterior inference indicates that the African buffalo individ-
ual we analysed needed to recharge regularly throughout the
time period based on the large values for q(t) overall. How-
ever, brief and fairly regular periods where the posterior mean
for z(t) dropped below 0.5 in Fig. 7e indicate short forays
away from water resources. One such period where the deci-
sion process was not dominated by z(t) = 1 occurred when the
individual looped to the southeast of the study area (7–8
October 2005). Our analysis shows that the recharge function
started high (near zero) and then mostly decreased as the indi-
vidual ventured farther from surface water until eventually
looping back to the north at which point the recharge func-
tion increased again (Fig. 7a,d). In fact, Fig. 7a shows the
areas associated with increases in the recharge function in
green. This spatially explicit inference indicates that low lying
areas near the Sabie River and tributaries are associated with
recharge for the African buffalo individual we analysed
(Fig. 7a). Furthermore, the fact that the recharge model
including surface water proximity covariates had a better pre-
dictive score than the simpler models (M0 and M1) fit sepa-
rately, suggests that a physiological recharge signal related to
the covariates is present in the movement trajectory for the
African buffalo.

DISCUSSION

Our example data analyses provided evidence that both the
mountain lion and African buffalo data sets contained a phys-
iological signal whose variation is at least partially explained
by environmental features. In the case of the mountain lion, a
model comparison indicated that proximity to prey kill area
was the primary factor influencing the recharge and move-
ment processes. This result agrees with other recent studies
(i.e. Buderman et al. 2018) that mountain lion movement pat-
terns are strongly influenced by predatory behaviour. Our
analysis of the African buffalo data suggested that recharge-
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based dynamics were important because the simpler models
that do not directly account for an underlying physiological
process had worse predictive scores. In the case of the African
buffalo data we analysed, the inferred spatial pattern associ-
ated with recharge in Fig. 7a indicated a clear relationship
between probable surface water and recharge and this was
confirmed by the posterior distributions for movement and
recharge parameters (Fig. 6). Previous studies of African buf-
falo indicate that, while movement is largely driven by water
resources, other factors such as forage, social dynamics and
cover may also influence space use (Ryan et al. 2006; Winnie
et al. 2008). These additional factors could be examined in
more detailed studies that combine recharge and social
dynamics with plant ecology and energetics.
In general, the feedback between animal decision making,

physiology and movement is a complex process that involves
both intrinsic and extrinsic factors (Morales et al. 2005, 2010;
Nathan et al. 2008). For example, connections between ener-
getics, memory and movement directly influence the way we
infer animal home ranges (B€orger et al. 2008). Despite calls
for more thoughtful frameworks to model movement that
consider mechanisms explicitly, many modern approaches to
modelling animal trajectories are still purely phenomenologi-
cal. Recent advances in biotelemetry technology have given
rise to massive repositories of high-resolution individual-based
data (‘auxiliary data’) that often accompany more conven-
tional position-based telemetry data (Brown et al. 2013).
These auxiliary data are collected to measure characteristics
of individual fitness and behaviour (e.g. Elliott et al. 2013;
Leos-Barajas et al. 2017) and may provide a more direct link
to understand physiological recharge.
Leveraging the hierarchical modelling framework to com-

bine data sources (Hobbs & Hooten 2015), we can integrate
auxiliary data into the recharge-based animal movement
model (Online Appendix E). Such model structures have
become common in population and community ecology where
they are referred to as ‘integrated population models’ (Schaub

& Abadi 2011). When we have auxiliary accelerometer data, it
may be possible to connect the fine-scale measurements of
micro-movement to the change in position directly (Wilson
et al. 1991). In that case, it is sensible to let the auxiliary data
inform both the trajectory process and the physiological
recharge process directly. In situations where multiple forms
of auxiliary data are recorded (e.g. accelerometer and body
condition measurements), we can augment the integrated
movement model with additional data models that are con-
nected to the latent model components, partitioning the
recharge functions further as needed (Online Appendix E).
Overall, the framework we present allows researchers to

connect the mechanisms related to known physiological char-
acteristics with more conventional telemetry data to account
for latent physiological and individual-based decision pro-
cesses. Our approach is flexible and allows for modifications
to the form of both movement (6)–(7) and recharge functions
(1) and (3). As with any mixture model, some structure allows
the data to better separate model components so that parame-
ters are identifiable. In our case studies, we specified the
movement model such that one term (M0) represents random
diffusive movement and the other term (M1) captures move-
ment in response to environmental variables. This helps us
learn about the recharge function in a way that corresponds
to our pre-existing knowledge about the physiology of these
species. In Online Appendix E, we show how to extend the
recharge-based movement model to accommodate various
sources of auxiliary data to better recognise and estimate the
physiological process components depending on available
data.
For some species, it may be appropriate to consider addi-

tional stochasticity in the recharge process because of unob-
servable interactions with conspecifics, allospecifics, or other
dynamic environmental conditions. Our framework can read-
ily accommodate these sources of overdispersion by specifying
the recharge functions g(v, t) as SDEs (in addition to the
movement process). Statistical inference in these settings relies
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on our ability to observe enough data to successfully estimate
the various sources of uncertainty in the model. Auxiliary
data, such as those described above, may be helpful to parti-
tion and estimate parameters in these more general models.
We formulated the recharge-based movement models in

continuous time for our applications to account for irregular
telemetry and auxiliary data when available, but, like all

continuous-time models that require numerical solutions, our
model is fit using an intuitive discrete time approximation. In
cases where the telemetry data are high-resolution and tempo-
rally regular, the movement models (i.e. M0 and M1) them-
selves can be formulated directly in discrete time using either
the velocity vectors (e.g. Jonsen et al. 2005) or polar coordi-
nates associated with discrete moves (e.g. Morales et al. 2004;
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Langrock et al. 2012; McClintock et al. 2012). In this setting,
the movement process and physiological recharge function are
limited to the chosen temporal resolution and the associated
inference is resolution-dependent.
While our recharge-based movement modelling framework

facilitates the inclusion of mechanisms related to physiology,
it can also be used as a way to accommodate latent sources of
dependence. The physiological recharge functions we specified
in eqns 1 and 3 impart a type of long memory in the stochas-
tic process models that we exploit to learn about the influ-
ences of landscape and other spatial features on movement.
However, time series analyses have relied on long-memory
processes to account for dependence in data for many other
applications (Beran 1994). In terms of animal memory explic-
itly, its influence on movement has been investigated sepa-
rately (e.g. Avgar et al. 2013; Fagan et al. 2013; Bracis et al.
2015; Bracis & Mueller 2017; Merkle et al. 2017), but it has
not been accommodated in the way we describe herein, espe-
cially in the context of physiological processes.
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