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Summary. The growth and dispersal of biotic organisms is an important subject in ecology. Ecologists
are able to accurately describe survival and fecundity in plant and animal populations and have developed
quantitative approaches to study the dynamics of dispersal and population size. Of particular interest are
the dynamics of invasive species. Such nonindigenous animals and plants can levy significant impacts on
native biotic communities. Effective models for relative abundance have been developed; however, a better
understanding of the dynamics of actual population size (as opposed to relative abundance) in an invasion
would be beneficial to all branches of ecology. In this article, we adopt a hierarchical Bayesian framework
for modeling the invasion of such species while addressing the discrete nature of the data and uncertainty
associated with the probability of detection. The nonlinear dynamics between discrete time points are
intuitively modeled through an embedded deterministic population model with density-dependent growth
and dispersal components. Additionally, we illustrate the importance of accommodating spatially varying
dispersal rates. The method is applied to the specific case of the Eurasian Collared-Dove, an invasive species
at mid-invasion in the United States at the time of this writing.
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1. Introduction
1.1 Modeling Invasive Species
The growth in population and dispersal of biotic organisms as
a function of time has been recognized as an important sub-
ject throughout the relatively short history of ecology as a
science (Bullock, Kenward, and Hails, 2002). Ecologists have
long been able to accurately describe survival and fecundity
in plant and animal populations (Renshaw, 1991, Chapter 1;
Bullock et al., 2002) and have also developed quantitative
model-based approaches to study the dynamics of dispersal
(Clark et al., 2003; Nathan et al., 2003). Of particular interest
are the dynamics of invasive species (Kolar and Lodge, 2001).
Such nonindigenous animals (and plants) can levy significant
impacts on native biotic communities (Elton, 1958; Shigesada
and Kawasaki, 1997, Chapter 1). Multiple approaches have
been proposed to model invasions, many of which stem from
early work by Fisher (1937) and Skellam (1951) in diffu-
sion models and biological waves (Shigesada and Kawasaki,
1997, Chapter 3). These led ultimately to more complex
metapopulation models, matrix models, and state-space mod-
els (e.g., Hanski, 1999, Chapter 12; Caswell, 2001, Chap-
ter 4; Borchers, Buckland, and Zucchini, 2002, Chapter 13).
Often such models have been considered in the deterministic

sense or considered with known stochastic components for
purposes of simulation (Renshaw, 1991, Chapter 2; Kot,
2001, Chapter A; Turchin, 2003, Chapter 5; Hastings et al.,
2005). Statistical estimation of parameters in such models has
conventionally consisted of likelihood-based methods, linear
regressions, time-series methods, and more recently, hierar-
chical approaches (Shigesada and Kawasaki, 1997; Caswell,
2001; Calder et al., 2003; Buckland et al., 2004; Thomas
et al., 2005).

Recent advances in computational efficiency have allowed
for the implementation of sophisticated hierarchical Bayesian
models (e.g., Calder et al., 2003; Clark, 2003; Wikle, 2003;
Buckland et al., 2004; Su, Peterman, and Haeseker, 2004;
Thomas et al., 2005; Wikle and Hooten, 2006; Hooten and
Wikle, 2007). It has been shown that such models have much
to offer, including more precise and less biased parameter es-
timation (Calder et al., 2003), accounting for multiple sources
of uncertainty (Wikle, 2003), and the ability to describe non-
linear spatiotemporal dispersal and growth in relative abun-
dance (Hooten and Wikle, 2007), as well as dynamics of
population demographics (Buckland et al., 2004). Many pre-
vious studies have been concerned with the rate of spread
only (e.g., Arim et al., 2006). However, models specifically
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formulated for describing the spread of invasive species ex-
plicitly on spatio-temporal domains have relied on a state-
space framework for implementing discretized partial differ-
ential equations to model a log-transformed Poisson intensity
that represents “relative” abundance (Wikle, 2003; Wikle and
Hooten, 2006; Hooten and Wikle, 2007). Although proven to
be informative and useful, these formulations lack an intu-
itive appeal, as parameter estimates arise from a latent, log-
transformed process that may also induce a growth model
misspecification (Hooten and Wikle, 2007). Conjugate full-
conditional distributions highlight the primary mechanical
advantage of these models in that large multivariate param-
eter updates can easily be obtained from a Markov chain
Monte Carlo (MCMC) algorithm. The combination of non-
conjugacy, non-Gaussianity, and high-dimensional parameter
spaces presents significant implementation challenges. At the
same time, such model specifications allow for a more intu-
itive setting where identification and estimation of posterior
parameter distributions comes more naturally.

So-called matrix models (i.e., first-order Markov models)
offer a very flexible framework for describing population dy-
namics in time, space, and age classes (Caswell, 2001). Much
can be learned about population dynamics through matrix
model simulations. Neubert and Caswell (2000) provide an
extensive discussion of demographic matrix models and the
effects of demographics on dispersal; however, they do not es-
timate parameters on large spatiotemporal domains explicitly
from a model-based statistical perspective. Conventional pa-
rameter estimation in such models requires extensive datasets
from well-designed experiments (Caswell, 2001, Chapter 6).
Although large-scale spatiotemporal data are becoming more
readily available, they are often subject to multiple sources of
uncertainty (e.g., observer bias and irregularly sampled loca-
tions and times) and not specifically collected to accommo-
date complicated space–time demographic models (Hastings
et al., 2005).

Although much more general as a class of models, ma-
trix models can be specifically employed to model the dy-
namics of invasive species in space and time and, therefore,
such models are the focus of this paper. We approach the
problem hierarchically, with an intuitive data model, flexi-
ble matrix process model comprised of growth and dispersal
components, and parameter model consisting mostly of non-
conjugate priors. This approach has the advantage of appear-
ing less complex than those proposed previously (e.g., Wikle
and Hooten, 2006; Hooten and Wikle, 2007). The general form
of the spatiotemporal matrix model, however, is suggested by
discretized partial differential (Hooten and Wikle, 2007) and
integro-difference equations (Wikle, 2002), yet the direct ma-
trix model approach proposed here allows for more general
dispersal.

In most ecological studies, the state variable of interest can-
not be observed directly because of bias related to imperfect
detection. In fact, studies ignoring such sampling assumptions
generally focus on modeling “relative abundance” only (e.g.,
Wikle, 2003; Hooten and Wikle, 2007). While models for rel-
ative abundance are useful, it is often necessary to make di-
rect inference about the size of a population (i.e., numbers
of organisms) at a given set of locations. Monitoring efforts
for invasive species often result in count data, that is, the

number of individuals observed at each location (or area).
In cases where less than the total number of individuals is
observed (i.e., imperfect detection), a binomial data model is
suggested. In general, nonidentifiability issues arise when con-
sidering such models (Olkin, Petkau, and Zidek, 1981; Carroll
and Lombard, 1985; Raftery, 1988). For cases where prior in-
formation about the probability of detection is available, we
propose a data model with identifiable population size param-
eters that accounts for inherent uncertainty associated with
nondetection bias.

1.2 The Eurasian Collared-Dove in the United States
Large scale spatiotemporal ecological datasets consisting of
quantitative population information are not common, espe-
cially for invasive species (Caswell, 2001; Hastings et al.,
2005). Fortunately, long-term monitoring efforts such as
the North American Breeding Bird Survey (BBS; Robbins,
Bystrak, and Geissler, 1986) exist and can provide high-
dimensional space–time invasive species data (North Amer-
ican BBS data can be obtained at the following web site:
http://www.pwrc.usgs.gov/bbs/).

Specifically, the Eurasian Collared-Dove (ECD, Streptopelia
decaocto) is a nonindigenous species in North America for
which data have been collected since its introduction in the
early 1980s (Romagosa and Labisky, 2000). Although similar
in appearance to the Ringed Turtle-Dove, ECD presence is not
so benign as it rapidly spread through Europe in the 1900s
and poses a possible threat to native ecosystems in North
America (Hengeveld, 1993).

During the peak of the avian breeding season each year for
most of the United States and Canada, skilled observers col-
lect bird population data along roadside survey routes. Each
survey route is 24.5 miles long with stops at 0.5-mile intervals.
At each stop, a 3-minute point count is conducted, during
which every bird seen or heard within a 0.25-mile radius is
recorded. The spatial unit of observation for the routes along
which data are collected presents a significant challenge to
spatial modeling, thus, certain simplifying assumptions about
the data must be considered in the construction of a spa-
tiotemporal modeling framework. Herein we assume the data
occur as counts located at the route centers; at a continen-
tal scale, we assume the effect of aggregating over routes will
be minimal. Note that because of this aggregation assump-
tion, any parameters corresponding to route locations should
be interpreted with the original spatial unit of observation
in mind. Additionally, the BBS data are subject to multiple
sources of uncertainty, especially within-site variability (Link
et al., 1994; Sauer, Peterjohn, and Link, 1994). Knowledge
of such intricacies in the data provides a significant motiva-
tion for the development of models that explicitly account for
known sources of uncertainty, particularly at the data level.

ECD currently occupies the Eastern United States al-
though the invasion is ongoing (see Figure 1). Models for
relative abundance have suggested that the ECD displays typ-
ical invasive behavior (Hooten and Wikle, 2007). That is, the
underlying dynamics of the invasion can be characterized by
common density-dependent population growth and dispersal
processes. Romagosa and Labisky (2000) speculated that the
ECD would likely colonize the entire United States in a few
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Figure 1. BBS counts for ECD at BBS route centers for
1986–2003. Points denote sample locations at which ECD was
observed and circles illustrate magnitude of count data at each
route location.

decades. The approach that follows allows for the rigorous
probabilistic evaluation of such claims.

2. Methods
We adopt the general hierarchical model framework for spa-
tiotemporal processes as in Wikle, Berliner, Cressie (1998),
Calder et al. (2003), Wikle (2003), and Hooten and Wikle
(2007), as proposed for time-series by Berliner (1996),
whereby we construct the model in three stages: data, pro-
cess, and parameters. The hierarchical approach allows us
to construct and estimate a complex joint distribution via
a sequence of simpler, and more intuitive, conditional dis-
tributions. This allows us to incorporate different forms of
uncertainty within each level of the hierarchy. The square

bracket and conditional notation (i.e., [a | b]) is used hereafter
for simplicity and denotes a conditional probability distribu-
tion. That is, [a | b] implies the conditional probability distri-
bution of a given b.

2.1 Data Model
In general, recording counts of individuals (or groups) at var-
ious locations over time is a common data collection scheme
for monitoring plant and animal abundance. Because animals
are usually detected imperfectly in most animal surveys, such
data often represents a subset of the true, unknown, number
of organisms at each time and location. If the assumption is
made that each organism at a given time and location is ob-
served independently given that the organism is present, then
a binomial data model would be reasonable. Let ni,t represent
the observed number of organisms at location i and time t for
a total of m spatial locations and T times, while the true,
unknown number of organisms at that location and time is
denoted ni,t . In the case of the ECD, the ith location refers to
the location of the BBS route center, thus ni,t and N i,t refer
to the observed and true number of ECDs aggregated over
the ith BBS route, respectively. If the probability of observ-
ing (i.e., detecting) each organism is θ, then we would have
(temporarily) the following data model specification:

ni,t |Ni,t, θ ∼ Binom(Ni,t, θ) i = 1, . . . ,m; t = 1, . . . , T.

It would be preferable to use heterogeneous detection prob-
abilities, yielding the data model: ni,t ∼ Binom (N i,t , θi,t).
However, substantial data would be required to estimate such
highly parameterized models in the absence of additional in-
formation. One feasible approach is to absorb much of the
uncertainty regarding the probability of detection with a dis-
tribution on θ.

2.1.1 Estimation of detection probability. Although simple
point counts are perhaps the most common sampling proto-
col employed in avian surveys, they present a problem in the
estimation of N i,t when the detection probability (θ) is un-
known and must be estimated as well (Royle, 2004). The two
parameters are not identifiable in the absence of additional
information. A minor extension of the sampling protocol can
provide information on both θ and N i,t , though its imple-
mentation specifically involving the ECD is not feasible using
BBS observations due to the lack of replicate data. Thus, in
order to estimate the true population size (N i,t) we need to
gain some a priori understanding of the probability of detec-
tion. Consider separately a sampling protocol wherein each
local population (i.e., each sample unit) is visited on k sep-
arate occasions, yielding a sequence of independent binomial
counts ni,t (for t = 1, . . . , k). Assuming the true population
size, Ni , remains fixed during the period required to collect k
observations, the likelihood is the product binomial,

f(ni,1, . . . , ni,k |Ni, θ)

=
∏
t

Ni!

(Ni − ni,t)!ni,t!
θni,t(1 − θ)Ni−ni,t .

(1)

The general instability of the maximum likelihood estimate
for Ni based on (1) is well known (Olkin et al., 1981; Car-
roll and Lombard, 1985; Raftery, 1988), and this deficiency
may explain why the sampling protocol is not widely used in
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practice. However, when this sampling protocol is applied at
replicate spatial locations and additional model structure is
imposed on the location-specific abundance parameters, the
estimation problem becomes more tractable (Royle, 2004).
For example, if Ni ∼ Poisson (λ), then λ and θ are well
identified.

This approach can be used in the presence of replicate data
to obtain a posterior distribution for θ under a Bayesian im-
plementation of equation (1) (Royle and Dorazio, 2006). As
previously mentioned, in the case of the ECD, the operational
BBS survey does not yield replicate counts at each BBS sam-
ple location. However, a study conducted by Link et al. (1994)
obtained replicate counts on a number of BBS routes within
the ECD range. Specifically, we used replicate data from a dif-
ferent species (Mourning Dove, Zenaida macroura) that shares
similar detectability characteristics with ECD to inform θ.
The posterior for the detection probability of the Mourning
Dove is the standard form of a beta distribution with param-
eters αθ and βθ. We do not expect the estimate of θ (in terms
of αθ and βθ) to represent the detectability of the ECD ex-
actly; however, based on similarities in dove behavior we can
expect it to be a reasonable estimate, especially considering
that we are allowing for the uncertainty in θ through the beta
distribution.

2.1.2 Incorporation of detection probability. The informa-
tion about detection probability based on the Mourning Dove
data provides the best estimate of θ we could hope to attain
given available data and methods. In fact, given the identi-
fiability issues between N i,t and θ we cannot learn anything
further about the probability of detection in a hierarchical
spatiotemporal model without additional replicate data. How-
ever, by allowing the Mourning Dove estimate to be our prior
for θ and then treating it as a nuisance parameter, we can
integrate it out of our data model while accounting for its
uncertainty (Berger, Liseo, and Wolpert, 1999). This suggests
the following modified data model,

[ni,t |Ni,t]

=

∫ 1

0

[ni,t |Ni,t, θ][θ]dθ i = 1, . . . ,m; t = 1, . . . , T, (2)

which analytically yields a beta-binomial data model when
the prior distribution for θ is indeed specified as a beta dis-
tribution (i.e., θ ∼ Beta (αθ, βθ)):

ni,t |Ni,t, αθ, βθ ∼ Beta-Binom(Ni,t, αθ, βθ) i = 1, . . . ,m;

t = 1, . . . , T. (3)

Hence, this beta-binomial model is used hereafter as the data
model component in the hierarchical matrix model.

2.2 Process Model
Although the estimation, spatial prediction, and temporal
forecasting of population size are of primary concern in this
setting, the underlying ecological process is also of interest.
That is, knowledge about the true process from which the
data arise is useful for characterizing and studying the in-
vasion. Many previously proposed methods split the process
model into two stages where the first stage is a nonlinear
(and hence nonconjugate) transformation of the second stage
(a Gaussian state equation). This provides a computational
advantage yet detracts from the intuitive nature of the process

itself. We propose a process model with intuitive construction
while retaining scientifically meaningful dynamic behavior.

We adopt a natural and common model for the true number
of individuals at a given location and time. That is, the true
population (N i,t) is assumed to be conditionally Poisson with
intensity (λi,t) depending hierarchically on population growth
and dispersal parameters.

Ni,t |λi,t ∼ Pois(λi,t) i = 1, . . . ,m; t = 1, . . . , T.

Assuming the Poisson intensity (λt ≡ [λ1,t, . . . , λm,t]
′)

evolves according to first-order Markovian dynamics, we can
utilize a matrix model framework (Caswell, 2001, Chapter 4).
In the specific setting where we lack information about the
age structure of a species, we have λt, the state vector, being
propagated by a transition matrix H in the following evolu-
tion equation.

λt = Hλt−1

= MGλt−1

= M(τ )G(K, r,λt−1)λt−1 t = 1, . . . , T. (4)

Notice in equation (4) that we have decomposed the transi-
tion matrix H into a product of two distinct m × m matrices
corresponding to growth (G) and movement (M) of the pop-
ulation. This formulation allows the process, which is random
through its parameters (i.e., K, r, τ , and λ1 are all proba-
bilistically specified in the next section) and quite flexible, to
evolve in a conventional dynamical system. Additionally, it
provides a convenient and ecologically meaningful specifica-
tion of the growth and dispersal parameters. Similar decompo-
sitions of the transition matrix H in settings where population
demographics is also being studied have been discussed (e.g.,
Neubert and Caswell, 2000; Buckland et al., 2004), though the
specification presented here differs from those used previously
in order to accommodate the specific ECD dataset as well as
prediction of a high-dimensional spatially explicit process.

The matrix controlling population growth (G) can be pa-
rameterized many ways. We propose a diagonal form where
population growth at each location is described by a common
density-dependent formulation given by the Ricker growth
equation (Turchin, 2003, Chapter 3). Although other growth
equations exist and are commonly used (e.g., Beverton-Holt,
Malthusian, Gompertz), the Ricker form of growth is flexi-
ble and allows for potentially chaotic behavior and oscillatory
characteristics in population stability (Kot, 2001, Chapter A).
Additionally, investigators wishing to perform inference on
the form of growth model specifically could implement vari-
ous process models separately and compare their effect using
any number of model selection criteria (e.g., Deviance Infor-
mation Criterion [DIC] or Bayes factors). Another approach
would be to consider multiple growth models simultaneously
using a mixture-based specification for the process model and
reversible jump MCMC. In simulation, we have found the
Ricker growth model, with random parameters, to be very
flexible and capable of exhibiting behavior similar to that of
other forms of theoretical population growth. Thus, here we
focus on Ricker growth and let the ith diagonal element of G
be defined as,

G(r,K, λi,t) = exp{r(1 − λi,t/K)}, t = 1, . . . , T, (5)
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where K and r correspond to carrying capacity and growth
rate, respectively. In cases where there are significant differ-
ences in the carrying capacity (K) and growth rate (r) across
spatial locations, one could consider parameterizations where
K and r are allowed to vary in space. Effective estimation of
spatially varying growth rates may be difficult in models al-
ready heavily parameterized without informative prior knowl-
edge. In the presence of data describing a nontransient process
(i.e., a process where population size has reached carrying ca-
pacity at all locations) it may be possible to estimate spatially
varying carrying capacities (K); in cases where a population
is still growing, however, these parameters will be difficult to
estimate.

The dispersal of organisms in space is described in equa-
tion (4) by the matrix M. Dispersal in this case is assumed to
be characterized by a spatially varying Gaussian kernel. That
is, the population in a given location at the current time is a
spatially weighted average of the population at surrounding
locations depending on the distances (di,j ) between locations
and dispersal parameters, τ . We let M be defined as:

M(τ ) = [(Mi,j)]m×m,

Mi,j ∝ exp

{
−
d2
i,j

τj

}
,

(6)

where each row of M is constrained to sum to one with each
value between 0 and 1, as motivated by discretized diffusion
equations (e.g., Wikle, 2002; Hooten and Wikle, 2007).

Other parameterizations of this dispersal matrix could be
considered. For example, an alternative specification of the
dispersal matrix, say M(alt), is one where each column (rather
than row) of M(alt) is constrained to sum to one with 0 ≤
M

(alt)
i,j ≤ 1 for all i and j. This dispersal matrix is especially

suited to the “multisite” situation where the M
(alt)
i,j refer to

transition probabilities. In such a situation, where individual
animals are moving from one distinct “population” to another
with a certain probability, it is sensible to think of the tran-
sition probabilities as: M

(alt)
i,j = P(animal moves to location

i | animal is currently in location j). In a spatial setting, with
data pertaining to irregularly observed locations on a land-
scape where there are open boundaries (as is typically the
case in invasion problems), a dispersal model needs to have
the flexibility that the quantity being dispersed can move out
of the domain through the boundary. To help visualize the
difference between M and M(alt), consider the simplest case,
where G = I (i.e., no growth in population); here M(alt) pre-
serves the number of total organisms over time and only allows
them to occur in distinct areas, whereas M does not account
for every organism at each time and thus the total number
of organisms may fluctuate over time even though there is no
growth component in the model. This effect of parameteriza-
tion implies that when G 	= I, the parameters in M and G
may not be completely identifiable because they could both be
contributing to the overall growth in population. However, in
the situation considered here, with the ECD and BBS count
data, the preservation of population size resulting from the
“probability parameterization” of M(alt) is not as important
as the dispersal behavior, thus we retain the parameterization
of M as in equation (6). Though the chosen specification for

M implies that the growth (i.e., K and r) and dispersal (i.e.,
τ ) parameters may not be separable, simulations (detailed in
Hooten, 2006) verify that for the spatial and temporal do-
mains considered in this application, the contribution from
M to overall growth is minimal. Still, rigorous interpretation
of growth and dispersal parameters, separately, could be mis-
leading, and thus it is best to interpret the effect of K, r, and
τ simultaneously. Here, the emphasis is on the prediction of
true population size (N i,t) in time and space and thus there is
no need to interpret the parameters separately; however, we
provide the posterior results of these parameters for the sake
of completeness.

As with the growth parameters, one could specify this
Gaussian kernel to be spatially homogeneous in cases where
limited data exist. For the application considered here, a mul-
tivariate parameterization has been shown to accommodate
regional differences in dispersal (Hooten and Wikle, 2007)
when adequately estimated. The dispersal mechanism em-
ployed here is more flexible than those previously proposed;
thus we would expect patterns of dispersal to be different. In
fact, because our emphasis is on prediction and estimation of
the true population size (N i,t), by specifying a simpler model
with the constraint that all τ i are equal, we can illustrate the
risk of assuming homogeneous dispersal. Additionally, we can
compare model complexity and effectiveness using DIC (see
Gelman et al., 2004, Chapter 6). Though no methods of model
comparison and selection are without criticism, DIC focused
on the most important level in complex hierarchical models
(such as the data model in this case) can provide a means
of comparing the overall effect of different parameterizations
while taking into account model complexity.

2.3 Parameter Model
The underlying process (equation 4) in this hierarchical model
is a dynamical system with random components. Conven-
tionally, latent processes are formulated with additive error
to account for misspecification of the model. Such specifi-
cations are very general and often result in nonidentifiable
variance components (e.g., Hooten and Wikle, 2007) and pro-
hibit long-range prediction due to additive error propagating
through the predictive forward model. Accounting for the pro-
cess model error through probabilistic growth and dispersal
parameter specifications alleviates such complications while
offering sensible flexibility in the latent process.

With the nuisance parameter, θ, integrated out, we pro-
pose a very simple specification for prior distributions of the
remaining model parameters. Assuming that we have inde-
pendence between priors (i.e., [K, r, τ ,λ1] ∝ [K][r][τ ][λ1]), we
let:

K ∼ Gamma(αK = 4, βK = 50),

r ∼ N(μr = 0.5, σ2
r = 0.25),

log

(
τ

τ̃

)
∼ N

((
μτ

μ̃τ

)
, Στ =

(
Σ1,1

τ Σ1,2
τ

Σ2,1
τ Σ2,2

τ

))
, (7)

log

(
λ1

λ̃1

)
∼ N

((
μλ

μ̃λ

)
, Σλ =

(
Σ1,1

λ Σ1,2
λ

Σ2,1
λ Σ2,2

λ

))
, (8)
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where τ̃ and λ̃1 are the parameter values at a set of loca-
tions where we are interested in making predictions. Also,
the Gamma distribution on K has a mean 200 and vari-
ance of 10,000 and is parameterized such that βK is the
scale parameter. Στ and Σλ are characterized by expo-
nential spatial hyperpriors on the covariance structure of
the dispersal and intensity process at the initial time (i.e.,
t = 1), respectively. Specifically, [μτ ]i = [μ̃τ ]j = log(2), ∀i, j
and [Στ ]i,j = log(1.1)[exp(−2 ||di,j ||)] represent the hyperpri-
ors for τ while μλ = μ̃λ = log(15) for locations in extreme
southern Florida (i.e., the location where ECD was introduced
into the United States) with zero elsewhere and [Σλ]i,j =
log(1.1)[exp(−2 ||di,j ||)] represent the hyperpriors for λ1. The
Euclidean distance between locations i and j is represented by
||di,j ||. The spatial specification of τ and λ1 allows for pos-
terior predictive estimation at locations and times without
data as well as likely autocorrelation in the parameters (see
Web Appendix A). Hyperpriors are specified based on their
ability to exhibit reasonable growth and dispersal behavior in
simulations. For example, we know that the population size
is generally growing over time and thus μr was specified to be
positive, although r could still be negative depending on σ2

r

and the influence of the data. Recall that prior specification
for θ (i.e., θ ∼ Beta (1.7, 7.7), implying a mean of 0.18 and
standard deviation of 0.12) was based on posterior estimates
of detection probability from a separate model and dataset
with repeated measurements and then integrated out, as dis-
cussed in the data model section of this article.

3. Results
Methods for estimating the posterior distribution for the
models considered here include MCMC and various forms
of importance sampling (Gelman et al., 2004, Chapter 11).
Importance sampling is especially desirable in settings with
nonconjugate full-conditional distributions and nonlinear re-
lationships between parameters; however, it suffers from
degeneracy problems, especially in situations with high-
dimensional parameter spaces, as is the case here. Metropolis–
Hastings updating within a Gibbs Sampler (one form of
MCMC) is an alternative approach for sampling, but requires
careful selection of proposal distributions that can sufficiently
explore the parameter space. We concentrate on the MCMC
approach for estimation although other sampling algorithms
may also provide adequate results.

Figure 2. Maps representing the posterior mean (E(τ |ni,t), ∀i, t) and standard deviation ((V (τ |ni,t))
1/2, ∀i, t) of dispersal.

Several multivariate Metropolis–Hastings parameter up-
dates slow the mixing of MCMC samples, thus the Gibbs
sampler was allowed to run for 200,000 iterations to ensure
that the posterior parameter space was explored sufficiently.
Resampling was used to remove correlation between realiza-
tions. Convergence, which was assessed by visually inspect-
ing parameter chains, occurred before the burn-in period of
20,000 iterations, which were used for calculation of posterior
summary statistics. Metropolis–Hastings acceptance rates for
the parameter updates varied between 20% and 40%. For ad-
ditional details about the sampling algorithm and predictions,
see Web Appendix A.

Estimation of the posterior distributions of model parame-
ters provides useful information about the underlying dynam-
ics of the ECD invasion. Although the focus here is on the
estimation and prediction of the population size at various
locations and times, knowledge about the process driving the
population size can also be informative. In this setting we
can evaluate population dispersal as well as growth paramet-
rically, though, inference on dispersal and growth parameters,
separately, should only serve as a general guideline because
the degree of separation is unknown. However, the combined
effect of growth and dispersal is valid and can be assessed by
interpreting the process itself (i.e., λt). Simulated processes
on similar spatial and temporal domains suggested that the
shared contribution from K, r, and τ to overall population
size is negligible (as evidenced by only a slight bias in the
posterior estimates of parameters based on simulated data);
however, we provide the following posterior summaries with
a cautionary warning.

Posterior distributions for the univariate parameters K
(carrying capacity) and r (growth rate) yielded 95% credi-
ble intervals of [103, 201] and [0.26, 0.32], respectively. Pos-

terior standard deviations for K and r (i.e., (V (K |n))1/2 =

24.3, (V (r |n))1/2 = 0.02) were very precise compared to their

prior standard deviations (i.e., (V (K))1/2 = 100, (V (r))1/2 =
0.5), thus implying that there was sufficient data to inform
the growth of the process.

Statistics from the posterior distribution of multivariate pa-
rameters can be expressed as spatial maps. Prediction and
estimation at a set of regularly spaced locations provides a
convenient way to view the posterior parameter spaces. Note
that all figures containing maps herein are displayed as images
with grid cell intensity representing parameter magnitude at
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the location of the grid cell center. The image format is for
visualization only (as an alternative to variable sized points)
and should not be misinterpreted as “areal” support. That is,
each pixel in the images represents a point at the pixel center,
rather than the area of the pixel itself.

Consider the posterior mean and standard deviation maps
of dispersal τ (Figure 2). As with the growth parameters, the
posterior standard deviations for dispersal were much smaller
than the prior standard deviation (i.e., max(V (τ i |n)) <<
V (τ i)). A primary concern of ecologists and resource man-
agers related to invasive species is the extent and magnitude
of the invasion at a given time (including future times). In
the case of the ECD, the mean posterior population size pre-
sented in Figure 3a illustrates the estimated magnitude and
extent of the invasion at a set of times (including predictions)
given the sample data. By the year 2016, the ECD population
is predicted to be at or near carrying capacity for the portion
of the United States shown in the figures. Posterior credible
interval growth curves for individual locations can reveal at
what time the population is projected to reach its carrying
capacity (i.e., the total number of ECDs a sampled location
can support).

By implementing a simpler form of the model with ho-
mogeneous dispersal rates (i.e., τ i = τ , ∀i) we can compare
and assess what, if any, advantage spatially varying disper-
sal contributes to estimation and prediction. Using DIC (e.g.,
Gelman et al., 2004, Chapter 6) focused on the data model, we
can compare the two models in terms of their predictive capac-
ity while penalizing for model complexity. Denote model 1 as
the proposed model allowing for heterogeneous dispersal and
model 2 as the simplified model with homogeneous dispersal.
Then, the resulting number of effective parameters for each
model is: pD1 = 133 and pD2 = 130. The DIC for each model
is: DIC 1 = 13,052 and DIC 2 = 13,107.

4. Discussion
Consider, first, the posterior 95% credible interval for the
Ricker growth rate (r). In situations where there is no change
in population size due to dispersal, a growth rate of r < 0 im-
plies a decrease in population while r > 0 implies an increase.
Here r does not overlap zero, implying that there is indeed
growth in the population, in addition to dispersal. In this
case, where dispersal contributes to population size, and be-
cause an invasion generally constitutes a growing population,
we can expect r to be positive but smaller than it would be in
a population without dispersal. Also, recall from equation (5)
that when r → 1 it implies that G(K, r, λi,t) → exp {1 −
λi,t/K}; a much simpler growth model. Here, the posterior
credible interval of r suggests that it is significantly differ-
ent from 1, thus the assumption of a two parameter growth
equation is reasonable.

Recall that the carrying capacity is modeled with an overall
term (K); thus, the estimate for E(K |n) could be thought of
as representing the overall mean while V (K |n) represents the
uncertainty associated with carrying capacity. The possible
spatial heterogeneity in carrying capacity is not accounted for
explicitly here for the sake of parsimony; situations may exist,
however, where such a multivariate carrying capacity param-
eter is indeed identifiable. The posterior credible interval for

Figure 3. (a) Posterior (and posterior predicted) mean
of ECD population size throughout the United States from
1986 to 2016. (b) Also, the absolute difference between poste-

rior means for N(2)
t and N(1)

t (i.e., the difference in estimates
of population size for the model with homogeneous dispersal
versus the model with heterogeneous dispersal). Overall shade
corresponds to absolute difference and solid white circles rep-
resent large positive differences while empty white circles rep-
resent large negative differences.
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Figure 4. Credible intervals for posterior population growth of ECD (Ni,t) from 1986 to 2020 for locations in south Florida
(solid lines) and northwest Wyoming (dashed lines) simultaneously.

the carrying capacity used here (K) suggests that the number
of individuals a given location can support is quite variable.
This is not surprising given the lack of prior information about
this parameter and the fact that the invasion is still ongoing
and has not reached saturation at all locations. For situations
where the population size at more locations had reached car-
rying capacity, the variability in K could likely be reduced by
conditioning on spatial covariates.

From the parameter estimates in Figure 2 we can see that
there is a clear and significant area of low dispersal in the re-
gion of northern Florida (in the southeast portion of the map
in Figure 2a). The effect of this will slow the spread of ECD
westward out of Florida while northward, along the east coast,
ECD dispersal remains uninhibited. Note that the values for
the mean parameter estimates of τ are directly related to
the scale of the map distance units, and therefore the general
pattern rather than the magnitude should be interpreted here.
That is, the use of a different coordinate system would result
in different parameter values, but retain the same pattern.

Consider 95% credible intervals for a location in south
Florida and a location in northwest Wyoming (i.e., North-
west United States) simultaneously (Figure 4). At the time of
this writing, very few, if any, ECDs have likely dispersed as far
as Wyoming, whereas the population sizes in most of Florida
are nearly at carrying capacity. Although, by the year 2020,
Wyoming will be near carrying capacity with high probabil-
ity as well, as speculated by Romagosa and Labisky (2000).
Such extrapolations (in time and space) are generally not ad-
visable; however, the predictions in this case are a result of
the estimated dynamics of the invasion and serve as the only
insight into the probable population sizes at future times and
locations based on the available data.

The DIC analysis for comparing the two models suggests
that after correcting for the number of unconstrained parame-
ters, model 1 still provides better predictions due to the lower
DIC value. Additionally, Figure 3b illustrates the relative dif-
ferences between models and shows how assuming homoge-
nous dispersal can lead to inflated and deflated population
size estimates in both time and space. In Figure 3b the ar-
eas with solid white circles imply that model 2 (homogeneous
dispersal) is overestimating the population size relative to the
predictions resulting from model 1, while the areas with empty
white circles indicate that model 2 is underestimating popu-
lation size relative to the predictions resulting from model 1.
These areas of misestimation clearly evolve over time and can
be quite misleading. Overall, the DIC analysis and difference
maps suggest that a spatially varying dispersal parameter is
indeed important in the model.

Overall, we have found that by using a priori knowledge
gained from models proposed by Royle (2004) and Royle and
Dorazio (2006), it is possible to estimate parameters that
characterize a nonlinear and non-Gaussian dynamical sys-
tem underlying the dispersal of invasive species. This use of
subjective probability illustrates a strength of Bayesian mod-
els in complicated hierarchical settings where conventional
likelihood-based parameter estimation would not be feasible.
From a scientific perspective, it is important to note that
previous dynamical spatiotemporal population models have
largely ignored the detectability of the species, whereas here
we are directly accounting for detection as well as uncer-
tainty associated with detection. In the specific case of the
ECD, this represents the only way to gain an understanding
of the spatiotemporal dynamics in true population size (i.e.,
N i,t).
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The model proposed in this article adopts the intuitive and
simple yet powerful form of a matrix model (e.g., Caswell,
2001). Although information about the age distribution of
ECD over time and space is not available, this model frame-
work could easily accommodate such data. In fact, several
approaches have been taken to implement the demographic
version of matrix models in a hierarchical framework (e.g.,
Buckland et al., 2004; Thomas et al., 2005).

It is important to note that this form of the proposed model
relies heavily on the estimated dynamics of the invasion in
order to predict population size at future times and unsam-
pled locations. For cases where there exists more complete
data for less of a generalist species, the model could easily
be extended to accommodate covariate effects on model pa-
rameters, such as growth rate (r), carrying capacity (K), and
dispersal (τ ). In cases where such information is available,
predictions could also serve as a way to evaluate scenarios on
how to control the spread of invasions. Many other extensions
to the model are possible concerning detectability. For exam-
ple, if detection was known (or estimated a priori) to vary
by location or time (possibly through association with covari-
ates), then it could be included in the exact same framework
only with θi,t in the data model rather than θ. Furthermore,
in cases where repeated counts are observed for each loca-
tion and time, a modeling framework similar to that of Royle
and Dorazio (2006) could be implemented to estimate θi,t , in
addition to the process and dynamics.

The main advantage of this model over other similar in-
vasive species models is that it is intuitive and simple yet
flexible enough to accommodate various specifications and
sources of uncertainty (e.g., such as the uncertainty in de-
tection). It provides tangible graphical output (in addition to
numerical output) and is based on rigorous data-driven sta-
tistical methodology, the basic principles of which ecologists
and resource managers can understand and utilize for scien-
tific endeavor and decision making.

Supplementary Materials
Web Appendix A referenced in Sections 2.3 and 3 is available
under the Paper Information link at the Biometrics web site
http://www.tibs.org/biometrics.
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