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Spatio-Temporal Systems

Agent-based models have been used to mimic natural processes in a variety of fields, from biology to social science. By specifying mechanis-
tic models that describe how small-scale processes function and then scaling them up, agent-based approaches can result in very complicated
large-scale behavior while often relying on only a small set of initial conditions and intuitive rules. Although many agent-based models are
used strictly in a simulation context, statistical implementations are less common. To characterize complex dynamic processes, such as the
spread of epidemics, we present a hierarchical Bayesian framework for formal statistical agent-based modeling using spatiotemporal binary
data. Our approach is based on an intuitive parameterization of the system dynamics and can explicitly accommodate directionally varying

dispersal, long distance dispersal, and spatial heterogeneity.
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1. INTRODUCTION

Many types of ecological, environmental, and epidemiologic
data are collected over discrete spatial and temporal domains
(Krebs 1978; Hanski 1999; Waller and Gotway 2004). More-
over, such data are often binary-valued. Consider, for example,
a natural process that evolves in some space (S) over a set of
time (7°) continuously. It is rarely feasible to observe such a
process in a continuous fashion; in fact, it is impossible to do
so if the process is being observed and (or) recorded digitally.
Therefore, data collection schemes are often designed for con-
venience, and the process is observed in discrete snapshots, say,
vit, wheret€e TC 7T and i e S C S for dim(S) < oo, where S
and T are finite sets of spatial locations (or areas) and times (or
periods), respectively.

Dynamic models over gridded spatial domains, such as those
proposed by Hooten and Wikle (2008), can be used in cases
where the data (y;;) are counts on domains with areal spatial
support. In contrast, the spatiotemporal matrix models proposed
by Hooten et al. (2007) can be used in cases where count data
occur in either discrete or continuous space. Both types of mod-
els for characterizing spreading phenomena involve population
growth and dispersal processes. It is often the case that data
reflecting population growth are not available and only the oc-
currence of a phenomena is observed. In such cases where only
binary data exist and without repeated measurements, popula-
tion growth parameters are not identifiable (without strong prior
information). The focus in such situations shifts to the estima-
tion of dispersal-based dynamics.

Conventional methods for modeling spatial processes on par-
titioned domains often are specified as Markov random field
models (also known as conditional autoregressive models and
simultaneous autoregressive models) that have now been ex-
tended to the spatiotemporal setting (see Cressie 1993; Baner-
jee, Carlin, and Gelfand 2004 for a complete discussion).
The autologistic model has served as the dominant spatial
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model for binary data (Besag 1974; Cressie 1993; Heikkinen
and Hogmander 1994; Hogmander and Moller 1995; Hoeting,
Leecaster, and Bowden 2000), where the probability of pres-
ence is conditioned on its neighbors. More recently, methods
have been developed that extend the autologistic model, as well
as other models using a logit transform of presence/absence
probability, to spatiotemporal settings (e.g., Zhu, Huang, and
Wu 2005; Royle and Dorazio 2006; Royle and Kery 2007).

Many previously developed methods address the dynamic
nature of these processes from an autoregressive modeling per-
spective (e.g., Pace et al. 2000), where a state of the system
at the previous time is related to the state at the current time
through (possibly time-varying) spatial and temporal autore-
gressive coefficients. This is a very powerful approach when
considering the process as a whole and in settings where a
Gaussian autoregressive model can be used. Moreover, Royle
and Dorazio (2008) discussed various generalizations to binary
data and argued that certain autoregressive generalized linear
specifications can be convenient to implement, especially when
covariates are involved directly through the link function.

We take an alternative approach in the methods that follow,
and introduce a class of models motivated by viewing the move-
ment (i.e., dispersal) of an agent from the perspective of the
agent itself, rather than the system as a whole. Such approaches
have been termed “agent-based models” (ABMs) in the litera-
ture (Grimm and Railsback 2005). For example, an organism,
such as an exotic invasive species or a pathogenic species, in a
new environment often will move from areas of lower quality
to areas of higher quality (where quality is defined in terms of
many possible factors, from environmental suitability to over-
population to availability of hosts). In this way, the system as a
whole (i.e., the automaton) can be thought of as a process with
numerous automatous components. It is important to note that
an agent could be defined at multiple scales. For example, an
agent could represent a virus, an individual, a node in a net-
work, or, more generally, a spatial reporting unit (e.g., a census
tract, township, county, or state). In Section 2 we present statis-
tical ABMs that allow the spatiotemporal process to propagate
through areal reporting units with directionally varying rates
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and spatial heterogeneity that is linked to the gradients in the
underlying environment.

1.1 Cellular Automata

The properties and behavior of automata have been studied
in nearly every field (Wolfram 1984), but rarely in a statistical
context. In essence, an automata can be defined as an entity or
agent, whose state (state can be taken to be as abstract as nec-
essary in this context) is governed by a set of simple rules, and
whose interaction with its environment can result in extremely
complex systemic behavior. In other words, the combined be-
havior of numerous individual automata results in very compli-
cated large-scale dynamical system behavior incapable of being
described in any other way (Wolfram 1983).

Automata are most often defined in a deterministic dynami-
cal system framework in which the state of the “neighborhood”
of an agent (in this case, an areal unit of space called a “cell”)
determines the future state of the agent. Another type of au-
tomata can be formulated probabilistically, where the state of
an agent is defined by parametric probability distributions and
the behavior of the system as a whole given the probability rule
is not unique, but can be expressed in terms of likelihood (Lee
et al. 1990). A propagating automatous system defined in ei-
ther manner is capable of exhibiting spatially irregular wave-
like behavior commonly found in natural phenomena (Hogeweg
1988). In this case, we consider “spatially irregular” as referring
to spatially varying dynamics that are either anisotropic (i.e.,
varying directionally) or nonstationary (i.e., varying location-
ally), or both (e.g., Cressie 1993).

There is a fundamental difference in the construction of
models through the “top-down” approach versus the “bottom-
up” approach (Grimm et al. 2005). Traditionally, bottom-up
approaches (i.e., Lagrangian) to studying ecosystem function
and ecological processes have been used in simulation set-
tings, whereas top-down approaches (i.e., Eulerian) have been
taken using statistical methodology (e.g., Wikle et al. 2001;
Wikle 2003). Both approaches have contributed much to sci-
entific theory and application, although they rarely intermingle.
In what follows in Section 2, we present a bottom-up hierarchi-
cal statistical framework for studying spreading spatiotempo-
ral processes when only binary data are available, using AMBs
with dynamical behavior modeled by cellular automata. Then
in Section 3, we discuss the relationships between these statis-
tical ABMs and various alternatives, such as partial differential
equation models, generalized linear models, and Markov ran-
dom field models.

1.2 Motivating Example: Rabies Epidemics in
Raccoon Populations

Although this article is largely focused on methodological
developments, we feel that a preliminary discussion of a moti-
vating example will help elucidate and justify the specifications
that follow. Therefore, consider as an example, the ongoing ra-
bies epidemic on the east coast of the United States that be-
gan in the mid-1970’s (Nettles et al. 1979; Wheeler and Waller
2008). This epidemic is a natural spatiotemporal process where
binary data are available on a partitioned spatial domain and ex-
hibit irregular spreading behavior. Specifically, space—time data
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documenting the spread of rabies through the raccoon popu-
lation in Connecticut are available in a “time since arrival in
township” format (e.g., Smith et al. 2002); that is, after first ap-
pearing in 1991 in the western townships of Connecticut (those
bordering New York), rabies spread throughout the state over
the subsequent 5-year period.

The data set shown in Figure 1 (Section 2.4) illustrates
the spatiotemporal behavior of rabies epidemic in Connecti-
cut in 1991-1995, during which several long-distance disper-
sal events occurred in addition to anisotropic and nonstation-
ary neighborhood-based dispersal patterns. Smith et al. (2002)
used an agent-based simulation model in the spirit of an au-
tomatous system, but focusing on the temporal domain by char-
acterization of rates of spread from neighboring townships, and
found that such models can be useful for studying this particular
natural phenomenon. Moreover, they allowed for long-distance
dispersal and spatially varying rates of spread between neigh-
boring townships, and found a correlation with environmental
covariates such as proximity of a large river (i.e., the Connecti-
cut River) and human population density.

We feel that the spreading rabies epidemic is an excellent ex-
ample to illustrate the robustness of ABM approaches. Thus the
general models developed in Sections 2.2 and 2.3 are demon-
strated in Section 2.4 to characterize the rabies epidemic from
the same perspective as that of Smith et al. (2002), but in a rigor-
ous probability framework in which inference on the dispersal
parameters can be made from a statistical perspective given the
available data.

2. AGENT-BASED STATISTICAL MODELS
2.1 Agent-Based Dynamics

The agent-based dynamical system known as a cellular au-
tomaton (CA) operates on discrete support and can be used
to model naturally propagating phenomena. In such systems,
a model defining the dynamics of the process can still be for-
mulated with a state—space representation, the primary differ-
ence being that the CA model is not based on a continuous
operator such as the case with differential equation operators;
rather, the propagating operator £, is now defined by a neigh-
borhood N and a set of rules R that map the past state of the
neighborhood to the current state. In this way, an automaton
(i.e., the entire partitioned domain made up of individual au-
tomata or cells) contains numerous interacting components, the
states of which are governed by a set of rules based on the pre-
vious state. These characteristics of automatous systems make
them especially suited to high-performance computing environ-
ments, such as parallel processing and cluster computing set-
tings (Wolfram 1988).

In a deterministic CA, the state at time ¢ for cells 1, ..., m,
is denoted by w; = (u(1, 1), u(2,1), ..., u(m, 1))’ and is mapped
exactly to the previous state (u;—1), so that the state of the au-
tomaton u; is unique given u;_;. More specifically, each ele-
ment u; ; = u(i, t) (the automata) results as a function of a for-
ward operator & and the previous set of neighboring automata,
up; 1 = f{all u;,—; in the neighborhood, NV;, of cell i}. The
function & is often composed of a set of rules, defining the
map from all possible states of the set un; ;,—; to the possible
states of #; ;. An automaton defined with this simple set of rules



238

can exhibit strikingly complex behavior as a dynamical sys-
tem. A deterministic automaton on a two-dimensional spatial
domain can be defined similarly.

CA systems are capable of exhibiting very complex behav-
ior and, from a modeling perspective, are very powerful tools.
The use of deterministic automatons is challenging from a sta-
tistical modeling perspective, however, because the rule space
quickly becomes cumbersome as the size of the neighborhood
increases, the dimensionality of the system increases, and (or)
the support of the automata is extended. For example, a map-
ping function % for a simple first-order neighborhood in one di-
mension has only 23 = 8 possible neighborhood structures; this
leads to 2@V = 256 possible rules for the binary automaton.
In general, for a neighborhood of dimension ds, there will be
Z(ZdN ) possible rules. Thus, for a two-dimensional spatial do-
main, with a binary automaton and Queen’s neighborhood (i.e.,
dy = 9), the number of possible rules is 1.34 x 10'%4, If the
rule is treated as an unknown set of parameters, then, in terms
of estimation, we would need to search its support for rules that
capture the observed spatiotemporal behavior of the system un-
der study. Unfortunately, searching the space of rules for CA
systems with large neighborhoods is not feasible; thus it is nec-
essary to either simplify the rule space using assumptions or
take an alternative approach.

A stochastic or probabilistic automata can be thought of as
a random variable conditioned on the neighborhood structure
at the previous time. For example, the evolution equation of a
probabilistic automata can be written as

uilapn; 1 ~ [ui,t|h(uj\/,-,t—l)]’ (H

whereas the evolution equation of a deterministic automata is
written as

i =h(up; ). 2

In the case of the probabilistic automata, the square bracket
notation [-] refers to a probability distribution. For the bi-
nary automaton (i.e., u;; € {0, 1}), the probability distribu-
tion [u; (|h(ups; ,—1)] could be a Bernoulli distribution with the
Bernoulli probability a function of the neighborhood at the pre-
vious time and some parameters. Note that the specification in
(1) differs from Gaussian state—space models only in that the
source of variability in the probabilistic CA (1) is more general
than the additive Gaussian error term in a probabilistic partial
differential equation (e.g., Hooten and Wikle 2008).

The advantage of the probabilistic specification (1) over the
deterministic specification (2) is that from a statistical perspec-
tive, it is easier to search the space of rules in terms of proba-
bility than it would be to do so exactly. The disadvantage is that
the map from the previous state to the current state is no longer
unique. Probabilistic CA models are sometimes referred to as
interacting particle systems (Turchin 1998) and often are con-
sidered in continuous time (i.e., asynchronous updating) to aid
in the investigation of their theoretical properties (Durrett and
Levin 1994). In what follows, we concentrate on the discrete
time situation (i.e., synchronous updating) for computational
reasons, although in Section 3.1 we show that scaling up from
our agent-based Lagrangian model leads to an Eulerian model
based on partial differential equations.
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2.2 Anisotropic Stationary Dispersal on Homogeneous
Discrete Domains

One approach to modeling a spatiotemporal process such
as the rabies process discussed in Section 1.2 is to estimate
the dynamics of spread in terms of probability of presence.
That is, assume that the phenomenon in question is present
(vi,r = 1) at the spatial location or cell i and time ¢ with prob-
ability 6;, and absent (y;; = 0) with probability 1 — 6; ;. (To
simplify notation, we use only one index to refer to a loca-
tion in two-dimensional space.) This is a common form for the
classes of models known as occurrence and occupancy models
(e.g., MacKenzie et al. 2002; MacKenzie et al. 2003; Royle and
Dorazio 2008). A more convenient specification for this data
model is y; ;|6; ; ~ Bern(6; ;). Now, rather than model the trans-
formed probability (as either a logit or probit transform) at the
next level in the hierarchy, consider the following specification
for 6; ;:

Ot =Yiu1® + (L =i (In;,_ )Pid+ (1= I, )Y 3)

for all i and ¢ in the spatiotemporal support of the data, and

where
L if Y yu1>0
_ JjeN;
0, if ) y1=0
JjeN;
and, JV; is the spatial neighborhood of area i. In a regularly grid-

ded two-dimensional domain with a Queen’s neighborhood, N;
can be depicted as

ING,

Nj=i—4 Nj=i-1 Nj=it+2 N1 Ns+ Ny
Ni=|Ni=i3 N= Ni=iy3 |= |:N2 Ns N8} G
Nj=i—2 Nj=it1 Nj=it4 N3 Ne No

Note that in (3), because ; includes cell i, each term in the sum
represents probabilities for following three disjoint situations:

1. yis—1: Celliis occupied at time ¢ — 1.

2. (1 =yir—1)Un;,_,): At least one neighbor of cell i is oc-
cupied at time ¢ — 1, but cell i itself is not occupied.

3.1-1 Nt No cell in AV is occupied at time ¢ — 1 (includ-
ing cell 7).

In (3), the probability ¢ corresponds to persistence of the phe-
nomena; that is, once the phenomena is present in cell i, the
probability that it will be present at the next time step is ¢.
The probability ¥ corresponds to out-of-neighborhood disper-
sal; that is, the phenomena will occur in an area outside of those
occupied with probability 1. This is a somewhat naive specifi-
cation for what is referred to in the ecological literature as long-
distance dispersal (e.g., Clark 2003). In some cases it would be
more realistic to let ¢ vary with distance from source or other
environmental covariates. Without appropriate a priori knowl-
edge of the mechanisms of long-distance dispersal and data to
support this notion, a naive specification [such as in (3)] at least
allows for its effect.

The probability p;, is the component of the process that
handles the neighborhood-based dispersal in this model. When
building our agent-based statistical model, many specifications
for p;; are possible depending on the spatial domain, level of
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realistic detail desired in the model, and estimability of p; ;. In
this case, let

Piv=1—exp((yp;.—1) log — p)), Q)

where, yaq 1 = [Ny —15 - - ,yNg,t_l]/ is a vector of the data
(i.e., 1s and Os) corresponding to the neighborhood of the ith
cell. The probabilities in p are [p = (Pny, PNg. - - - - PN;)' ], Where
pn; refers to the transition probability from cell i to its jth neigh-
bor and are constant over the spatial domain. This specification
allows for the probability of presence at time ¢, in an area that
has been previously unoccupied, to be the union of transition
probabilities from occupied neighbors. To show this result [i.e.,
(5)], denote the event that the phenomenon propagates from
neighboring area N; into area i at time 7 as event Ey, ;; then
the probability that area i becomes occupied at time ¢, given its
neighborhood at time 7 — 1, is

P(U EN;.,; for all occupied neighbors j)
J

=1- P(ﬂ EX/,-,ﬁ for all occupied neighbors j)
J

=1—HP( Nr)

J

=1- H(l —P(En,.1)).
J

where the assumption is made that the phenomenon moves from
neighboring area j into area i independently of the phenomenon
moving from neighbor k into area i at time ¢ for all occupied
areas j and k in the neighborhood of area i. This assumption
of independent propagation, conditional on the parameters p, is
strong and implies that phenomena entering a new area from
two (or more) neighboring areas will not interact as they do
so. This assumption does, however, allow the analytical calcu-
lation of p; ; in the absence of significant information about the
numerous possible intersections of events (Ey; /) that would be
required to calculate the probability of the union.

Assuming that the transition probabilities in p sum to 1 and
that the propagating process can be modeled by stationary dy-
namics, a Dirichlet probability model for p is the natural choice
[i.e., pla ~ Dir(a)]. The Dirichlet parameters (a) can then be
modeled as log(a) ~ N(u,, X;). The Dirichlet model here is
what sets these models apart from generalized linear models. It
becomes vital later, in Section 2.3, when we connect the direc-
tionally varying dispersal probabilities to underlying environ-
mental gradients.

It is important to point out two consequences concerning the
effect of the probabilities, p, on the propagating phenomenon:
First, this specification assumes that the neighborhood-based
dispersal of the process is dynamically anisotropic but station-
ary; that is, though the process can spread with different prob-
abilities in different directions, these probabilities remain ho-
mogeneous over the entire spatial domain. The addition of per-
sistence and nonneighborhood dispersal terms allows for more
realistic behavior. A simpler form of dispersal would have a
phenomena propagating to all neighboring areas with an equal
probability. Second, in the case with a regularly gridded spatial
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domain and Queen’s neighborhood, allowing the dimension of
p (i.e., dar) to be eight assumes that the propagating phenomena
will indeed propagate to a neighboring area. Letting dys =9 in
this setting allows the phenomena to remain in the current area
with some probability; however, because the probability of per-
sistence is being modeled in 6 by ¢, the addition of p; seems
redundant. It is important to note that in this setting, p; will not
affect the persistence, due to the (y;;,—1¢) term in (3), but it
will affect the overall rate of dispersal. A larger p; will slow the
propagating phenomena without affecting the anisotropy of the
process, thus providing the model with additional flexibility.

In a Bayesian implementation of the model, priors for ¢
and ¥ can be specified in terms of Beta distributions and re-
sult in conjugate full-conditional distributions. Thus the priors
[¢] =Beta(ay, By) and [] = Beta(ay , By ), as well as the hy-
perpriors oy, By, ay, By, My, and X, = o*azI, result in the joint
posterior for this model,

[p.a, ¢, y|{yisfort=1,...,Tandi=1,...,m}]

T m
o [ [] [iel6is(p. &, ¥)liplallaligliy].  (6)
t=1i=1
It can be shown (see the Appendix for details) that the full-
conditional distributions for the model parameters, required for
implementation in a Markov chain Monte Carlo (MCMC) set-
ting, are

T T
¢|.~Beta<z Z y:',t+0l¢,z Z (l—yi,z)+,3¢),

1=2ieAy,_, 1=2ieAy,_,

T T
1//|~~Beta<2 D vty Y (l—yi,1)+ﬁw>,

=2 ieAy, , =2 ieAy,_,

T
pl- ~ [pl-1oc[ [ [ ] BemnGislpi) x Dir(pla),

1=2ic Ay,
al- ~ [a]-] o« Dir(pla) x N(log(a)|pt,, o21),
where the A are sets of indexes defined by
Ag,_, = {jlVj such that y; ;1 = 1},
Ay, = {jIVjsuchthat (1 —Ip;, ) =1},
Ap, = |jIVj such that (1 —y;,,—1)(In;, ) = 1}

In cases where y; ; is not observed for all i in the spatial do-
main, the posterior predictive distribution can be found for the
missing data (¥,) using composition sampling,

[yt'ytth]Z//[yt|p’ a7¢’ 1//]

x [p,a, ¢, ¥y, Vtldpdade dir.

2.3 Anisotropic Nonstationary Dispersal on
Heterogeneous Discrete Domains

The model presented in the previous section is very robust in
that it allows for anisotropic dynamic behavior in the process
that is capable of dispersing at varying rates. Like the matrix
model used by Hooten et al. (2007), it relies heavily on the
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dynamics of the process to model the data. From a scientific
perspective, it is often of interest to make inference about the
propagating nature of the process not only in the dynamics, but
also in the structure regarding the likely heterogeneous envi-
ronment. In the situation where a phenomenon is propagating
in space over time, it is reasonable to think that certain areas of
the spatial domain are more suitable than others. The ecological
literature refers to this notion as “habitat suitability” or “habitat
preference,” depending on the residence of the phenomenon in
question relative to the surrounding environment (e.g., Hirzel
et al. 2002). From a dynamic modeling perspective, it seems
natural to think that a phenomenon will most likely move from
areas of undesirable habitat to areas of desirable habitat. Note
that the term “habitat” is used very generally here and in regard
to the successful propagation of the phenomenon under study.

Distinguishing areas of suitable or desirable habitat from un-
suitable areas is a long-studied subject in ecology (Manly et
al. 2002). One of the simplest and most common approaches
to mapping habitat suitability is to find the associations be-
tween organism abundance (or presence) and environmental
covariates (e.g., Hooten, Larsen, and Wikle 2003; Gelfand et
al. 2006). Due to limitations imposed through data collection
schemes, such analyses are often focused in a static temporal
domain over space. The study of phenomena that are actively
propagating into new areas or reoccupying previous areas must
involve some dynamic component; the challenge is in account-
ing for covariate effects on the dynamics.

In what follows, we begin by specifying a model for suitabil-
ity (herein “suitability” and “preference” are used interchange-
ably) and then connect it to the transition probabilities in our
neighborhood-based dispersal ABM. First, let the suitability
of a spatial domain, partitioned into m areas, be denoted by
a = [ay,as,...,q,] . Scientifically, a large portion of the vari-
ability in « is often thought to be explained by a set of environ-
mental covariates, X, that may be linked to & by some function
f, which could be parametric or semiparametric and possibly
could contain correlated and (or) nonstationary error. Assum-
ing a linear function f and Gaussian error &, the standard linear
model is

a=Xp +e. )

Assuming that the error contains residual spatial dependence,
and letting € ~ N(0, X,), where X, = a(f exp(—%), and D
is an m x m matrix of Euclidean distances between area cen-
troids, it is then possible to estimate the residual spatial struc-
ture as well as the covariate effects () on habitat suitability.
Note that if warranted, other suitable spatial covariance mod-
els could be used to define X, or, alternatively, a Markov ran-
dom field model (rather than a geostatistical model) could be
used to accommodate second-order spatial structure in ¢. In
this specification (7), each coefficient 8; positively associates
the jth covariate with suitability and thus increases the proba-
bility of movement into more suitable cells from less suitable
cells.

Because the propagating phenomena are attracted to areas of
higher suitability, an attraction model is useful for explaining
the probability of movement. One such model is based on par-
tial differential equations and can be used in this context. Con-
sider the spatial field, &, exhibiting the preferred habitat of an
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organism. Given that the phenomena is present at location i, the
probability that it will propagate to location j depends, at least
in part, on the quality of habitat relative to other surrounding
habitats. The continuous version of this type of attraction can
be represented as a partial differential equation,

~ do

A_VS(“)_BS’ ®)
where the partial derivative of the environmental preference
field, &, is taken with regard to space (S) and thus the gradi-
ent operator (Vg) will be infinite-dimensional in the sense that
there will be a different tangent for every directional derivative.
In a discrete context however, the gradient in (8) can be approx-
imated by a finite number of directional difference equations. In
the specific case of the regular two-dimensional gridded spatial
domain and Queen’s neighborhood, A is a matrix, and the direc-
tional derivative at location i can be approximated by a vector
of differences a;, where A = [a;, ..., a,,]. Each element of a;
is then a function of the spatial field of habitat suitability (),

. ani—
ail = ——7F—,
dn,,i
~ QN,,i — U
a2 = d s
5[ — N»,i
- ONg,i — &
aj9 = s
dpy,i

where Nj, i refers to the jth neighbor of cell i in the Queen’s
neighborhood [A; in (4)] and de,,- = d(Nj, i) is the Euclidean
distance between the centroids of cell i and its jth neighboring
cell.

The utility of A is as a likelihood of movement from one area
to another for a propagating phenomena. A transformation of A
allows for its inclusion as parameters in a model similar to that
of Section 2.2. Because the transition probabilities, p, are the
focal point of the neighborhood-based dynamics in this class of
models, allowing them to depend hierarchically on the approx-
imate gradients A is critical to the utilization of covariate infor-
mation and nonstationary anisotropic dynamics in the process.
Therefore, let A be a function of the directional gradient fields
inA [e.g., A= g(z&)] such that they meet the requirements for
hyperparameters of a Dirichlet distribution (i.e., positive, finite
support). The choice of function g is subjective and may be
somewhat arbitrary. In this case, we use the probit or standard
normal cdf function that maps a set of real numbers to the set
of positive real numbers, a; = g(a;) = ®(a;). A more flexible
form of such a transformation is one in which the parameters A
are proportional only to the transforming function of A,

a; =g(a) =c® (@), €))

where c is a multiplicative scalar modeled at a lower level (or
user-defined, serving as a tuning parameter that could be esti-
mated in a similar fashion as in Box—Cox transformations or
cross-validation). Letting the vector of transition probabilities
vary for each spatial location i and depend on the parame-
ters a; through the Dirichlet distribution gives the probability
model that characterizes the neighborhood-based dynamics of
the propagating phenomena,

pila; ~Dir(a;) fori=1,...,m. (10)
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Recall, from (3), that the actual probability of presence in
cell i when cell i was previously unoccupied and at least one
neighbor at the previous time was occupied is dictated by the
parameter p;,. The calculation of p;, in the stationary model
was fairly straightforward, because p did not vary with space.
Using the same data model from the previous section [i.e.,
vit6i.r ~ Bern(6; ;)] and specification for the probability of
presence (6; ;) as in (3), a different function mapping p; to p;
must be used. For this nonstationary model, let p; ; be defined
as

pie=1—exp((ynr.-1) log(1—pp;)). (11)

where ya;;—1 is defined as in the previous section, py; =
[PNg,is PNgis - - - ,Pn,.il s and PN;.i refers to the transition prob-
ability from the jth neighboring cell into cell i. In this way,
the probability of presence in cell i at the current time is the
probability of the unions of transitions into cell i from occupied
neighboring cells at the previous time.

To complete the hierarchical model, let 8 ~ N([Lﬂ, X5),
where pg is specified as a hyperprior and X is modeled at a

lower level [i.e., EE] ~ Wish((vS,g)’l, v)] to handle any mul-
ticollinearity between covariates. Let the persistence and non-
neighborhood-based probability of presence be defined as be-
fore, ¢ ~ Beta(ay, By) and vy ~ Beta(ay, By ). Persistence and
nonneighborhood dispersal also could be generalized so that
they vary in space or time; the simplest approach would be to
linearly link the probit or logit of ¢ and ¥ to a set of spatial or
temporal covariates.

The spatial covariance parameters on the habitat prefer-
ence spatial field, 03 and 6,, can be modeled in the con-
ventional manner where a(f ~ InvGamma(q,r) and 6, ~
Gamma(ag, fy). Identifying the spatial range parameter, 6,
may be difficult if there is minimal residual spatial structure in
the a process. In addition, due to the formulation of the model,
a large 6, (implying greater spatial structure) may be counter-
productive considering that the model is trying to find sharp
differences between neighboring cells (i.e., due to the direc-
tional gradient fields in A).

The posterior distribution of interest can now be written as

[pl»'--»pmaals~~~vams¢v waﬂ»zﬂsagaeab}i,lav’.st]

T m m
o [ [T Tviop, ¢, v)ii [ Jpilace)i]

=1i=1 i=1
x [a|B. 0. O 1[B1Zp1[Z 411 1[0 1160 ].

The full-conditional distributions for the model parameters nec-
essary for implementation of this nonstationary anisotropic
model can be found in a similar fashion as those in the pre-
vious section. Details of the derivation and implementation are
provided in the Appendix.

~

2.4 Application: Rabies Epidemic in
Raccoon Populations

This section presents results and relevant discussion pertain-
ing to the statistical ABM model fits using the Connecticut ra-
bies data set as an example (Figure 1).

The rabies data set introduced in Section 1.2 was converted
to a gridded areal unit format from a township areal unit format
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Figure 1. Presence or absence of rabies in raccoon populations in
Connecticut over 48 regularly spaced time periods beginning in 1991
(top left) and ending in 1995 (bottom right). Black cells denote the
presence of rabies, and white cells denote the absence of rabies. For
reference, the upper left edge of the images is New York state, and the
lower right portion of the images (with diagonal shading) is the Long
Island Sound.

(as in Smith et al. 2002) for use with the proposed ABMs. The
models proposed were presented with sufficient generality to
model the data in their original format, and although such gen-
eralizations are the focus of ongoing research, one could foresee
letting the neighborhood-based dispersal probability vectors (p)
vary in dimension over space. This would allow cells to have
fewer or greater neighbors depending on their spatial arrange-
ment. In addition, one could account for the effect of size and
shape of neighbors on dispersal by weighting those dispersal
probabilities appropriately in a fashion similar to that in which
proximity matrixes are specified in spatial autoregressive mod-
els (e.g., Schabenberger and Gotway 2005, chap. 6).

With regard to the persistence of the process, we note that
epidemic behavior is often characterized by a travelling epi-
demic wave in which, after infection of the local population,
local extinction occurs and the propagating disease, having no
more hosts in that area, subsides. To effectively capture the be-
havior in such cases, the persistence term (¢) becomes criti-
cal. In the case of the rabies data, without knowledge of subsi-
dence, the data were transformed such that each infected area
was assumed to persist. In this case, with rabies in a wild animal
population in which the disease spread readily and was largely
unmanaged at the time of data collection, the assumption of
persistence is not unreasonable; however, such an assumption
would not be appropriate in all epidemiologic situations and, in
this case, over longer periods could be directly linked to reme-
diation measures such as vaccination baits (Slate et al. 2005).
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In either event, the persistence term (¢) should accommodate
differing levels of dispersal.

The models from Sections 2.2 and 2.3 were implemented us-
ing MCMC via Gibbs and Metropolis—Hastings updates. The
algorithms took on the order of hours to complete (on a Linux
workstation with 3-GHz processors) where convergence in the
MCMC samples was reached relatively quickly (i.e., <1000 it-
erations), and the remaining 19,000 realizations were thinned
and then used to calculate posterior statistics. In what follows,
we present only those results pertaining to the more general of
the two models (i.e., the nonstationary anisotropic model) for
the sake of space; however, we do provide details on the model
comparison between the two fits to assess whether the more
complicated model is warranted in this case.

2.4.1 Nonstationary Model Fit. The posterior mean prop-
agation of probability of presence (6;;) for the nonstationary
model appears similar to that of the stationary model (Figure 2).
However, the posterior standard deviation (Figure 3) for prob-
ability of presence (6; ;) indicates that the uncertainty in areas
without data remains, but the uncertainty corresponding to the
wave front of the epidemic is less than that resulting from the
stationary model. This suggests that even though the pattern of
uncertainty is similar, the nonstationary model more precisely
estimates the neighborhood-based component of the probability
of presence (6; ;).

Figure 4 shows the covariates (X) used in fitting the aniso-
tropic nonstationary model from Section 2.3 to the Connecticut
rabies data set given in Figure 1. All of the covariates used in
this analysis were binary, with the black regions in Figure 4
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Figure 2. Posterior mean for probability of presence ([6; ;|y]) from
nonstationary model in the same sequence as the data in Figure 1. Val-
ues of intensity range between O (white) and 1 (black).
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Figure 3. Posterior standard deviation for probability of presence
([0,¢ly]) from the nonstationary model in the same sequence as the
data in Figure 1. Values of intensity range between 0 (white) and 1
(black).

corresponding to the occurrence of the environmental charac-
teristic. Specifically, the X; and X, covariates correspond to the
west and east sides of the Connecticut River, respectively. The
X3 covariate corresponds to land area in Connecticut (and some
in New York on the western edge of the maps), which is not ad-
jacent to the Connecticut River. The X4 covariate corresponds to
the Connecticut coastline where the state meets the Long Island
Sound (diagonally shaded) in the bottom-right portion of the

X4 Xs
West River Non River
|
|
|
Xa Xe
East River Coastline

Figure 4. The indicator covariates used in the nonstationary model.
x| and xp represent the west and east sides of the Connecticut River,
respectively, while x3 represents all land area not adjacent to the Con-
necticut River and x4 represents the Connecticut coastline.
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Figure 5. Posterior mean of [P|y] from the nonstationary model
with respect to the Queen’s neighborhood arrangement. The jth map
refers to the posterior mean spatial field of the neighborhood-based
transition probabilities in the jth direction. The small stars correspond
to the column referenced in Section 2.4.1.

figures. A covariate corresponding to human population density
may prove useful for future analyses, although it is important to
note that major population centers in Connecticut coincide with
the Connecticut River (X| and X») and coastline (X4) covariates
and thus is implicitly accounted for in X.

The posterior distributions of the neighborhood-based dis-
persal for the anisotropic nonstationary model could technically
be displayed separately; however, they would have to be shown
for each spatial location i, because p; now varies in space. In-
stead, consider the posterior mean of each spatial field of the
neighborhood-based dispersal probabilities in Figure 5. The jth
map in Figure 5 corresponds to the intensity in probability of
the phenomenon (rabies in this case) dispersing in that direc-
tion, where the center plot (i.e., j = 5) is the probability of
nondispersal. For example, the map in Figure 5 labeled “3” cor-
responds to the probability of neighborhood-based dispersal in

(@) E(etly)

1.6

0.69

-0.18

-1.1

-1.9

-2.8
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the southwest direction given that the phenomenon is currently
in the grid cell of interest.

The map of habitat preference () shown in Figure 6(a) cor-
responds to areas (shown as darker grid cells) in which the ra-
bies epidemic spreads the fastest in the direction of more suit-
able habitat. The posterior standard deviation corresponding to
habitat preference, shown in Figure 6(b), shows the location of
areas of high uncertainty regarding habitat preference over the
spatial domain. The posterior distributions for the covariate ef-
fect parameters () are provided in Figure 7 and, when premul-
tiplied by the covariates (X), correspond to the mean of habitat
preference (o).

The maps corresponding to the spatial fields of the direc-
tional neighborhood-based dispersal parameters (p;) in Figure 5
indicate that there are indeed differences in directional disper-
sal depending on location. For example, in map 1 (northwest
direction) and map 3 (southwest direction) of Figure 5, there is
a distinct column (indicated by a small star in Figures 5 and 6)
of low dispersal corresponding to the west side of the Connecti-
cut River covariate (X in Figure 4). From Figure 6(a), it is ev-
ident that the Connecticut river is an area of high habitat pref-
erence; this has been discussed in previous studies (e.g., Smith
et al. 2002) and also is substantiated by the posterior distrib-
ution of B in Figure 7, where the river coefficients exceed 0.
Thus, as the rabies epidemic spreads from the western region
of Connecticut, it exhibits a different pattern of neighborhood-
based dispersal than that seen in the other areas. Specifically, it
shows a very low probability of dispersal in the northwest and
southwest directions as it approaches the western edge of the
Connecticut River, and a higher probability of dispersal in the
north, south, northeast, and southeast directions. These results
are generally in line with previous analyses of these data (e.g.,
Smith et al. 2002; Waller and Gotway 2004, chap. 9).

The posterior distributions for persistence (¢) and nonneigh-
borhood dispersal (y) for the anisotropic nonstationary model
were very similar to those of the stationary model. Specifically,
the posterior probability of persistence resulting from fitting
the nonstationary model is close to 1, suggesting that the ra-
bies epidemic in Connecticut was very persistent during the pe-
riod when these data were collected. The ramifications of this
inference were discussed earlier. The posterior mean probabil-
ity of nonneighborhood dispersal is estimated to be near 0.01,

(b) VV(aly)
0.69
m =
0.34
0.22
*
0.1

Figure 6. Posterior mean and standard deviation of habitat preference (er). Large values in the E(at|y) correspond to areas of higher suitability.

The small star corresponds to the column referenced in Section 2.4.1.
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posterior covariate effects
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Figure 7. Posterior distributions of the covariate effects (), cor-
responding to the covariates in Figure 4. Positive §; corresponds to
a larger positive influence of the jth covariate on suitability «. This in
turn will increase the probability of movement into a more suitable cell
from a less suitable cell. x| and X, represent the west and east sides of
the Connecticut River, respectively, while x3 represents all land area
not adjacent to the Connecticut River and x4 represents the Connecti-
cut coastline.

suggesting a 1% chance of long-distance rabies dispersal for
nonneighboring areas.

The posterior mean of the scale parameter (a(f) correspond-
ing to the spatial covariance of & was found to be 0.489 with a
posterior standard deviation of 0.068, compared with the prior
mean of 1 and standard deviation of 4. The posterior distrib-
ution of the spatial range parameter (,) in the covariance of
a was found to be very close to 0 (suggesting very little, if
any, residual spatial structure in the habitat preference covari-
ance) and thus was removed from the analysis. Note that the
full-conditional distributions for all other parameters retain the
same form, only with 6, set to 0.

Although we have only discussed the results from fitting the
nonstationary model here, we used deviance information crite-
rion (DIC) as a form of model comparison for the stationary and
nonstationary models. In this case the DIC provides a measure
of how well the top-level parameters in the hierarchy fit the data
(Gelman et al. 2004). Here the top-level parameters (i.e., p, ¢,
and ) are the most important because they provide insight into
the dynamics of dispersal in spreading phenomena.

For the more complex anisotropic nonstationary model, the
DIC was calculated to be 702.6, and the effective number of
parameters was estimated as 1.92. In comparison, the effective
number of parameters for the simpler stationary model was es-
timated to be 36.5, whereas the DIC value was 723.9. These re-
sults indicate that the nonstationary model, with a lower DIC, is
the better-fitting model. On the other hand, parsimony is an im-
portant factor in model comparison, so there certainly is value
in the stationary model, because it is more computationally ef-
ficient and retains more degrees of freedom. The nonstationary
model, like the stationary model, has a dynamical component,
but also has an explicit connection to scientifically meaningful
environmental covariates and thus is capable of fitting the data
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better while performing inference on the connection between
different types of dispersal and the heterogeneous environment
over which the epidemic is dispersing.

3. COMPARISON WITH OTHER METHODS
3.1 Partial Differential Equation Models

The methods we present here for modeling spatiotemporal
dynamic processes through an agent-based framework rely, at
least in part, on short distance movement as characterized by a
stochastic cellular automaton. That is, we are able to account for
complicated spatiotemporal behavior in the dynamic process as
a whole by starting with an agent-based construction founded
on first principles. In this section we show that this underly-
ing first-principle specification leads to a classical advection-
diffusion partial differential equation when scaling up from a
Lagrangian model to an Eulerian model.

For simplicity, consider the simple two-dimensional situa-
tion in which an organism or epidemic resides in a given cell
and can move to any of the first-order neighboring cells or
stay where it is with some probability (i.e., Rook’s neighbor-
hood). Now we seek a realistic model that can explain both
nonstationary and anisotropic dynamical behavior. We let these
movement probabilities [p(s1, s2) = {p(s1 — As, 52), p(s1, 52 +
As), p(s1, $2), p(s1, 52 — As), p(s1 + As, sp) }] vary in both di-
rection and location; however, they will remain independent
from the dynamic process itself. This latter assumption is not
necessary, but will simplify the derivation of our resulting
Eulerian differential equation.

Following Turchin (1998), we first create a Lagrangian
recurrence equation to describe our two-dimensional agent-
based system in terms of probability of presence or occupancy,
p(s1, 52, 1), at cell location (s, s7) and time ¢,

p(s1,s2,1) = p(s1, 52)p(s1, 52,1 — A1)
+ p(s1 + As, s2)p(s1 — As, s2,t — At)
+ p(s1, 52 — As)p(sy, 52 + As, t — At)
+ p(s1, 52 + As)p(s1, 520 — As, t — At)

+p(s1 — As, s20)p(s1 + As, s2,t — Ap),  (12)

where As and At represent the distance between first-order
neighbors and time steps, respectively. The recurrence equa-
tion (12) allows the probability of presence in a cell at the
current time to be a function of the probability of movement
from potentially occupied neighboring cells at the previous
time.

Because (12) involves terms depending on s1 = As, s £ As,
and r — At, to arrive at a differential model, we need to extract
them. This can be done by approximating p with a truncated
Taylor series, then substituting the expansion approximations
into the recurrence equation (12) and combining like terms to
yield the following partial differential model:

ap ap
0= —At—p + As —p(p(sl — As, 52) — p(s1 + As, 52))
Jat a8

95
+ 8—:;(19@1,52 — As) —p(s1, 52 + AS)))
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As? (3D
+— (p(s1 — As, 52) + p(s1 + As, 52))
2 8S1 8S1

2—

+ ((s1, 52 — As) +p(s1, 52+ AS))), 13)

057 052
where all p = p(sy, 52, ). Now (13) simplifies to a partial dif-
ferential equation (PDE) of the form

apsy  3*pDy  3*pD
_P2+P1+P2’ (14)
352 351 3S1 352 352

op _ 0pd
ar s

and is valid as long as the changes in time and space are sent
to 0 in such a way that As/Ar and As?/At are constant. This
can be considered either a grid with cells becoming increasingly
smaller and monitored at increasingly smaller increments or as
cell sizes and monitoring stay constant but the spatial and tem-
poral extents of the grid become increasingly large. Although
admittedly, this limiting situation is somewhat contrived, it still
provides a theoretical connection between the agent-based La-
grangian models discussed herein with the statistical implemen-
tation of Eulerian PDE models in other previous studies (e.g.,
Wikle 2003; Hooten and Wikle 2008). The particular Eulerian
model in (14) contains both drift (§) and dispersion (D) terms
that are functions of the movement probabilities p and can vary
by location.

An important note about the foregoing derivation is that if
one retains additional higher-order terms in the Taylor series ap-
proximation, then more complex differential models for p will
result (Turchin 1998). That is, even though agent-based models
can be used to motivate the use of partial differential equations
to describe natural dynamical processes, the Lagrangian frame-
work is inherently less constrained. We see this as an advantage
of using agent-based models, especially in situations with bi-
nary data on discrete spatial support and potentially nonstation-
ary and anisotropic dynamics.

3.2 Generalized Linear and Markov Random
Field Models

Another common class of models that can be used for binary
data on discrete spatiotemporal support are generalized linear
models (GLMs). Recall the likelihood specification that we in-
troduced in Section 2.2: y; ;|6; ; ~ Bern(6; ;). Now, using a sim-
pler formulation that considers dynamics in time only, specify
a model for 6; ; on the logit scale rather than on the probability
scale as in (3). In the setting of occupancy modeling, Royle and
Dorazio (2008) showed that an alternative specification for the
Bernoulli success probability is 7; ; = P(y;; = 1]yi/—1), where
logit(r; ;) = a; + byyi—1. The structure of this latter equation
yields a temporal autologistic model in which a; and b, are
reparameterizations of the parameters in the probability scale
model. In this case, the logit transform serves as the link func-
tion in a GLM specification.

To accommodate static spatial structure in such a model, one
also may consider the following spatial autologistic formula-
tion: logit(s; ) = a; + bryi—1 + Bei Zje/\/} yj.i» where, 1/c¢; is
the cardinality of NV; (Royle and Dorazio 2008). Now we have
an auto-logistic model for occupancy that contains both time
and space dependencies but is not spatiotemporally dynamic;
that is, occupancy at location i during the current time depends
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only on neighboring occupancy at the current time and occu-
pancy in the same location at the previous time. Zhu, Huang,
and Wu (2005) also implemented a version of this model and
discussed some of the difficulties, including well-posedness is-
sues that result from potential nonstationarity in the spatial
structure. A generalization would be to allow neighboring lo-
cations at the previous time to affect the occupancy at the cur-
rent time at location i. In this vein, Royle and Dorazio (2008)
suggested formulations for dynamic survival and colonization
models sans implementation.

In both cases (i.e., Zhu, Huang, and Wu 2005 and Royle
and Dorazio 2008), the covariates are accommodated in a sta-
tic fashion; that is, they are linked directly to y; ;. As described
in Section 2.3, we are interested in characterizing directionally
varying and spatially heterogeneous dynamics; thus we linked
the directional transition probabilities in the neighborhood-
based dispersal model to the directional derivatives of the suit-
ability surface, which in turn depends on the covariates and,
potentially, on additional spatial structure via & in (7). It could
be argued that the additional spatial structure induced through
& makes the ABM a more robust model, although in the case of
the rabies example, we found no evidence of additional struc-
ture beyond that provided by the covariates. Our ABM specifi-
cation also allows for potential long-distance dispersal and per-
sistence that may be unrelated to the covariates. We believe that
duplicating these features of our models would be challenging
using autologistic GLM specifications, although new develop-
ments in autoregressive modeling, such as those described by
Rue, Martino, and Chopin (2009), may such models more con-
venient to specify and fit in the future.

4. CONCLUSION

In this work, we have developed statistical ABMs for model-
ing a spreading phenomena over a partitioned landscape, given
only binary data, and presented various generalizations along
with connections to alternative methods. To illustrate the util-
ity of these methods, we applied the models to the rabies epi-
demic in raccoon populations in Connecticut in 1991-1995.
Both models take a probabilistic cellular automata approach.
The first model is specified so that the focus is on estimat-
ing the dynamics governing the process in terms of stationary
neighborhood-based dispersal. The second model uses environ-
mental covariates to help determine how patterns of dispersal
might differ given heterogeneous environmental conditions.

Although the simpler model (Section 2.2) assumes station-
ary dynamics, it can accommodate anisotropic dispersal be-
havior based on transition probabilities into neighboring ar-
eas. The generalized ABM, presented in Section 2.3, allows for
anisotropic and nonstationary dynamics while accounting for
associations between dispersal and environmental factors. Both
models allow for the possibility of long-distance dispersal and
varying levels of persistence, although in the rabies example the
persistence parameter is not informative.

The general statistical agent-based modeling framework pre-
sented here could be extended to address other issues as well.
For example, the assumption of perfect detection of the process
under study is made in the specification of the model likeli-
hood. Specifically, for the application presented here, there may
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be some probability associated with the actual detection of ra-
bies in a given area, suggesting that perhaps rabies is present in
an area earlier than it was recorded. One approach to addressing
such a situation is to allow for a detection probability parameter
in the data model and then use a latent process model to model
the “true” presence or absence of rabies in an area. Royle and
Dorazio (2008) and Royle and Kery (2007) took this approach
in a logit-transformed framework and were able to make use
of repeated measurements to estimate such parameters. In the
situation considered here, repeated measurements are not avail-
able, and with no other means to estimate detectability, such
methods are futile. It could be argued, however, that by mod-
eling the probability of presence in the manner adopted here,
the posterior distribution of 6; ; (e.g., Figure 2) absorbs the de-
tection probability in 6;; at locations where rabies has yet to
be observed. The framework presented here also could be ex-
tended to accommodate data with count support by extending
the data model from a Bernoulli to a binomial, negative bino-
mial, or Poisson.

Overall, the methods presented here place agent-based sim-
ulation models, such as those presented by Smith et al. (2002),
into a rigorous statistical framework in which the parameters
governing dispersal can be estimated and inference made about
the effects of environmental covariates on dispersal. Further-
more, these methods also provide an additional way to study
resource selection in terms of characterizing important factors
governing the spread of epidemics (e.g., river corridors, shore-
lines, population centers) and could ultimately be used in pol-
icy making and management decisions. In fact, Hooten, John-
son, and Lowry (2010) discussed how similar approaches can
be taken to connect individual-based models for animal move-
ment to heterogeneous landscape information. Such individual-
based models still fall under the ABM umbrella where, instead
of expressing the agent in terms of an areal reporting unit, the
animal itself is considered an agent. These models can be useful
in linking individual behavior to environmental features as well
as other individuals for the purposes of studying disease trans-
mission. From a broader perspective, the statistical ABM allows
for the specification of these formal linkages and the estimation
of key components controlling the process under study.

APPENDIX A: FULL-CONDITIONALS

In the anisotropic stationary model proposed in Section 2.2, the full-
conditional distributions were reported without proof. Consider now
the derivation of [¢]-]:

T
(¢l oc [ [] Bemnislo@)i) x Beta(ag, Bg)
1=2ie Ay, _,

T
o [l_[ [T ewiya- 9(¢>,~,,>1—>’f»'}¢%—1(1 —¢)fo!

=2 ie'Ad’z—l

T
x [l_[ [T #wa —¢)1‘>’f~f}¢“¢—1(1 —p)fe!
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T T
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x ¢ (1-¢)
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where the index set Ag,_, is defined as in Section 2.2. The full-
conditional for i can be derived in the same manner where ¢ in the
foregoing equations is replaced with ¥, and the index set Ay, _, is
used instead of Ag,_, .

The parameters p and a are sampled from the full-conditionals via
Metropolis—Hastings,

T

pl- ~[plloc[ | ] Ben(islpi,e) x Dir(pla),
1=2ie A,

al- ~ [a]-] o Dir(pla) x N(log(@)|g, o21),

where the proposal p* is sampled from a Dirichlet distribution given
the current Gibbs sample a®_ The proposed parameter vector is then
accepted with probability

T -
[Ti= HieA,—,l. Bern(yi,tlp;ft)

—(k—1),’
T/ Tic.a,, BemGialpfy )

where the index set Aj, is defined as in Section 2.2. The proposal a*
is sampled via a Gaussian random walk [i.e., a* ~ N(a(k_l), at%mel)].

Because the proposal distribution is symmetric with respect to ak=D
and a*, the proposed vector can be accepted with probability
Dir(p®)|a*) x N(log(a*)|p,. o2T)
Dir(p® |a*k=D) x N(log(a®=D)[p,. 021)

In the Gibbs sampler for the anisotropic nonstationary model proposed
in Section 2.3, the full-conditional distributions for ¢ and 1 can be de-
rived in the same manner as before. Then a proposal for all p; simul-

taneously is obtained by sampling p¥ ~ Dir(agk)) foralli=1,...,m,
thus yielding P* = [p], ..., pj;;]. and accepted with probability

T -
1_[l‘=2 H[GA,—,I_ Bem(}ﬁ,ﬂl’;)

—(k—1)"
[0 Micay, BemGidlpyy )

Proposals for e can be taken from a random walk, o* ~ N(ot(k_l),
ot%mel), and accepted with probability

. k k
. Dir(p X a(@)¥) x N@*|8P, (62)®), o))
. k k—1 k)| "
7 Dir(p( la(@) () x N@=D18®, () ®, 60)

The parameter 6, also can be sampled via Metropolis—Hastings with

the random-walk proposal, 6 ~ N(Gék_l), 02ne

probability

) and accepted with

N@® BB, (62)0 6%) x Gamma(8Z|ag, Bg)
N@® |80 (62)® 9y x Gamma(©F ey, o)

Full-conditional distributions for the remaining parameters (i.e., 8,
X g, and 03) are conjugate and can be trivially derived in the fashion
described by Gelman et al. (2004).
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APPENDIX B: HYPERPRIOR SPECIFICATIONS

The tables in this appendix provide the hyperprior specifications
used in fitting these models.

Table B.1. Hyperparameters used in
stationary model from Section 2.2

Hyperparameter Value
Ma,i 1
X4 1xI
ag 10
Bsp 1
oy 1
By 10

Table B.2. Hyperparameters used in
nonstationary model from Section 2.3

Hyperparameter Value
KB, 0
Sg 0.5x1I
v 50

r 0.8
q 2.25
Mo 1
692 1
o 10
By 1
oy 1
By 10

[Received January 2009. Revised May 2009.]
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