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Abstract The spread of invasive species is a long studied subject that garners much inter-
est in the ecological research community. Historically the phenomenon has been approached
using a purely deterministic mathematical framework (usually involving differential equa-
tions of some form). These methods, while scientifically meaningful, are generally highly
simplified and fail to account for uncertainty in the data and process, of which our knowledge
could not possibly exist without error. We propose a hierarchical Bayesian model for pop-
ulation spread that accommodates data sources with errors, dependence structures between
population dynamics parameters, and takes into account prior scientific understanding via
non-linear relationships between model parameters and space-time response variables. We
model the process (i.e., the bird population in this case) as a Poisson response with spatially
varying diffusion coefficients as well as a logistic population growth term using a common
reaction-diffusion equation that realistically mimics the ecological process. We focus the
application on the ongoing invasion of the Eurasian Collared-Dove.

Keywords Partial differential equations · Reaction-diffusion models · Invasive species

1 Introduction

Differential equation based advection-diffusion models have long been used in atmospheric
science to mimic complex processes such as weather and climate. Differential and partial
differential equations (PDEs) have become popular in biological and ecological fields as
well. In many cases these models are considered in a strictly deterministic framework even
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though many sources of uncertainty in the process, the model, and the measurements may
exist. Specifically in the ecology realm, Clark et al. 2001 allude to a problem that arises
when various sources of uncertainty are not appropriately accounted for. That is, inferences
resulting from such methods will be misleading.

The spread of invasive species is one phenomenon in particular for which there is much to
be (and has already been) learned about through the use of PDE models (Holmes et al. 1994;
Shigesada and Kawasaki 2002). Such phenomena usually are based on complicated dynamic
processes, many of which are nonlinear and are correlated with and/or controlled by other
environmental features (e.g., climate patterns, biotic interactions, physiological characteris-
tics, human population density, etc).

Many deterministic PDE models are well-equiped to represent the theoretical spread of
organisms, but have no mechanism to account for the various sources of uncertainty related to
the inadequacies of the model as well as the process itself and our knowledge of it. However
the use of a PDE within the framework of a hierarchical Bayesian model can provide a useful
link between scientifically based deterministic models and statistical models that accurately
portray variability (Wikle 2003). Characterizing, and more importantly, predicting realistic
levels of abundance over time depends on the models ability to recognize biologically mean-
ingful limitations to growth, in addition to the growth rates themselves. In the early stages of
an invasion, a linear growth model and density dependent growth model may behave simi-
larly. As the carrying capacity is approached, however, a model with the flexibility to exhibit
density dependence will provide more realistic results. Therefore, an invasive species model
with the ability to account for non-linear growth is desirable.

Specifically, we model the spread of Eurasian Collared-Dove (ECD; Streptopelia decaoc-
to) in the United States using a reaction-diffusion PDE (Fisher 1937; Skellam 1951) within
a hierarchical model.

1.1 Background

The North American Breeding Bird Survey (BBS; Robbins et al. 1986) monitors many birds
across the United States and Canada, and provides a major source of data for studying inva-
sive bird species. One such species is the Eurasian Collared-Dove. The ECD is an often
misidentified species in North America (due to its similarity to the Ringed Turtle-Dove) and
is considered invasive and a potential threat to indigenous ecosystems (Hengeveld 1993).
After moving into Europe in the 1930’s, the ECD was introduced in the Bahamas and was
observed in the mid-1980’s in Florida (Hudson 1965; Romagosa and Labisky 2000). Not
only has its range increased as it has spread through the Southeastern United States (Fig. 1),
but it has experienced growth in population as well (Fig. 2).

It should be noted that these data are subject to various types of uncertainty, including
observer error, spatial location error, and error related to change of spatial support (Sauer
et al. 1994). Additionally, Hengeveld (1993) and Romagosa and Labisky (2000) suggest
that the rate of ECD spread may vary spatially and temporally and may be correlated with
other environmental covariates (e.g., human population density). Furthermore, the ECD is an
important candidate for study in the United States because of the quantity of data and knowl-
edge accumulated since its introduction combined with historical information gathered from
its invasion of Europe (Hengeveld 1993).

A model that incorporates these factors and responsibly accounts for the various sources
of uncertainty could be a useful tool for ecologists wanting to monitor the spread and growth
in population as well as identify factors influencing the rate of spread in order to make
management decisions to help protect native species.
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Fig. 1 Spread of ECD throughout the United States from 1986 through 2003 (points represent zero counts
at sampled location, while circle size corresponds to non-zero count magnitude)

2 Methods

In order to account for the many sources of uncertainty, spatial effects, temporal effects,
population growth, and spread of the invasive species we adopt a 3-stage hierarchical model
that has the following factorization (Berliner 1996): [process, parameters | data] ∝ [data |
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Fig. 2 Population growth of ECD in the United States from 1986 through 2003 (total counts over time)

process, parameters][process | parameters][parameters] (where the square bracket notation
refers to distribution).

2.1 Data model

We consider the relative abundances of birds (nt = [n1,t , . . . , ni,t , . . . , nm,t ]′) at spatial
locations i = 1, . . . , m and times t = 1, . . . , T given an intensity process as Poisson where
m is the number of spatial locations and T the number of years:

ni,t |λi,t ∼ Pois(λi,t ), i = 1, . . . , m t = 1, . . . , T . (1)

In this case, the counts are originally recorded as observed along routes in the spatial
domain. For our purposes, the route center is used as the point location for count data at
location i . Since we are concerned about the process on the continental scale, route length
(tens of kilometers) and orientation have minimal overall influence.

2.2 Process Model

The Poisson intensity process is controlled by a latent spatio-temporal process (ut ) at grid-
ded locations linked by an incidence matrix (Kt ). The number of gridded locations (i.e.,
dim(ut ) = N ) need not equal the number of observation locations; in this case N < m
increases computational efficiency. It may be possible to address some issues related to dif-
ferences in biological processes at various scales by proposing different sets of basis functions
for Kt but this will be left as the focus of another study. For the model proposed here, Kt is
simply a matrix with an element in the i th row associating the i th measurement location with
a grid location at time t . We use an additive independent noise term to account for observer
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error and small scale spatio-temporal variability:

log(λt ) = Kt ut + εt , εt ∼ N (0, σ 2
ε I), t = 1, . . . , T . (2)

The latent process (ut ) is motivated via a reaction-diffusion equation (Fisher 1937; Skel-
lam 1951),

∂u

∂t
= ∂

∂x

(
δ(x, y)

∂u

∂x

)
+ ∂

∂y

(
δ(x, y)

∂u

∂y

)
+ γ0u

(
1 − u

γ1

)
, (3)

which can be discretized as (Haberman 1987),
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where x and y correspond to the spatial location in two dimensions. In matrix notation with
additive error and letting �t = 1, this can be written:

ut = H(δ)ut−1 + α0ut−1 − α1diag(ut−1)ut−1 + ηt ,

ηt ∼ N (0, σ 2
η I), (5)

where diag(ut−1) is an N × N square matrix with the elements of ut−1 on the diagonal
and zeros elsewhere and γ0 and γ1 in (3) represent the intrinsic population growth rate and
carrying capacity of the log process, respectively, and have the following relationships with
the growth parameters in the vector form of the model (5):

α0 = γ0, α1 = γ0

γ1
.

Previous models (i.e., Wikle 2003) accounted for growth in the process with a statistical
trend term in the form of a random walk at a higher level in the hierarchy in addition to a
Malthusian growth term in the PDE for added flexibility. Here the growth in the process is
assumed to be non-linear and allows for a much more flexible model that is able to exhibit
realistic biological behavior and density-dependent predictions. Additionally, if the estimate
of the carrying capacity parameter (γ1) is greater than ut for all t , this would imply that
the process has not stopped growing yet and estimation or prediction of abundance at times
{t < T + 1} would likely not be different than those resulting from a simpler model.

The propagator matrix (H) in (5) depends upon the diffusion coefficients δ which are
allowed to vary in space. Construction of H depends on the arrangement of grid locations in
the spatial domain and is thus quite project specific. For the irregularly shaped spatial domain
considered here the construction of H is similar to that used in Wikle and Hooten (2005).
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Such a non-linear model (5) is relatively difficult to implement in an MCMC (Markov
Chain Monte Carlo) algorithm due to the high dimensional Metropolis-Hastings updates.
Therefore, we consider the following modification (thereby also inducing a 2nd-order Mar-
kov structure).

ut = H(δ)ut−1 + α0ut−1 − α1diag(ut−1)ut−2 + ηt . (6)

The ut−2 term in (6) allows for a complete derivation of the full-conditional distribution
for ut , thereby improving computational efficiency. For a growing process such as the one
considered here, the effect of using the discretization (6) of the PDE in (3) only differs from
that of (5) by α1ut−1|ut−1 − ut−2|. In our case, this difference is negligible and was verified
by simulation. It may be possible to make exact inference on the model in (5) using (6)
as a proposal in a Metropolis-Hastings step. The resulting model is the subject of ongoing
research.

2.3 Parameter model

Let X be an N × 2 covariate matrix made up of an intercept and human population density
on the gridded spatial domain and let β be a 2-dimensional vector of regression coefficients
with R a spatial correlation matrix depending on parameter θ . Then, δ can be defined by a
linear model,

δ = Xβ + ξ , ξ ∼ N (0, σ 2
δ R(θ)). (7)

Let the spatial correlation matrix (R) be defined by the distance (||d||; the Euclidian dis-
tance between points) and the spatial range parameter (θ ) in the standard stationary and
isotropic exponential covariogram model:

R(θ, d) = exp(−θ ||d||). (8)

This allows δ to utilize not only the human population covariate but the (random) effects of
another spatial covariate possibly based on an unknown environmental factor. Also, we let
the ECD population growth parameters have a lognormal distribution:

log(α) ≡ log

([
α0

α1

])
∼ N (α̃,�α). (9)

The remaining parameters have the following priors:

β ∼ N (β0,�β), (10)

σ 2
ε ∼ I G(qε, rε), (11)

σ 2
η ∼ I G(qη, rη), and (12)

σ 2
δ ∼ I G(qδ, rδ). (13)

We specify a prior distribution for the ut -process at time zero, u0 ∼ N (ũ0,�0) and let
u−1 = −10 × 1 be fixed (where 1 is a vector of ones). It is reasonable to fix u−1 at a small
value because it represents the process at a time before the invasion began; about which there
is little uncertainty. Finally, we adopt a reference prior for the spatial parameter θ as derived
by Berger et al. (2002). Such a reference prior is non-informative and more importantly
allows the posterior to be proper. Prior distributions (9–13) were chosen to ensure model
conjugacy for purposes of computational and analytical efficiency, while hyperparameters
were either chosen to ensure vague priors or, if sufficient information was available, based on
previous studies (e.g., rates of ECD spread in Europe). Table 1 shows the numerical values
used for the hyperparameters.
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Table 1 Hyperparameters used
in MCMC

Hyperparameter Value

qε 2.3
rε 0.4
qη 2.0
rη 2.0
qδ 2
rδ 1,000
α̃0, α̃1 0.001
(�α)11, (�α)22 10
(�α)12, (�α)21 2
ũ0 0
β0 0
�0, �β 10 × I

The Bayesian formulation of the hierarchical model is summarized by the following pos-
terior distribution and does not have an analytical representation.

[λ1, . . . ,λT , u0, . . . , uT , δ,α,β, σ 2
ε , σ 2

η , σ 2
δ , θ |n1, . . . , nT ]

∝
{

T∏
t=1

[nt |λt ][λt |ut , σ
2
ε ]

} {
T∏

t=1

[ut |δ, ut−1, ut−2,α, σ 2
η ][u0]

}

×[δ|β, σ 2
δ , θ ][α][β][σ 2

ε ][σ 2
η ][σ 2

δ ][θ ]. (14)

Therefore, a Gibbs sampler was used to sample from the posterior using the relevant full-
conditional distributions. Additionally, non-conjugate parameters {λt : t = 1, . . . , T } and θ ,
are sampled via Metropolis-Hastings updates within the Gibbs sampler.

3 Results

This section contains results of the MCMC output and analysis; a discussion of the results
follows in the next section. Additionally, for the purpose of illustration only, all remaining
maps based on model output are shown as images, where the grid locations correspond to
pixel centers. The Gibbs sampler was run for 200,000 iterations with a burn-in of 20,000
iterations to ensure convergence of the parameter chains. We can visualize the marginal
posterior distribution of model parameters by viewing the histograms constructed from the
MCMC samples (Fig. 3).

Figure 4 shows the posterior mean and standard deviation of the spatial diffusion coeffi-
cient (δ) in the form of a map on the spatial domain. The human population covariate (in X)
is also shown in Fig. 4 for comparison.

One way to view the change over time in the Poisson intensity parameter is to plot the
posterior mean and 95% credible interval at a location of interest. Consider ECD growth at a
South Florida location (Fig. 5). Additionally, by utilizing the MCMC samples from the spa-
tial parameters (σ 2

δ , θ ), we can construct a posterior covariogram (assuming the covariogram
model in (8)) with 95% credible interval to give us some idea of the spatial structure in δ

beyond that available in the covariate matrix (X) (Fig. 5). We can also view these intensity
parameters (λ) on the spatial domain as a series of maps over time (Fig. 6). Additionally,
consider the posterior prediction for λ (Fig. 7).
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Fig. 3 Posterior distributions of bivariate parameters (α, β) and univariate (θ, σ 2
ε , σ 2

η , σ 2
δ )
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Fig. 4 Posterior summary of δ and covariate. (a) Posterior mean of δ. (b) Posterior standard dev. of δ.
(c) Human population covariate map (i.e., 2nd column of X)
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(represents ECD population growth).
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Fig. 5 Posterior summary of λ and ξ . (a) Posterior mean (and 95% credible interval) of the Poisson intensity
process at a South Florida location through time (represents ECD population growth). (b) Posterior covari-
ogram with 95% credible intervals (i.e., covariance structure of ξ ). Maximum distance in the covariogram
equals maximum map distance

4 Discussion

It appears that human population density is negatively associated with the rate of diffusion,
however the association is only borderline significant (Figs. 3, 4), although the intercept
coefficient in β is clearly significant, suggesting that at least a mean term is important in the
model. The negative association is somewhat contrary to popular scientific opinion, although
it could be that ECD relative abundance, rather than rate of diffusion, is more strongly cor-
related with human proximity. Note also that a few samples of δ were negative (Fig. 4).
Technically, δ should not take negative values, however in this case the model is flexible
enough to allow δ to be negative to make up for other possible deficiencies or misspecifica-
tions. Specifically, the human population covariate (Fig. 4) contains an outlier and its linear
relationship with δ forces it to be negative. Due to its magnitude, the effect of such an artifact
is minimal.

On the other hand, the spatial parameters (σ 2
δ , θ ) influencing the variability in rate of diffu-

sion are significant (Fig. 3) suggesting that diffusion is affected by some underlying process
(e.g., an unknown latent spatial covariate such as land type, temperature, or precipitation)
and are useful in modeling ECD relative abundance in time and space. The covariogram in
Fig. 5 illustrates that significant spatial structure exists within approximately one third of the
maximum map distance; in fact, most (i.e., 95%) of the spatial structure lies within 1/6th of
the maximum map distance (i.e., 1/6th the width of the United States). This implies that the
variability associated with the rate of diffusion that is not attributed to human population is
likely due to some unknown spatial covariate with a range of spatial dependence equal to 0.1
in map distance and (or) due to the biological characteristics of ECD dispersal.

The posterior mean (at most locations) of the Poisson intensity process (e.g., Fig. 5) gener-
ally shows an increasing trend over time as we would expect and could indeed be the driving
force behind the measurements (nt ). Some locations have an initial decrease in intensity that
could be due to an Allee effect (Shigesada and Kawasaki 2002) not present in the original
data. Recall that this intensity process is controlled by an underlying latent process (ut )
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Fig. 6 The posterior mean of the Poisson intensity process in time and space

and thus appears similar (Fig. 6) over space and time as σ 2
η is quite small and the growth

parameters in the PDE are only weakly influential (Fig. 3). Moreover, as with similar models
(e.g., Wikle 2003), the process is mostly data-driven and the growth component (although
possibly misspecified) allows ample flexibility for modeling the relative abundance as well
as non-linear population growth and diffusion.

The prediction for the Poisson intensity process (i.e., mean relative ECD abundance) may
be useful for managers wishing to control future range expansion of this species and com-
pare with future monitoring efforts. Notice however that there exists a substantial amount
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Fig. 7 Posterior prediction of λ for 2004. (a) Posterior mean for Poisson intensity prediction. (b) Posterior
standard deviation for Poisson intensity prediction

of uncertainty in the prediction (Fig. 7), accurate knowledge of which may not be available
through other conventional prediction methods.

5 Conclusions

The ecology of invasive species is complicated, with non-linear non-seperable spatio-
temporal variation influencing the amount of growth and rate of spread of which our knowl-
edge is affected by measurement error and various other sources of uncertainty. We have
implemented an ecologically meaningful PDE within a hierarchical Bayesian framework
as a latent dynamical system to help manage such uncertainty and account for complicated
dependence structures in parameters.

Specifically, inference based on this model suggests that not only does correlation exist
between ECD abundance in space and time but the growth and spread of this species across
North America can be described and predicted (even at locations without data) while accu-
rately and responsibly accounting for uncertainty. It is important to note that the reaction-
diffusion model for the latent process here is one that represents scientific opinion. However,
it is by no means the only way to incorporate scientific knowledge into the model. In fact,
matrix models (Caswell 2001) may prove to be a promising tool in future invasive species
research efforts. Such settings allow for the inclusion of well-known non-linear growth and
dispersal equations acting upon a more intuitive latent process. Implementation of these
models, however, presents a variety of challenges.
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