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ABSTRACT

Advances in satellite-based data collection techniques have served as a catalyst for new statistical method-
ology to analyze these data. In wildlife ecological studies, satellite-based data and methodology have
provided a wealth of information about animal space use and the investigation of individual-based animal-
environment relationships. With the technology for data collection improving dramatically over time, we
are left with massive archives of historical animal telemetry data of varying quality. While many contem-
porary statistical approaches for inferring movement behavior are specified in discrete time, we develop a
flexible continuous-time stochastic integral equation framework that is amenable to reduced-rank second-
order covariance parameterizations. We demonstrate how the associated first-order basis functions can be
constructed to mimic behavioral characteristics in realistic trajectory processes using telemetry data from
mule deer and mountain lion individuals in western North America. Our approach is parallelizable and
provides inference for heterogenous trajectories using nonstationary spatial modeling techniques that are
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feasible for large telemetry datasets. Supplementary materials for this article are available online.

1. Introduction

Advancements in satellite data collection techniques have
stimulated the development of dynamic statistical models
for individual-based movement processes (Kays et al. 2015).
Individual-based statistical movement models have been used in
a variety of recent applications including: vehicle (e.g., Gloaguen
et al. 2015), cellular phone (e.g., Calabrese et al. 2011), and
wildlife (e.g., Hooten et al. 2010) tracking. In particular, new
inferential tools are crucial for improving the understanding
of wildlife behavior and the response of individual animals to
changing landscapes and environmental conditions. Modern
telemetry technology allows for remote data collection via “on
board” devices (e.g., often using satellite-based observations of
geographic position) and has provided massive repositories of
information (e.g., Wikelski and Kays 2015).

For example, our application is focused on inferring the
movement dynamics of two species of animals, mule deer
(Odocoileus hemionus) and mountain lion (Puma concolor),
using archival data sources. Both species occur in western North
America and our satellite telemetry data arose from two sepa-
rate studies to investigate animal spatial ecology where tracking
devices were fitted to individuals and recovered later.

Despite numerous improvements to data collection method-
ology for remote tracking of individual animals, several remain-
ing features of contemporary telemetry data must be addressed
when making statistical inference. For example, all forms of
remotely collected telemetry data (i.e., measured geographic
locations or positions) are susceptible to measurement error that

can depend on the device, satellite system, terrain, land cover,
weather, and behavior. Recent advances have led to improved
data modeling techniques that properly incorporate (and some-
times estimate) the uncertainty associated with telemetry mea-
surement error (e.g., Brost et al. 2015; McClintock et al. 2015;
Buderman et al. 2016).

Irregular temporal measurement is another important fea-
ture to consider when modeling telemetry data. Telemetry
devices are often programmed (i.e., duty cycled) to record posi-
tion data at a prespecified set of times. However, the frequency
and regularity of these times are not consistent across studies.
Furthermore, despite the deterministic programming of satel-
lite telemetry devices, missing data can occur stochastically due
to instrumental difficulties as well as environmental and behav-
ioral influences (e.g., terrain and weather).

Dynamic statistical models for animal movement that for-
mally incorporate measurement error typically assume a hier-
archical structure (Berliner 1996), where s(t;) are the measured
positions at time ¢; (for observation i = 1, ..., n) and depend
on the true positions u(t;) that arise as a dynamical process.
Various process models have been proposed for the true under-
lying individual positions p(t;), depending on the desired form
of inference (Hooten et al. 2017). Primarily, statistical models
for position processes have fallen into three main categories:
(1) point process models (e.g., Johnson et al. 2008b; Forester,
Im, and Rathouz 2009; Johnson, Hooten, and Kuhn 2013; Brost
et al. 2015), (2) discrete-time dynamic models (e.g., Morales
et al. 2004; Jonsen, Flemming, and Myers 2005; McClintock
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et al. 2012), and (3) continuous-time dynamic models (e.g.,
Dunn and Gipson 1977; Blackwell 1997; Brillinger et al. 2001;
Johnson et al. 2008a; Brillinger 2010). While there have been
similar advancements in each of these classes of movement
models, we focus on the continuous-time formulations in what
follows.

Despite the popularity of point process models and discrete-
time dynamic models, both present computational difficulties
that prohibit widespread use for all but the simplest forms.
Point process models require numerical integration to calculate
the likelihood (Berman and Turner 1992; Cressie 1993; Warton
and Shepherd 2010; Aarts, Fieberg, and Matthiopoulos 2012).
Discrete-time dynamic models often lack a joint model spec-
ification and require iterative calculation (Morales et al. 2004;
Jonsen, Flemming, and Myers 2005; McClintock et al. 2012).
Furthermore, discrete-time models provide inference relative
to the scale of temporal discretization and must contain some
mechanism to reconcile the times at which data are available
with those of the latent discrete-time process (McClintock et al.
2012).

Discrete-time dynamic models for telemetry data are popu-
lar because they are heuristically straightforward to understand.
They have a long history of use and there is a large body of exist-
ing literature associated with modeling discrete time series (e.g.,
Anderson-Sprecher and Ledolter 1991). Discrete-time models
can also be extended to incorporate change-points and hidden
Markov processes that allow for time-varying changes in the
dynamics, hence better accommodating heterogenous animal
behavior through time (e.g., Morales et al. 2004).

Given the attractive properties of discrete-time formula-
tions for model building and the continuous-time nature of
the true underlying trajectory, we present a general framework
for constructing continuous-time models for animal movement
based on limiting processes involving discrete-time models. Our
approach provides an intuitive connection to previously existing
continuous-time stochastic process models for telemetry data
(e.g., Dunn and Gipson 1977; Blackwell 1997; Brillinger et al.
2001; Johnson et al. 2008a; Brillinger 2010). Borrowing tech-
niques commonly used in spatial and spatio-temporal statistics
(Cressie and Wikle 2011), we show how continuous-time mod-
els based on first-order (i.e., mean) dynamic structure can be
implemented using equivalent second-order (i.e., covariance)
specifications. Second-order model specifications for animal
movement applications have appeared only recently in the lit-
erature (e.g., Fleming et al. 2014, 2016).

We present a natural basis function approach to construct-
ing appropriate covariance models for movement processes.
Our basis function specification is amenable to rank reduc-
tion and, thus, is computationally feasible to implement for
large telemetry datasets. We also demonstrate how the choice
of basis function may correspond to an explicit representa-
tion of animal cognitive processes that may involve memory
and perception. Finally, to allow for heterogenous dynamics in
movement, we induce a nonstationary continuous-time tem-
poral process by appropriately warping the temporal domain
(i.e., temporal deformation, Sampson and Guttorp 1992). Our
warping approach allows for temporal clustering of movement
behavior in continuous time similar to popular state-switching
approaches in discrete-time models (e.g., Morales et al. 2004;
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Hanks et al. 2011; McClintock et al. 2012). We also describe a
parallelization strategy that can reduce required computational
time substantially.

2. Methods

2.1. Continuous-Time Stochastic Trajectory Models

We focus on process models for continuous-time trajectories
(e.g., individual animal movement) and begin by describing
dynamic model specifications for trajectories in multiple dimen-
sions. We return to measurement error models for observed tra-
jectories in the next section.

Many hierarchical statistical models involving continuous-
time processes have relied on direct connections to Eulerian dif-
ferential equations (e.g., Cangelosi and Hooten 2009). In con-
trast, we begin with a discrete-time representation and describe
the trajectory of a moving particle in terms of its position u (t;),
at time t;, as

() = (o) + Alggloz;e(tj) (1)
j=

= n(ty) + b(t), (2)

where p (t,) represents the beginning position at time #y, and the
limiting sum in (1) accumulates a sequence of discrete steps (i.e.,
displacement vectors, &(t;)) up to time ¢;. If the displacement
vectors, £(t;) = p(tj) — p(tj_1), are independent multivariate
Gaussian, such that e(t;) ~ N(0, o2 Atl) (i.e., white noise), we
arrive at a continuous-time stochastic integral representation
for u(t;) where o controls the magnitude of displacement and
b(t;) is scaled multivariate Brownian motion (i.e., a multivari-
ate Weiner process). In the limiting trajectory model (1), the
number of displacement steps in the sum increases as At — 0,
resulting in an infinite series that is often written as the integral

ti
bty = / db (1), 3)
to

using Ito notation (Protter 2004).

While the Brownian motion (BM) process model for an indi-
vidual animal trajectory in (3) is a stochastic integral equa-
tion (SIE), it is also common to see it expressed as a stochastic
differential equation (SDE) by differentiating both sides of (1)
using Ito calculus (e.g., Dunn and Gipson 1977; Blackwell 1997;
Brillinger et al. 2001; Preisler et al. 2004).

2.2. Smoothness in Trajectory Models

Stochastic trajectory models based on Brownian motion (e.g.,
(2)) are inherently noisy (Figure 1, left panels) as continuous-
time processes. Johnson et al. (2008a) presented a stochastic tra-
jectory model for the velocity associated with animal movement
that was integrated over time to yield a smoother position pro-
cess (Figure 1, right panels).

We show that the velocity model by Johnson et al. (2008a)
fits into a larger class of stochastic trajectory models by repa-
rameterizing the simple Brownian SIE (2). Recall that Brownian
motion (b(t)), at time ¢, can be expressed as an integral of white
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Figure 1. Left panels: Two-dimensional Brownian motion process, b(t). Right panels: Two-dimensional integrated Brownian motion, (t). Processes are displayed

marginally in longitude and latitude.

noise. Thus, if we integrate Brownian motion itself, with respect
to time, we have

t
n(t) = / b(r)dr, )
to

where 5(t) is a version of the integrated stochastic process
proposed by Johnson et al. (2008a). This integrated Brown-
ian motion (IBM, e.g., Shepp 1966; Wecker and Ansley 1983;
Rue and Held 2005) model (4) can be likened to that of John-
son et al. (2008a) by substituting 5(t) into the position process
(2) to yield p(t) = p(ty) + n(t). Jonsen, Flemming, and Myers
(2005) set an earlier precedent for modeling velocity, but strictly
in a discrete-time framework.

The approach proposed by Johnson et al. (2008a) suggests a
more general framework for modeling movement that can be
obtained by reparameterizing the velocity model using the 2 x 2
matrix H(¢, v) with diagonal elements equal to the function

1 iftg<t <t

h(t,r):{o ift<t<t,’ 5)

where t, is the last time at which data are observed, and off-
diagonal elements equal zero. Substituting H(t, v) into (4),
the velocity-based Brownian motion model appears as the
convolution

n(t) = / ' H(t, t)b(t)dr. (6)

to

The convolution in (6) is the key feature in a more general
class of stochastic process models for animal movement trajec-
tories. For example, if h(f, v) is a continuous function, such
that o <t <t,, tp <1 <t, and with finite positive integral
0< ftf) h(t, T)dt < 0o, then a new general class of continuous-
time animal movement models arises. We refer to this class of
models as “functional movement models” (FMMs; Buderman
et al. 2016).

The ability to specify continuous-time movement models as a
convolution (6) has two major advantages. First, it clearly identi-
fies the connections among animal movement models and sim-
ilar models used in spatial statistics and time series. Second, for
the same reasons convolution specifications are popular in spa-
tial statistics and time series, we show that FMMs share similar
advantageous properties.

In Appendix A (supplementary material), we show that the
FMM in (6) can be rewritten as

te
a0 = [ He b %
to
where H(¢, 7) has diagonal elements
~ tn
h(t, 1) =/ h(t, T)dz. (8)

The FMM in (7) has the same form described in spatial
statistics as a “process convolution” (or kernel convolution,
e.g., Barry and Ver Hoef 1996; Higdon 1998; Lee et al. 2005;
Calder 2007). The process convolution has been instrumen-
tal in many fields, but especially in spatial statistics for allow-
ing both complicated and efficient representations of covariance
structure.

It is clear from (7) that we need not simulate Brownian
motion, rather, we can operate on it implicitly by transform-
ing the matrix function H(¢, 7) to H(t, 7) via integration and
convolving H(t, 7) with white noise directly. For example, con-
sider the Gaussian kernel as the function h(t, t). The Gaussian
kernel is one of the most commonly used functions in kernel
convolution methods (e.g., Barry and Ver Hoef 1996; Higdon
1998). We convert h(t, 7) to the required function iz(t, 7) using
(8) and arrive at a numerical solution for the new kernel func-
tion by subtracting the normal cumulative distribution function
(CDF) from one, a trivial calculation in most statistical software.
With respect to the time domain, the kernel h(t, 7) appears dif-
ferent than most kernels used in time series or spatial statistics
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Figure 2. Example kernels h(t, 7) (left column) and resulting integrated kernels h(t, ) (right column). The first row results in the regular Brownian motion (BM), row 2
shows integrated Brownian motion (IBM), rows 3 and 4 show tail-up (TU) and tail-down (TD) kernel functions, and row 5 shows the Gaussian (G) kernel functions. Rows 3
through 5 (TU, TD, and G) are more common in time series and spatial statistics. The vertical gray line indicates time t for the particular kernel shown; in this case t = 0.5.

(Figure 2, G, row 5). Rather than being unimodal and symmet-
ric, it has a sigmoidal shape equal to one at t = f;, and nonlin-
early decreasing to zero att = ¢, resembling an I-spline (Ramsay
1988). In effect, this new kernel is accumulating the white noise
up to near time ¢ and including a discounted amount of white
noise ahead of time ¢.

There are many options for kernel functions and each
will result in different stochastic process models for animal

movement. In fact, we have already shown that the FMM class
of movement models is general enough to include an integrated
Brownian motion model similar to that developed by John-
son et al. (2008a). The FMM class also includes the original
unsmoothed Brownian motion process if we let h(t, T) be a
point mass function at = ¢ and zero elsewhere (Figure 2). An
approximation to the point mass kernel function can also be
achieved by taking the limit as ¢ — 0 of our Gaussian kernel
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and results in an integrated kernel function of

1 1ft0<1'§t
0 ift<t<t,’

h(t,v) = { 9)
The integrated kernel sums all past velocities to obtain the cur-
rent position. The steep drop at T = ¢ is what induces roughness
in the original Brownian motion process (Figure 2, BM, row 1).
Whereas, when we use a nonpointmass function for h(t, 7), we
arrive at a smoother stochastic process model for movement.

We highlight a few different kernel functions to examine their
implications for animal movement behavior. In doing so, it is
simplest to interpret the h(t, 7) and il(t, 7) functions directly.
For example, using the direct integration of velocity as proposed
by Johnson et al. (2008a) results in the integrated Brownian
motion (IBM) kernel (iz(t, 7)) on the second row in Figure 2.
In this case, the individual’s position accumulates its past steps,
which are noisy themselves in direction and length, but have
some general momentum. The “tail up” (TU) kernel shown in
the third row of Figure 2 models the current position based on
past steps that decay linearly with time (we borrow the tail up
and tail down terminology from Ver Hoef and Peterson 2010).
In this case, the individual’s position is more strongly a func-
tion of recent steps than steps in the distant past. The oppo-
site is true with the “tail down” (TD) kernel shown in row 4 of
Figure 2, where only future steps influence position. Heuristi-
cally, we interpret the resulting movement as perception driven.
That is, the individual may have an awareness of a distant des-
tination that affects their movement. Finally, the Gaussian ker-
nel discussed earlier and shown in the bottom row of Figure 2
indicates a symmetric mixture of previous and future velocities,
suggesting an equal perception of former and future events by
the individual. Appendix B (supplementary material) contains
the functional forms and a visualization of the basis functions
in H.

2.3. Functional Movement Models and Covariance

In the statistical setting, we seek inference for model parameters
as well as predictions (interpolation) of the position process in
time. Therefore, we need to connect telemetry data at a finite set
of observation times {t, ..., t,} to the dependence structure
imposed by the FMM. A common approach for expressing
dependence structure in correlated processes is using covari-
ance. Translating dynamically induced temporal structure into
covariance yields several computational advantages for FMMs.
Ultimately, we construct a hierarchical statistical model for
telemetry data s(t;), for i =1, ..., n, that relies on a latent
dynamical process governed by an FMM. In what follows, we
describe the covariance properties of FMMs and then specify
a hierarchical model that exploits those properties in the next
sections.

Using the basic FMM in (6), we can choose from a large set of
possible smoothing kernels (h(t, 7)) for Brownian motion and
arrive at the appropriate form for the integrated kernel (h(t, 7))
that is convolved with white noise. We can then use iz(t, T)
directly to construct the proper covariance function for the joint
process. In fact, for a one-dimensional movement process 7 (%),
the covariance function can be calculated (e.g., Paciorek and

Schervish 2006) as the convolution of the kernels

b ~
cov(n(ty), n(t)) = / o2h(t, Dh(b, D)dr,  (10)

to

for any two times, say t; and t,.
One benefit of the covariance function (10) is that, for a finite

subset of n times {t1, ..., t,} and process § = (1, ..., n,)’, the
joint probability model can be expressed as
5§ ~ N(0, o> AtHH'), (11)

where 0 is an n x 1 vector of zeros and H is a matrix of basis
functions with the ith row equal to h(t;, t) for all t. This pro-
cedure for constructing the covariance matrix and defining a
correlated process is similar to that recommended in spatial
statistics (e.g., Paciorek and Schervish 2006; Ver Hoef and Peter-
son 2010). For simplicity, the resulting model for the joint one-
dimensional position process (i, an n x 1 vector) at the obser-
vation times for smooth Brownian motion is

w~ N1, o> AtHH). (12)

Despite the fact that it is often more intuitive to model the
process from the first-moment (i.e., mean dynamical structure)
rather than the second-moment (Wikle and Hooten 2010), the
joint form of (12) with dependence imposed through the n x n
correlation matrix HH' can be useful computationally (Samp-
son 2010). When the integral in (10) cannot be used to analyti-
cally compute the necessary covariance matrix, we can still use
the outer product of the matrices explicitly (i.e., HH'). How-
ever, the true covariance requires the number of columns of
H to approach infinity, which, under approximation, can lead
to computational difficulties. Higdon (2002) suggested a finite
process convolution as an approximation. In the finite approx-
imation, the number of columns of H could be reduced to
say, m columns. This rank reduction implies that there are
m knots in the temporal domain that anchor the basis func-
tions (i.e., kernels) and, thus, only m white-noise terms are
required so that » ~ He, where H is an n x m matrix and
e=(e(t),...,e(t),..., e(t,)) is an m x 1 vector. The use
of a finite approximation to the convolution is also sometimes
referred to as a reduced-rank method (Wikle 2010). Rank reduc-
tion can improve computational efficiency and has become
very popular in spatial and spatio-temporal statistics for large
datasets (Nychka and Saltzman 1998; Nychka, Wikle, and Royle
2002; Banerjee et al. 2008; Cressie and Wikle 2011).

To illustrate how kernel functions relate to covariance thus
far, we simplified the movement process so that it is one-
dimensional in space. The same approach generalizes to higher
dimensions. In the more typical two-dimensional case, we stack
the vectors in each dimension to form a single 21 x 1 vector 7.
Then the joint model can be written as

n ~ N, c2At(I® HH')), (13)
whereQisa2n x 1vector of zerosand Iisa2 x 2 identity matrix
(assuming that H is the appropriate set of basis functions for
both directions, i.e., latitude and longitude).



2.4. Heterogenous Dynamics

Discrete-time trajectory models for animal movement (e.g.,
Morales et al. 2004) are commonly specified with time-varying
dynamics. In spatial statistics, heterogeneity in dependence
structure is often treated as nonstationarity. A variety of
approaches have been suggested for modeling nonstationary
continuous processes (e.g., Sampson and Guttorp 1992; Higdon
2002). We describe a temporal warping approach to modeling
nonstationary movement.

Our warping approach (also known as “deformation”) was
described in a continuous spatial modeling context by Sampson
and Guttorp (1992) and later extended (e.g., Damian, Sampson,
and Guttorp 2001; Schmidt and O’'Hagan 2003). In the warp-
ing approach, we map the times t = (#1,...,t,)" to a new set
of timesw = (wy, ..., w,)" using a smooth function so that no
“folding” occurs (i.e., transformed times retain order). A model-
based method to perform the warping allows w to arise as a
correlated random field anchored by t. For example, a simple
additive warping can be induced through the Gaussian pro-
cess model w ~ N(t, X, ), where a smooth covariance function,
such as the Gaussian %, ;; = o exp(—(t; — t;)*/¢7), is cho-
sen. Conventionally, the warping parameters o and ¢,, are con-
strained to yield nonfolding temporal warp fields.

When fitting the FMM (12), we construct the basis functions
so that they depend on the warped times. For example, using a
Gaussian kernel, we now have

2
(w(¢) T)). (14)

¢2

Notice that the kernel h(t, ) only depends on a single range
parameter ¢ that does not need to vary in time because the
heterogeneity enters through the norm in the warped tempo-
ral domain (w(t) — 7). Thus, the warp field w is a latent pro-
cess to be estimated in the model and can provide inference
associated with changes in movement dynamics. For example,
the derivative dw(t)/dt of the warp field provides insight about
changes in the individual’s velocity over time. When dw (¢)/dt
is large, the warp field expands the temporal domain to allow for
smoother paths, either from faster, directed movement, or lack
of movement. Expanding the temporal domain can account for
behavior indicative of long-distance migration or sedentariness.
By contrast, when the dw (¢)/dt is small, the temporal domain
compresses, resulting in more tortuous paths and accounting for
periods of time with sharper turning angles. Temporal compres-
sion leads to behavior more typical of an area restricted search
(e.g., Knell and Codling 2012), or an individual performing rou-
tine activities within its home range (e.g., foraging).

h(t, T) < exp (—

2.5. Full Model Specification

Assuming Gaussian measurement error associated with the
telemetry observations and a full-rank position process u, we
specify the full model in a hierarchical Bayesian framework:

s~NXKp,I® X)), (15)
n=pn0)®1+ (I He, (16)
e ~ N(0, 02 At]), (17)
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where K is a 2n x 2m matrix that maps the data to the under-
lying process at the appropriate times and the error covariance
matrix could be left general or simplified as ¥, = 01 depend-
ing on the data source. As before, the initial position is denoted
as ;. (0) and the process variance is o2, In the model formulation
that allows for temporal heterogeneity, the matrix of basis func-
tions depends on the range parameter ¢, as well as the warped
time process w. Thus, we augment the model specification by
letting w ~ N(t, X,,).

In principle, the choice of priors is study specific, but any
proper prior distributions with the correct support may be used
for the parameters in the FMM. In Gaussian state-space models,
conjugate priors for 0> and o'? are inverse gamma, where strong
prior information helps to separate the measurement error vari-
ance o2. Thus, similar to geostatistics, inference can be sensitive
to the chosen prior (e.g., Finley, Banerjee, and Gelfand 2015)
when available information is used to inform priors. Alterna-
tive priors for the latent process variance are also available. For
example, we used a proper uniform prior for o, as recommended
by Gelman (2006) for latent Gaussian processes. A variety of
options are available for the temporal range parameter ¢, how-
ever, a discrete uniform prior (¢ ~ DiscUnif(®)) is computa-
tionally advantageous (Diggle and Ribeiro 2002). We elaborate
on the discrete uniform prior for the temporal range parameter
(¢) in the next section.

2.6. Model Implementation

The full model, described in the previous section, can be
implemented using an MCMC algorithm to sample from all
full-conditional distributions sequentially. However, such an
algorithm would be prohibitively slow for all but the smallest
telemetry datasets. Thus, we provide a model reparameteriza-
tion that results in several computational improvements. Our
approach involves three critical features: (1) Discrete uniform
prior for the range parameter, (2) integrated likelihood, and
(3) a mixture model to accommodate temporal heterogeneity.
We describe each of these features in what follows.

When specifying the prior ¢ ~ DiscUnif(®), for each value
of ¢ in the support ®, the entire matrix of basis functions H
can be precomputed and accessed as needed in a Markov chain
Monte Carlo (MCMC) algorithm. The discrete uniform prior
permits an MCMC algorithm that requires only minimal matrix
calculations (Diggle and Ribeiro 2002).

We used Rao-Blackwellization to derive an integrated likeli-
hood that results in a more stable MCMC algorithm and allows
us to avoid sampling the latent process directly. The integrated
likelihood provides better mixing for covariance parameters
and the latent process can be recovered post hoc using saved
MCMC samples and composition sampling in a secondary algo-
rithm. This approach is a common computational strategy used
in spatial statistics (e.g., Finley, Banerjee, and Gelfand 2015). In
our case, multivariate normal properties allow us to integrate &
out of our hierarchical model, resulting in the integrated model
formulation

s~ NEK(R0)®1),I® I+ 0’KI® H)(I1® H'K).
(18)
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Note that we omit the time step At from the white-noise
specification because the variance term o2 can account for it
in the discrete-time implementation. The resulting combined
covariance matrix in (18) includes both the measurement error
variance and the process covariance and has the form A + BCD,
which can be inverted efficiently using the Sherman-Morrison-
Woodbury identity if necessary (Appendix C, supplementary
material). In addition to the precalculation of terms involving
the matrix of basis functions H, fast matrix calculations are
essential for fitting the FMM efficiently to real datasets.

The two steps described above facilitate the fitting of a tempo-
rally homogenous model that is conditioned on a known warp-
ing (w). However, because the optimal warping is unknown and
occurs in a nonlinear covariance function for the data, we would
need to sample it using Metropolis—-Hastings within the broader
MCMC algorithm for fitting the model. The resulting compu-
tational requirements are prohibitively large. Thus, we propose
a mixture model framework that can be implemented using
reversible-jump MCMC (RIMCMC; Green 1995). In practice,
the mixture model can be implemented using a finite set of can-
didate temporal warp fields, say wj, for j =1, ..., J and L basis
function types (Figure 2) resultingin N = L - ] total models. We

formulate the mixture using models M;; (for /=1, ..., L and
j=1,....]) and latent indicator variables z jas
M, zn=1
My, zip=1
s~ 9. ) (19)
ML], zp =1

where M;; = N(K(1(0) ® 1), I1® X + 0 ’KR;; (¢, wjK') for
I=1,...,L and j=1,...,], and each correlation matrix
is defined as R;; = I® ﬁlj)(l ® ﬁlj)/ (with implicit depen-
dence on the appropriate basis function type, range param-
eter, and temporal warping). The indicator variables z =
(z11, Z12, - - -, z17)" are multinomial (z ~ MN(1, p)) with p serv-
ing as prior model probabilities. Using the mixture model speci-
fication in (19), and conditioning on a large set of potential warp
fields, the resulting MCMC algorithm involves Gibbs updates
for the indicator variables, z;;. The marginal posterior mean of
the indicator variable z;;, E(zj|s), corresponds to the posterior
model probability for model M;;j, P(Mjls).

An alternative computational strategy involves the two-stage
RJMCMC approach by Barker and Link (2013) to find the poste-
rior model probability P(M;;|s) and model averaged posterior
inference (Appendix D, supplementary material). The advan-
tage of the RIMCMC approach by Barker and Link (2013) is that
each model can be fit independently (and in parallel), and a sec-
ondary MCMC algorithm can be used to sample from the aver-
aged posterior distributions. Parallel model fits provide appre-
ciable gains in computational efficiency. Finally, after fitting each
of the models, and applying Bayesian model averaging via RJM-
CMC, we use a tertiary algorithm to obtain realizations of the
latent position process p(t) for any time of interest ¢. To fit the
models we propose, the tertiary algorithm can also be paral-
lelized, but is usually fast enough to implement sequentially.

The two-stage RIMCMC facilitates the ability to compare
models with different basis function specifications. Thus, we
include both, a set of candidate temporal warp fields and all

of the covariance models constructed from the basis functions
shown in Figure 2. We accumulate the posterior model probabil-
ity resulting from the RIMCMC algorithm for each form of basis
function, resulting in Zi‘:l P(Myjls) for each basis function
type I, which may provide insight about potential mechanisms
(i.e., perception and memory) that influence animal behavior
and movement.

Finally, to obtain a set of candidate warp fields, we simu-
late warp fields as Gaussian processes with Gaussian covariance
structure to provide appropriate smoothness in the resulting
temporal deformation. High variance and low temporal corre-
lation in the warp distribution results in a higher proportion of
folding warp fields. Thus, we use a rejection sampling algorithm
to retain only those warp fields that obey the ordering of the
original time domain (i.e., do not fold). We simulate warp fields
based on a range of parameter values to yield a candidate set
that do not fold, yet contain a variety of multiscale patterns. The
appropriate temporal scale for the warp distribution is informed
by the data through the model averaging procedure.

In simulation, our method for fitting the FMM to data
was approximately an order of magnitude faster than conven-
tional Bayesian computational methods. We demonstrate that
our Bayesian FMM recovers model parameters for simulated
datasets with varying amounts of data missingness and temporal
heterogeneity in Appendix E (supplementary material). In what
follows, we apply the temporally heterogenous FMM to satellite
telemetry data corresponding to the movement of large mam-
mals in western North America and describe the implications
for our proposed methods.

3. Data Analysis: Animal Movement

We apply our temporally heterogenous FMM to satellite teleme-
try datasets consisting of recorded mule deer (Odocoileus
hemionus) and mountain lion (Puma concolor) positions in
Southeastern Utah and Northern Colorado, USA (originally
analyzed for other purposes by Hooten et al. 2010 and Hanks,
Hooten, and Alldredge 2015). Mule deer and mountain lion
are important species in the western North America that often
exhibit seasonally varying movement behavior (Pierce et al
1999; Ager et al. 2003). Many mule deer individuals split their
time between winter and summer ranges and migrate from one
to the other in the spring and autumn. Mountain lion move-
ment behavior also varies temporally, with individuals roam-
ing regionally and often returning to locations where prey has
been captured. In both mule deer and mountain lion individu-
als, there is a clear heterogeneity in movement dynamics. Our
FMM approach accommodates such movement heterogeneity
by treating it as temporal nonstationarity.

For the mule deer example, we focus on a five-day period dur-
ing autumn of 2005 that spans the migratory behavior of an indi-
vidual near Castle Valley, Utah, USA. These data were collected
as part of a larger study of the spread of chronic wasting dis-
ease (McFarlane 2007), a contagious prion disease that occurs in
North American ungulates (e.g., Farnsworth et al. 2006; Miller,
Hobbs, and Tavener 2006; Garlick et al. 2011; Garlick et al.
2014; Evans et al. 2016). Migratory routes are a critical element
of the natural history of mule deer in western North America



(Nicholson, Bowyer, and Kie 1997) and an improved under-
standing of them is essential for habitat management.

For the mountain lion, we focus on a 33-day period during
summer of 2011 in the Front Range of Colorado, USA. These
data were collected as part of a larger study to assess the move-
ment and survival of mountain lions in the Front Range of
Colorado. The mountain lion is an important native carnivore
that was once ubiquitous throughout much of North America
(Young and Goldman 1946; Laundré 2013). Mountain lions play
an essential role in ecosystem function by attenuating popula-
tions of prey species, which often include mule deer (Knopff
et al. 2010). Inference concerning mountain lion movement is
also important in the Front Range because of rapid development
of exurban areas in existing habitat (Blecha 2015).

The resulting telemetry data (Figure 3) for both species
were obtained using global positioning system (GPS) teleme-
try devices affixed to the individuals and are comprised of 226
measured geographic positions spaced approximately 30 min
apart for the mule deer individual and 221 observations spaced
approximately 3 hr apart for the mountain lion individual. For
analysis and plotting purposes, we standardized the position
data (i.e., subtracted the sample mean and divided by the pooled
sample standard deviation) and converted the time scale to the
[0,1] interval. In principle, data transformation is not necessary
for model implementation, but it allows us to use the same soft-
ware to simulate warp fields, fit the models, as well as use simi-
lar prior specification among species, leading to fewer numerical
overflow issues.

To implement an FMM for the mule deer and mountain lion
data using the specification presented in the previous section
(18), we used all of the kernel forms, k;(¢t, ) forl =1,...,5,
described in Figure 2 (and Appendix B). Following Diggle and
Ribeiro (2002), we reparameterized the covariance matrix for a
given basis function type [ in the FMM (18) such that

IQ % +0’(1® H)I® H)

=o0l(I+0;, (10 H)I®H)), (20)

s = 02/0? and H;(¢) is a function of the temporal
range parameter ¢ for the Gaussian, tail-up, and tail-down
kernel forms. For the standardized data, we used a discrete uni-
form prior for ¢ on 100 evenly spaced values from 0.001 to 0.1,
a uniform prior for o,/ on support (0, 20), and an informative
inverse gamma prior for o2 ~ IG(12, 0.01), representing strong
prior information that GPS telemetry error is often less than
150 m.

In implementing the FMM, we used 400 equally spaced
temporal knots for the kernels and we sampled approximately
4000 candidate warp fields using a Latin hypercube design from
a Gaussian process with Gaussian covariance constrained to
avoid temporal folding. The warp distribution was based on 100
parameter combinations for o,, and ¢,, (10 equally spaced val-
ues for each parameter, ranging from 0.001 to 1). The result-
ing multiscale candidate warp fields represent a wide range
of temporal deformation patterns that are combined optimally
using Bayesian model averaging. Trace plots for model parame-
ters indicated excellent MCMC mixing and convergence, based
on 10,000 MCMC samples for each model fit. Each model fit

where, o2
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required only 3 min on a 16-core workstation with 3 Ghz pro-
cessors and 64 GB of memory. The total time required to fit the
model for each of the warp fields in parallel was approximately
3 hr, which is substantially less than the 50 hr it would require to
compute in sequence. The secondary and tertiary algorithms to
perform the BMA and posterior predictive sampling required
only four additional minutes. We used empirical variograms
based on the posterior predictive residuals to check the mod-
els (Appendix F, supplementary material). For both the mule
deer and mountain lion data, the variograms showed no evi-
dence of remaining temporal autocorrelation unaccounted for
by the model.

The resulting inference is summarized in Figure 3. The top
row of panels in Figure 3 presents the data and estimated latent
process for the mule deer and mountain lion individuals in two-
dimensional geographic space. The gray lines are posterior pre-
dictive realizations of the latent process p(¢). The middle two
rows of panels in Figure 3 display the marginal latent process
in longitude and latitude. The bottom row of panels in Figure 3
shows the inferred derivative of the temporal warp at the poste-
rior mean of the position process.

The mule deer individual migrated during the time interval
0.3-0.6 (Figure 3). As discussed in the Heterogenous Dynamics
section, the warp derivative can provide insight on the move-
ment dynamics. The migratory movement behavior caused the
BMA warp derivative to be positive, indicating that a temporal
expansion is needed to accommodate the trajectory during that
time period. In contrast, the warp derivative was negative dur-
ing the time interval 0.6-0.75 suggesting a temporal contraction
was necessary to capture the different movement behavior for
the individual directly after migration.

The accumulated posterior model probabilities for the
kernel forms suggested that Brownian motion and integrated
Brownian motion were not helpful in describing mule deer
movement based on these data (i.e., posterior model probability
equal to zero). However, the Gaussian, tail-up, and tail-down
kernels accounted for 0.059%, 0.920%, and 0.021%, respectively.
The distribution of posterior model probabilities for the kernel
forms suggest that, while Gaussian, tail-up, and tail-down
kernels have some nonzero contribution, the tail-up kernel
dominates in characterizing mule deer movement. Recall that
the tail-up kernel acts as a local filter for Brownian motion,
smoothing the individual trajectory using past Brownian steps.
A potential interpretation of the posterior model probabilities
suggest that memory may play the largest role in mule deer
movement during migration.

The warp derivative for the mountain lion individual
(Figure 3) suggests a temporal contraction at the beginning and
end of the temporal domain (i.e., + < 0.2 and ¢ > 0.8) with
a temporal expansion between (i.e., 0.4 <t < 0.8). The FMM
inference confirms that the mountain lion individual occupies a
location with prey before traversing a large loop, only to return
to the same location a few weeks later. Mountain lion movement
is thought to be strongly influenced by a knowledge of kill sites
(Hanks, Hooten, and Alldredge 2015) and our analysis provides
additional quantitative evidence to support that.

Similar to the mule deer results, the accumulated poste-
rior model probabilities for the kernel forms suggested that
Brownian motion and integrated Brownian motion were not



586 (&) M.B.HOOTEN AND D.S.JOHNSON

Mule Deer

20

—— Position Prediction
Paosition Uncertainty
- ®  Observed Locations

10

Mountain Lion

— Position Prediction
- Position Uncertainty
® Observed Locations

i =
£° €7
=] -]
= =
o
E
w
w
=
7
=
3 2 3 2 1] 0] z 3
east
s U AV x
™ :
o ;—"’ \ n—
- o =° S — -\ W - 7
e a ! \'
@ @ ‘
i | \ ]
3 ] E \
? m “1\/;
N 1 ’,_-y.f 4
v 0.0 02 04 . 06 08 1.0 00 02 04 E 06 08 1.0 )
time time
i ;
&
B f '\1 ) e ———— r—a‘ﬁ uﬂ"-\ s
2 A .'Hr ; A = /-'
=t L/ \ \
£2 ) = 7
= \ g %‘“ ~
Cea c '
s Yy o "\‘f o
» /
i \-\—\___’_’_/ U‘L\b_\_‘, L \,,Vf"
0D 0z 04 ) 06 08 10 0o 02 04 - 08 10
time time
g
2
E
g
s g
: e
=1 8
4] /—\ 2=
28 2z
D= @
b= b=
o g
e =
) &
00 0z 04 ) [0 (Y] 10 00 0z - 08 10
time time

Figure 3. Posterior predicted mule deer (left column) and mountain lion (right column) paths u (t) using BMA. Top panels: Paths in two-dimensional geographic space.
Middle panels: Marginal paths for easting and northing. Position uncertainty is represented as posterior realizations in the top panel and 95% marginal credible intervals

in the middle two panels. Bottom panel: Warp derivative obtained via BMA.

helpful in describing mountain lion movement based on these
data (i.e., posterior model probability equal to zero). How-
ever, the Gaussian, tail-up, and tail-down kernels accounted for
0.27%, 0.7295%, and 0.0005%, respectively. The distribution of
posterior model probabilities for the kernel forms suggest that,
while both Gaussian and tail-up kernels are useful, the tail-up
kernel is twice as important for characterizing mountain lion
movement. The combination of smoothing based on previous
and future Brownian steps suggest that both memory and per-
ception may influence mountain lion movement based on the
data we analyzed.

4. Discussion

The rapidly expanding literature on statistical models for ani-
mal movement has provided a wealth of useful tools for

analyzing telemetry data. In particular, individual-based mod-
els for trajectories have become a popular means for obtain-
ing inference concerning the patterns and processes involved
in animal movement. Despite the development of approaches
for modeling animal trajectories in continuous-time, discrete-
time movement models have dominated the recent litera-
ture. Heuristically, discrete-time animal movement models
(e.g., Morales et al. 2004; Jonsen, Flemming, and Myers
2005; McClintock et al. 2012) are straightforward and easy
to understand. They also provide a direct means to incorpo-
rate time-varying heterogeneity. In particular, temporal clus-
tering of animal movement trajectories has proven useful
for inferring animal behavior and for better understand-
ing the spatial patterning of behavior. However, movement
processes are necessarily continuous in time, but traditional
continuous-time trajectory models have been oversimplified or



computationally challenging to implement for large datasets
(McClintock et al. 2014).

We presented a continuous-time stochastic trajectory model
that retains the natural intuition of discrete-time models, is
feasible to implement for large datasets, accommodates time-
varying heterogeneity in movement, and is general enough to
allow for cognitive realism (e.g., memory and perception). We
showed that existing stochastic process models for movement
can be generalized to facilitate basis function representations of
the dynamical process. Basis function representations are com-
monly used in spatial and spatio-temporal statistics, semipara-
metric modeling, and functional data analysis. We show how
the same machinery used in spatial statistics to model compli-
cated dependence structures in data can also be used in animal
movement modeling. For example, temporal heterogeneity can
be expressed as nonstationarity in a second-order Gaussian pro-
cess model for individual trajectories using existing methods.

In previous implementations of both continuous- and
discrete-time animal movement models, computation has been
a bottleneck for inference based on statistical modeling. Com-
putationally feasible model structures were often over-simplified
and lacked appropriate realism. Historically, more complicated
models required custom software written in compiled languages
that do not facilitate user modifications. We combined multi-
ple computational approaches to develop a strategy for fitting
hierarchical stochastic process models to telemetry data. Our
method exploits the substantially improved storage and multi-
core processing capabilities of modern computers so that the
models we presented herein can be fit on a standard laptop
computer.

We showed that our modeling framework appropriately
accommodates temporally heterogenous structure in realistic
animal trajectories as well as providing a natural way to handle
irregular fix rates common in telemetry data. Most discrete-time
trajectory models for telemetry data rely on either imputation
or a linear interpolation to accommodate irregular acquisition
times. For mule deer and mountain lion individuals, we showed
that our model is able to accommodate mechanistic forms of
temporal heterogeneity due to natural seasonality and environ-
mental cues, providing inference concerning where and when
changes in movement behavior occur.

The basis function approach we present is both familiar and
further generalizable. For example, the Gaussian data and pro-
cess model components in the FMM are important for computa-
tional tractability, however they can easily be generalized. In par-
ticular, other forms of satellite telemetry data (e.g., Argos) have
distinctly non-Gaussian telemetry error patterns (Brost et al.
2015; McClintock et al. 2015; Buderman et al. 2016). Incorporat-
ing non-Gaussian data models in the FMM framework so that
the procedure remains computationally efficient is a high prior-
ity for future research.

Furthermore, because the computational approach we pre-
sented is feasible for large datasets, the individual-level models
could be nested within a population-level framework to provide
inference for groups of individuals simultaneously (e.g., Hooten
etal. 2016). Population-level FMMs with interacting individuals
are the subject of ongoing research.

Our study system was somewhat devoid of hard bound-
aries to movement, but future research to formally incorporate
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physical constraints to the true position process would be useful
(e.g., Tracey, Zhu, and Crooks 2005; Brost et al. 2015). Statisti-
cally rigorous methods for accommodating constraints in multi-
variate continuous-time dynamic processes have been proposed
in other fields (e.g., Cangelosi and Hooten 2009), but are still
nascent in statistical approaches for telemetry data.

Supplementary Material

Appendix A: Derivation of reparameterization of convolved multivariate
Brownian motion.

Appendix B: Specification and visualization of basis functions in H.

Appendix C: Sherman-Morrison-Woodbury identity for FMM.

Appendix D: RIMCMC algorithm for fitting FMM.

Appendix E: Simulation examples involving homogenous and heterogenous
dynamics.

Appendix F: Empirical variograms for posterior predictive residuals of mule
deer and mountain lion models.
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