
Errata:
Hooten, M.B. and N.T. Hobbs. (2015). A guide to Bayesian

model selection for ecologists. Ecological Monographs, 85: 3-28.

We have corrected a few programming bugs in the MCMC algorithm for the occupancy model and
BMA in the toy example (file: ‘occ.aux.mcmc.R’). The updated R code can be found at:

http://warnercnr.colostate.edu/~hooten/papers/

The updated code results in the following tables and figures. While the specific values changed, the
corresponding model comparison message is very similar to that described in the paper. For extra stability,
we also used the integrated likelihood in calculating the scoring functions. We outline the changes below.

For the section on posterior model probabilities (Table 2), the results are similar with M2 and M4

weighing more heavily than M1 and M3. However, with the new code, M4 has a higher posterior model
probability than before (0.96). Thus, we would expect it to carry most of the weight in a model average
(Table 3). As before, the posterior means for β1 and β2 are similar, with the intercept (β0) and detection
probability (p) changing due to fixed bug in the MCMC algorithm. However, the model averaged results
are as expected, averaged posterior means are most simlilar to the results from M4 due to the high posterior
model probability.

The cross-validation score and CPO agree that the two best predicting models are M2 and M4, with
model M3 and M1 performing less well (Table 4). Similarly, the information criteria support these results
with DIC and WAIC concurring that models M2 and M4 predict the best, with models M1 and M3

performing substantially worse (Table 5). The posterior predictive loss criterion (D∞,sel) indicates models
M1, M3, and M4 are best predicting. However, as stated in the original paper, D∞,sel does not use an ideal
loss function for binary data.

Finally, Bayesian regularization via an increasingly strong prior for the regression coefficients results
in the same pattern as reported in the original paper (Figure 3). That is, as the coefficients shrink
toward zero with increasingly stronger priors, the cross-validation score reduces until its minimum occurs
at approximately σ2

β = 0.25. The score then increases as the prior variance converges to zero, indicating
a worse predicting null model (as originally reported). Thus, the optimal shrinkage for prediction in this
example occurs with a much smaller prior variance than would have been used by default.
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Table 2: Willow Tit Occupancy: Prior and posterior model probabilities.
Model Covariates P (Ml) P (Ml|y)

M1 NULL 0.25 0.00
M2 ELEV 0.25 0.04
M3 FOR 0.25 0.00
M4 ELEV + FOR 0.25 0.96

Table 3: Willow tit occupancy posterior means for p, β0, and β across all models and using BMA.
Parameter M1 M2 M3 M4 BMA

p (detection prob.) 0.77 0.74 0.77 0.76 0.76
β0 (intercept) -0.44 -0.49 -0.48 -0.63 -0.62
β1 (elevation) 0.00 1.03 0.00 0.89 0.90
β2 (forest) 0.00 0.00 0.42 0.43 0.41

Table 4: Willow tit occupancy results for cross-validation and CPO.
Model Covariates C-V Score −

∑
i log(CPOi)

M1 NULL 394.7 196.8
M2 ELEV 329.3 165.2
M3 FOR 379.6 188.7
M4 ELEV + FOR 322.1 160.3

Table 5: Willow tit occupancy results for WAIC, DIC, and D∞,sel (posterior predictive loss).
Model Covariates WAIC DIC D∞,sel

M1 NULL 393.6 393.2 80.9
M2 ELEV 330.4 329.7 95.7
M3 FOR 377.4 376.8 81.0
M4 ELEV + FOR 320.7 319.9 85.7
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