
CONCEPTS & SYNTHESIS
EMPHASIZING NEW IDEAS TO STIMULATE RESEARCH IN ECOLOGY

Ecological Monographs, 85(1), 2015, pp. 3–28
� 2015 by the Ecological Society of America

A guide to Bayesian model selection for ecologists

M. B. HOOTEN
1,2,3,4,7

AND N. T. HOBBS
4,5,6

1U.S. Geological Survey, Colorado Cooperative Fish and Wildlife Research Unit, Colorado State University, Fort Collins,
Colorado 80523-1484 USA

2Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado 80523-1484 USA
3Department of Statistics, Colorado State University, Fort Collins, Colorado 80523-1484 USA

4Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado 80523-1484 USA
5Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, Colorado 80523-1484 USA

6Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado 80523-1484 USA

Abstract. The steady upward trend in the use of model selection and Bayesian methods in
ecological research has made it clear that both approaches to inference are important for
modern analysis of models and data. However, in teaching Bayesian methods and in working
with our research colleagues, we have noticed a general dissatisfaction with the available
literature on Bayesian model selection and multimodel inference. Students and researchers
new to Bayesian methods quickly find that the published advice on model selection is often
preferential in its treatment of options for analysis, frequently advocating one particular
method above others. The recent appearance of many articles and textbooks on Bayesian
modeling has provided welcome background on relevant approaches to model selection in the
Bayesian framework, but most of these are either very narrowly focused in scope or
inaccessible to ecologists. Moreover, the methodological details of Bayesian model selection
approaches are spread thinly throughout the literature, appearing in journals from many
different fields. Our aim with this guide is to condense the large body of literature on Bayesian
approaches to model selection and multimodel inference and present it specifically for
quantitative ecologists as neutrally as possible. We also bring to light a few important and
fundamental concepts relating directly to model selection that seem to have gone unnoticed in
the ecological literature. Throughout, we provide only a minimal discussion of philosophy,
preferring instead to examine the breadth of approaches as well as their practical advantages
and disadvantages. This guide serves as a reference for ecologists using Bayesian methods, so
that they can better understand their options and can make an informed choice that is best
aligned with their goals for inference.

Key words: Akaike information criterion; Bayes factors; cross-validation; deviance information
criterion; model averaging; multi-model inference; regularization; shrinkage.

INTRODUCTION

Model selection and Bayesian statistics have become

increasingly important tools in the field of ecology

(Johnson and Omland 2004, Clark 2005, Cressie et al.

2009, Hobbs 2009). Despite an upward trend in the use

of model selection and Bayesian methods in ecological

research, the intersection of these two frameworks for

inference has been minimal in the literature (Fig. 1). The

guidance provided about model selection in the Bayesian

statistical literature is unbalanced and lacks cohesion.

The theory and protocol for implementing a variety of

Bayesian model selection methods seem much less

tangible than the information criterion approaches for

maximum likelihood we have grown accustomed to in

ecology. Thus, we are at a critical juncture in our field.

Do we use newer statistical technology while potentially

foregoing model selection because it is too complicated,

or do we use more familiar statistical methods at the

potential risk of letting our choice of selection procedure

dictate what scientific questions we can answer with our

model(s)? An awareness of available model comparison

approaches in the Bayesian framework can help the

ecologist choose and apply the method that is most

suited to their goals for inference.
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Preliminary assumptions and notation

Our primary focus is on providing a comprehensive

description of available methods for Bayesian model

selection and multimodel inference that is accessible to

ecologists. For a discussion of the philosophical

arguments pertaining to model selection and multimodel

inference we refer the interested reader to several

excellent sources, including Gelman and Shalizi (2012)

and J. M. Ver Hoef and P. L. Boveng (unpublished

manuscript), who discuss when and why one should use

model selection methods. In this exposition, we assume

the reader is familiar with the philosophical underpin-

nings and has already decided that they (1) seek

Bayesian statistical inference, (2) would like to compare

models for the purpose of improving that inference, and

(3) have already verified the model assumptions for their

particular data set. This last item is critical because if the

model assumptions are not met, the resulting statistical

inference (including predictions and prediction uncer-

tainty) rests on a house of cards. Reliable inference

requires checking the assumptions of our models. For

further details on model checking, including the

evaluation of goodness of fit and posterior predictive

P values, see Gelman et al. (2014a).

We also assume the reader has broad familiarity with

statistical methods including least squares and maxi-

mum likelihood, as well as a basic understanding of

Bayesian model building and algorithms for implemen-

tation (e.g., Markov chain Monte Carlo). Gotelli and

Ellison (2012) and Bolker (2008) provide excellent

background on contemporary ecological statistics, and

from a Bayesian perspective see Clark (2007), Royle and

Dorazio (2008), Link and Barker (2010), and Hobbs and

Hooten (in press).

We make frequent use of matrix notation and linear

algebra (to avoid excessive summation notation)

throughout this guide, but readers unfamiliar with these

concepts will be able to glean the big-picture concepts

and connections from our descriptions. In particular, we

use a common Bayesian square bracket notation [a j b]

(courtesy of Gelfand and Smith 1990) to represent

probability distributions, in this case, the distribution of

variable a given variable b. We also make occasional use

of the probability notation P(c) to denote the probabil-

ity of item c. For matrix notation, we use a standard

form where matrices and vectors are bold, with matrices

uppercase (e.g., X) and vectors lowercase (e.g., x).

Transpose matrix and vector is denoted by the prime

symbol (e.g., x0). We use h generically to denote a set of

model parameters, and y to denote a data set, typically

composed of response variables. Finally, we have

defined several commonly used terms in the model

selection and Bayesian literature in Table 1 to aid those

readers less familiar with the subject.

Overview of topics

In this guide, we present a wealth of available

perspectives on Bayesian multimodel inference and

model selection. It may come as a surprise that there

are many options for model selection and multimodel

inference, each with its own strengths and weaknesses. It

is our view that ecologists need the ability to distinguish

among methods more than they need a strict set of rules

to follow in how to proceed with model selection. We

use the term ‘‘guide’’ here (in the same sense as a field

guide for birds) because we have made an effort to be

thorough and to remain unaffiliated in our description

of these methods. Our guide is intended to be used as a

conceptual aid; ecologists can use it to learn about the

variety of options available and can decide how each fits

in with their own research goals. For illustration, we

implement several specific methods (all computer code is

available in the Supplement). However, as space does

not allow us to provide specific examples of computa-

tional algorithms for every approach, we have made an

effort to provide the reader with numerous references

they can consult to implement these methods in the

statistical software of their choice.

This paper is organized as follows. We begin by

highlighting a few of most important and sometimes

lesser known take-home messages concerning model

FIG. 1. The results of a Web of Science search
in number of articles per search string for each of
the past 25 years.
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selection. This prelude serves as an overview containing

big picture connections between the methods we

describe subsequently. We then introduce a specific

Bayesian ecological model as a case example. We refer to

this example throughout to illustrate differences among

alternative approaches. We describe Bayesian model

averaging, for use when the goal of the researcher is to

make inferences from more than one model. We treat

out-of-sample validation, the gold standard for model

selection based on predictive ability. We then turn to a

topic that applies broadly across Bayesian and non-

Bayesian statistics, the process of regularization, which

we feel is essential to understanding the subsequent

material on information criteria. We then cover model-

based methods for model selection. In the penultimate

section, we provide specific guidance on matching

alternative methods to inferential goals. As a visual aid

to the flow of the manuscript, we show section topics

and sub-topics in Fig. 2, providing an overview for the

relationships among ideas and methods that we describe

throughout the paper.

Highlights

While preparing this guide, we experienced several

epiphanies ourselves that had not occurred to us

previously. We discovered that most of these findings

have existed in the literature for quite some time (a

decade, at least), but had not been brought together in a

way that supports a solid understanding and intuition

about model selection. Among the most important of

our own epiphanies were the following (see Table 1 for

definitions of terms):

1) There is no general consensus among statisticians on

the topic of model selection.

2) Multimodel inference can be thought of from many

different perspectives, including model averaging.

Thus, we use the phrase ‘‘model selection’’ somewhat

generically (including model comparison and multi-

model inference) because many of the methods we

describe inherently consider multiple models (some-

times infinitely many), but aren’t considered to be

model averaging in the conventional sense.

3) Much of the statistical community relies heavily on

out-of-sample model comparison approaches, yet,

in ecology, we primarily favor information criteri-

on approaches that avoid the use of out-of-sample

data for model evaluation. Despite the potential

advantages for model selection, out-of-sample

methods have been largely ignored by ecologists

because they may require additional data beyond

what was already collected in the study and

historically were very computationally intensive

to implement.

4) Cross-validation is a hybrid approach containing

both out-of-sample and within-sample aspects. From

a Bayesian perspective, cross-validation for model

selection is considered to be an empirical Bayesian

method and can be incredibly helpful for model

selection.

5) Neither AIC nor BIC are appropriate for Bayesian

model averaging in all situations. Both AIC and BIC

were designed to be used with maximum likelihood

estimates and make fairly strong assumptions about

a priori model probabilities. Whereas AIC excels at

finding good predictive models, BIC was developed

mainly for model averaging purposes and is good for

small sets of well-justified models.

6) DIC and AIC often yield quite similar results for

model selection with certain classes of models,

however, DIC is not ideal for all classes of models

(e.g., mixture models). No theoretical justification

exists in the literature for the use of DIC in model

averaging. Furthermore, DIC is not a fully Bayesian

model comparison criterion.

7) A truly Bayesian information criterion seems to

have just been discovered (i.e., WAIC), but in

actuality went unnoticed for more than a decade.

WAIC resolves many of the issues with DIC, but

TABLE 1. Glossary of terms and definitions.

Term Definition

AIC Akaike’s information criterion, a within-sample non-Bayesian score for prediction
Bayes factor the ratio of marginal data distributions pertaining to two models
BIC Bayesian (Schwartz) information criterion, a within-sample non-Bayesian score for model

averaging
CPO conditional predictive ordinate, a within-sample score for leverage
Cross-validation the iterative use of within-sample data to validate models in terms of out-of-sample

predictive ability
DIC deviance information criterion, a within-sample quasi-Bayesian score for prediction
Effective number of parameters pD, a measure of model complexity as a penalty in Bayesian information criteria
Empirical Bayesian the use of within-sample data to inform Bayesian model components such as priors
Out-of-sample data an auxiliary set of data that are used for model comparison
Posterior predictive loss an approach for scoring models based on decision theory
Regularization constraining a statistical optimization problem (i.e., penalization or shrinkage)
Regulator constraint, optimism, penalty, or prior
Score a function used to evaluate models numerically, usually in terms of predictive ability
WAIC Watanabe-Akaike information criterion, a within-sample fully-Bayesian score for prediction
Within-sample data response data typically used to fit a model, but also to calculate information criteria
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also seems to have a critical weakness for some

models.

8) Regularization is an umbrella concept that spans

nearly all topics in model selection. When statistical

optimization problems are written as regularization

expressions, it becomes clear that AIC, BIC, DIC,

WAIC, posterior predictive loss, ridge regression,

and Lasso all fall under the same umbrella.

Moreover, regularization itself has an inherently

Bayesian justification. It explicitly constrains model

parameters in the same way a Bayesian prior does.

Thus, model selection is similar to using a strong

prior, at least in spirit.

9) The Bayesian framework allows one to actually build

parametric mechanisms into models that perform

model selection (e.g., stochastic search variable

selection and reversible jump Markov chain Monte

Carlo [MCMC]). We refer to these as model-based

model selection approaches. They can be viewed as a

combination of model selection and multimodel

inference.

An exemplar: the hierarchical Bayesian occupancy model

Mixture models, especially zero-inflated models,

comprise an important class of statistical tools in

contemporary ecological research. In particular, occu-

pancy and capture–recapture models are very commonly

used in the field of wildlife ecology (Royle and Dorazio

2008). We consider the hierarchical occupancy model as

a prototypical Bayesian ecological model. The Bayesian

occupancy model presents challenges for traditional

model comparison methods, thus, we introduce the

model here and refer back to it later to demonstrate

several approaches for model selection and multimodel

inference.

In essence, the occupancy model is simply a binary

regression model with binary measurement error. In its

application, the occupancy model can be used to learn

about the true presence or absence of a species and the

niche-related features of the sites while accounting for

imperfect detection (MacKenzie et al. 2006). The basic

occupancy model, presented for ecologists, was de-

scribed by MacKenzie et al. (2002) and included

implementation details from a maximum likelihood

perspective. More recently, occupancy models have

been extended to model temporal dynamics (e.g.,

MacKenzie et al. 2003), spatial autocorrelation (e.g.,

Johnson et al. 2013), and community dependence (e.g.,

Dorazio et al. 2010).

Hierarchically, a simple occupancy model with

homogeneous detection probability and heterogeneous

occupancy probabilities can be written as a zero-inflated

binomial data model (with detection probability p) that

depends on a latent Bernoulli process (zi, presence or

absence) that varies among sites (i¼ 1, . . . , n) according

FIG. 2. Overview of topics treated in this guide. These topics are grouped by their linkages to the main model selection and
multimodel inference themes. Boxes represent overarching concepts, rounded boxes represent certain approaches that fall under
those concepts, and ovals correspond to specific tools (gray indicates tools that are not clearly Bayesian). Arrows indicate specific
types of approaches and tools that fall under the broader concepts, whereas dashed lines represent links among items if certain
assumptions hold (e.g., Bayesian information criterion [BIC] can be used for model averaging if parameters can easily be counted,
priors are vague, and posterior modes are used as point estimates for parameters). Abbreviations are explained in Table 1.

M. B. HOOTEN AND N. T. HOBBS6 Ecological Monographs
Vol. 85, No. 1

C
O
N
C
E
P
T
S
&
S
Y
N
T
H
E
S
I
S



to probability wi. The response data, yi, are a sum of the

binary detection history for each site over a set of visits

or occasions (Ji ); that is, yi ¼
P Ji

j¼1 yij, where yij are

binary detection observations for site i on survey

occasion j. On each occasion, the species is detected

(i.e., yij ¼ 1) with probability p if it is truly present,

otherwise it is recorded as not detected (i.e., yij¼ 0). For

simplicity, we have used a specification of the occupancy

model that assumes a homogeneous detection probabil-

ity p and conditional independence for detection on each

site visit j¼ 1, . . . , Ji. These assumptions can be relaxed

by allowing for variation in detection as well as

occupancy probability.

The logit link, log(wi/(1 – wi)), is most commonly used

function relating occupancy probability wi to a set of site-

level covariates xi, however there can be computational

advantages to using other link functions such as the

probit (Hooten et al. 2003, Dorazio and Rodriguez 2012,

Johnson et al. 2013). The probit link function allows us to

reparameterize the model using a set of auxiliary variables

vi that describe a continuous latent process representing

occupancy probability (Albert and Chib 1990). The

probit occupancy model is specified hierarchically as

yi ;
0 if zi ¼ 0

BinomðJi; pÞ if zi ¼ 1

�
ð1Þ

zi ;
0 if vi � 0

1 if vi . 0

�
ð2Þ

vi ; Nðb0 þ x 0
i b; 1Þ ð3Þ

p ; Betað1; 1Þ; ð4Þ

b0 ; Nðl0;r
2
0Þ; ð5Þ

b ; Nðl;r2
bIÞ; ð6Þ

where the probit link function itself (i.e., U, the standard

normal cumulative distribution function) only comes into

play when we condition zi on the regression coefficients b0
and b (e.g., b ¼ (b1, b2)0) directly; then we obtain zi ;

Bernoulli(U(b0 þ x 0
i b)). The advantages of this probit

occupancy model are primarily computational. The

implicit probit link function allows us to create a fully

Gibbs MCMC algorithm that requires no Metropolis-

Hastings updates or tuning (Dorazio and Rodriguez

2012, Johnson et al. 2013). We use the probit occupancy

model presented in Eqs. 1–6 as a basis for demonstrating

the model selection procedures that follow, making

modifications to it as needed.

MODEL AVERAGING

From here forward, assume that we are dealing with a

set of models M ¼fM1, . . ., Ml, . . ., MLg (where L is the

total number of models) that are built using expert

scientific judgement and are not obviously inappropri-

ate in terms of assumptions. Model averaging allows us

to combine the strengths of several models for improved

inference. It has been argued (e.g., Kass and Raftery

1995, Link and Barker 2006) that Bayesian model

averaging (BMA) is the proper way to obtain multi-

model inference under the Bayesian statistical paradigm

because it provides a valid probability-based mecha-

nism for considering multiple models in the presence of

process and parameter uncertainty. Hoeting et al.

(1999) provided an excellent overview of BMA,

complete with implementation details for selected

model classes.

An important and often overlooked aspect of model

averaging is that BMA was not designed as a method for

model selection, but rather as a method for combining

posterior distributions. Whereas many of the methods in

the following sections are based heavily on finding

models that excel at out-of-sample predictive perfor-

mance (e.g., AIC and DIC), BMA is intended for

within-sample model combination. Thus, in what

follows, we provide some insight about how BMA fits

into the larger suite of model selection methods and refer

the interested reader to the literature cited herein for

details.

At the heart of BMA is the average posterior

distribution of a quantity of interest ((g [ g(h, ỹ)),
typically a function of either an unknown parameter or

set of data or both)

½g jy� ¼
XL

l¼1

½g j y;Ml�PðMl j yÞ ð7Þ

where [g j y, Ml] is the posterior distribution of g under

individual model Ml and P(Ml j y) is the posterior

probability of model Ml. The posterior model probabil-

ity P(Ml j y) is the workhorse of the BMA procedure,

providing the weight of evidence in the average Eq. 7 for

one model over others. Thus, we have a natural and

proper Bayesian framework for multimodel inference as

long as we can find the required quantities in Eq. 7.

Furthermore, BMA performed on a set of models M
yields better inference about g than any one of the

models alone (Madigan and Raftery 1994), thus we have

a compelling reason to use it.

The utility of the marginal data distribution

Recall the classical expression for Bayes rule assuming

a single model

½h jy� ¼ ½y j h�½h�½y� ð8Þ

where [h] is the prior distribution for the parameters. The

denominator [y], which we typically avoid finding

analytically, corresponds to the aforementioned marginal

data distribution for the given model; it will be large for

the same set of data if the model represents them well

and small if it doesn’t. The marginal data distribution [y]

is a natural model discrimination measure by itself and is
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fundamental in computing the posterior model proba-

bilities P(Ml j y). To show this, we generalize the notation

to include information concerning the individual model

each [y] is associated with. Therefore, let [y jMl] be the

marginal data distribution for model l. Then, the

posterior model probability can be written as

PðMl j yÞ ¼
½y jMl�PðMlÞPL
j¼1½y jMj�PðMjÞ

ð9Þ

where P(Ml) is the assumed prior model probability,

which is commonly set to 1/L. The use of equal prior

model probabilities explicitly assumes that there may be

no reason to prefer one model over another. The

alternative is to set the P(Ml) such that they represent

an a priori understanding of differences among model

importance as long as the sum of prior model probabil-

ities over all models in the set equals 1. To obtain the

necessary marginal data distribution for model l we need

to integrate over the parameters in the joint distribution

of the data y, the model Ml, and the parameters h so that

½y jMl� ¼
Z
½y jh;Ml�½h�dh: ð10Þ

Note that this (Eq. 10) is the same expression typically

appearing in the denominator of Bayes rule (Eq. 8).

Bayes factors

Assuming that we can find the posterior distribution

for the quantity of interest [g j y, Ml] for all models in M ,

we need only compute the posterior model weights to find

the averaged posterior distribution (Eq. 7). As it happens,

solving the integral in the marginal data distribution (Eq.

10) is often nontrivial, which is why most Bayesian

studies use MCMC to avoid calculating it directly. The

sum in the denominator of the posterior model proba-

bility (Eq. 9) can also become intractable as the number

of models L grows. Thus, despite its attractiveness and

rigor, the challenge with BMA is in its implementation.

Consider the ratio of posterior probabilities for two

models, say Ml and Ml̃. Using a bit of algebra it is easy

to show that the ratio (i.e., the posterior odds) is

PðMl j yÞ
PðMl̃ j yÞ

¼ ½y jMl�PðMlÞPL
j¼1½yj Mj�PðMjÞ

,
½y jMl̃�PðMl̃ÞPL
j¼1½yj Mj�PðMjÞ

¼ ½yj Ml�
½yj Ml̃�

PðMlÞ
PðMl̃Þ

¼ Bl;l̃

PðMlÞ
PðMl̃Þ

ð11Þ

which, after the data y have been observed, can be

written as a constant multiplier of the ratio of prior

model probabilities (i.e., the prior odds). The multiplier

Bl,l̃ in Eq. 11 is known as the Bayes factor and is only a

function of the marginal data distributions from each

model (Kass and Raftery 1995). Thus, the posterior

evidence in favor of one model over another is found by

updating the prior evidence with the data. Similar to the

various rules of thumb for comparing models using

information criteria, there have been several suggested

rules of thumb in the literature for Bayes factors (e.g.,

Bl,l̃ . 10 implies strong evidence in favor of model Ml

over model Ml̃ according to Jeffreys (1961)).

The utility of the marginal data distribution for model

averaging becomes clear because the posterior proba-

bility of any model Ml

PðMl j yÞ ¼
Bl;l̃PðMlÞPL
j¼1 Bj;l̃PðMjÞ

ð12Þ

is obtained by dividing the numerator and denominator

in the posterior model probability (Eq. 9) by [yjMl̃]

(Link and Barker 2006). Thus, if we have the marginal

data distributions [y jMl] for all models being consid-

ered, then we have the Bayes factors Bl,l̃, and if we have

the Bayes factors we can compute the exact Bayesian

model weights for performing model averaging. Various

methods exist for calculating the necessary quantities in

Bayesian model averaging (e.g., Congdon 2006), some

of which we will describe in what follows (Statistical

regularization and information criteria: Traditional reg-

ulator: The penalty: Bayesian information criterion and

Model-based model selection: Reversible-jump MCMC ).

Finally, we note that one must be cautious in Bayesian

model averaging when improper priors (i.e., prior

distributions that do not integrate to 1) are used for

parameters, as the Bayes factors are undefined in those

settings (Spiegelhalter and Smith 1982).

Willow Tit occupancy: BMA

Royle and Dorazio (2008) describe a data set

involving occupancy sampling of Swiss breeding birds

as part of the Swiss Survey of Common Breeding Birds

(collected by the Swiss Monitoring Haufige Brutvogel,

and originally provided by Hans Schmid and Marc

Kery). Thanks to Royle and Dorazio (2008), these data

have become a standard textbook example used to

demonstrate Bayesian occupancy models. We use a

subset of data consisting of the first 200 quadrats

throughout Switzerland where surveys were conducted

for up to three sampling occasions. We focus on the

same species considered by Royle and Dorazio (2008),

the Willow Tit (Parus montanus), a relatively common

passerine in Europe that resembles the Chickadee of

North America in appearance (see Plate 1). Royle and

Dorazio (2008) analyzed a binary form of the data at

each site and occasion (i.e., detected/non-detected)

along with covariate information on elevation and forest

cover (which we standardize to have mean zero and

standard deviation equal to one). Further details

concerning data collection methods for this study are

described by Kery and Schmid (2004).

Existing life history information concerning the

environmental niche of the willow tit suggests that

forest cover and elevation are important features. To

demonstrate Bayesian model averaging (as well as the

methods that follow) applied to the occupancy model,
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we constructed a set of four distinct candidate models to

learn about the niche preferences of this species. Each

occupancy model contains a homogeneous detection

probability and an occupancy probability that (1) is

homogeneous, containing only an intercept (i.e., b0; the

null model, M1), (2) contains an intercept and elevation

as a covariate (M2), (3) contains an intercept and forest

as a covariate (M3), and (4) contains an intercept and

both elevation and forest as covariates (M4).

Assuming that we seek to use within-sample data to

combine models, we can utilize Bayesian model averag-

ing to obtain improved inference concerning the niche

preferences of Willow Tit in Switzerland. Using the

computational approaches described in Model-based

model selection (i.e., reversible-jump MCMC), we

calculated the posterior model probabilities for the four

models (M1–M4; Table 2). Assuming equal prior

probabilities for this example (i.e., Ml ¼ 1/4 for l ¼
1, . . . , 4), we find that the two models containing the

elevation covariate dominate the model averaged

inference with posterior model probabilities of

P(M2 j y) ¼ 0.52 and P(M4 j y) ¼ 0.48. Given our equal

prior model probabilities, the Bayes factor for model M2

over M4 is computed as P(M2 j y)/P(M4 j y) ¼ 1.08.

We demonstrate the differences between posterior

means for coefficients among all models considered in

Table 3 as well as the model averaged posterior means.

Notice that the BMA posterior mean for the elevation

coefficient falls between the values resulting from the two

models containing that covariate (i.e.,M2 andM4), while

the BMA posterior mean for the forest coefficient shrinks

toward zero. This shrinkage of b1 is caused by the very

small posterior model probability for M2 (i.e., the model

with only forest as a covariate), thus down weighting the

estimate resulting from that model because it carries little

weight in the Bayesian model average.

Following the line of reasoning provided by Madigan

and Raftery (1994) it is common to consider BMA for

only the two models containing the elevation covariate

because the others have negligible posterior model

probabilities. Thus, if one desired BMA inference based

on the Occam’s window principle (i.e., considering only

models carrying substantial weight in the averaging),

one would rerun the analysis using only the two top

models in this scenario. We return to Bayesian model

averaging in Model-based model selection, describing

various approaches for computation.

MODEL VALIDATION

In this section, assume again that we are considering a

set of models M . But now suppose we are interested in

evaluating each model’s performance relative to some

predefined characteristic. Predictive ability is by far the

most commonly sought model characteristic in the

literature on model selection and thus we highlight it

here. Alternatively, other methods have been developed

for selection based on estimation inference (i.e.,

inference that seeks to improve our understanding of

model parameters rather than predictions [Bondell and

Reich 2012]).

Out-of-sample validation

If we are interested in prediction as our main

characteristic of model utility, then it is sensible to

evaluate the model in terms of real predictive ability;

that is, we seek a model whose predictions are close to

out-of-sample (oos) data (with closeness measured using

a score function). Out-of-sample data are observations

that are not used to fit the model but that we can use to

compare with model predictions. In the machine

learning literature, out-of-sample data are often referred

to as ‘‘validation’’ data, whereas within-sample data are

commonly referred to as ‘‘training’’ data (Hastie et al.

2009).

The essential idea in out-of-sample validation is that

two data sets are collected; one to fit (or train) the model

(y) and one to validate the model (yoos). A large out-of-

sample data set will provide the best information about

the predictive performance of a model, but is obviously

more intensive to collect. Thus, some trade-off between

within-sample and out-of-sample data set size is

necessary. For large single data sets such as those

derived from web searches or financial data it is

common to split the data set into two pieces, one for

training and another for validation. If the original data

set is large enough, the resulting decrease in inferential

power due to splitting it up is negligible. In historical

ecological studies it was less common to have such large

TABLE 2. Prior and posterior model probabilities for Willow
Tit occupancy.

Model Covariates P(Ml) P(Ml j y)

M1 NULL 0.25 0.00
M2 ELEV 0.25 0.52
M3 FOR 0.25 0.00
M4 ELEV þ FOR 0.25 0.48

Note: M1–M4 are models, P(Ml) is the prior model
probability, P(Ml j y) is the posterior probability of model Ml,
and y denotes a data set, typically composed of response
variables. NULL, ELEV, FOR, and ELEV þ FOR are the
intercept-only, elevation, forest, and elevation plus forest
models, respectively.

TABLE 3. Willow Tit occupancy posterior means for p, b0, b1,
and b2 across all models and using Bayesian model averaging
(BMA).

Parameter M1 M2 M3 M4 BMA

p 0.26 0.26 0.26 0.26 0.26
b0 0.17 0.38 0.89 0.29 0.32
b1 0.00 1.95 0.00 1.80 1.85
b2 0.00 0.00 1.79 0.39 0.18

Note: The parameters are p, detection probability; b0, the
intercept; b1, the slope due to elevation; and b2, the slope due to
forest.
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data sets, at least in terms of response variables.

However, with remote sensing and newer automated

data collection methods such as global positioning

system (GPS) telemetry devices, large ecological data

sets are more common than ever. Thus, out-of-sample

validation methods are becoming more realistic for

ecological analyses.

Out-of-sample validation relies on the ability to

compute a similarity statistic or scoring rule to obtain

a measure of closeness between our out-of-sample data

yoos and the predictions ŷoos (e.g., Bernardo 1979, Czado

et al. 2009, Gneiting and Raftery 2007, Gneiting 2011).

One of the most commonly used scoring rules is the

mean squared prediction error (MSPE)

MSPE ¼
Xnoos

i¼1

ðyi;oos � ŷi;oosÞ
2

noos

ð13Þ

or its square root (RMSPE). The prediction, ỹi,oos in

MSPE, is obtained without using the out-of-sample

observation yi,oos. The out-of-sample validation proce-

dure can be applied independently for each model in a

discrete set of models M and the predictive scores (e.g.,

RMSPEl for modelMl) can be compared to assess which

model is best overall at prediction or how the models

rank in terms of predictive ability.

The MSPE is a popular scoring rule because it has

important properties when used with certain models. In

general, Bernardo and Smith (1994) recommend loga-

rithmic scoring rules that are both ‘‘local’’ and ‘‘proper.’’

In essence, these scoring rule characteristics guarantee

that the predictive score adheres to the chosen model

and data (Vehtari and Ojanen 2012, Gelman et al.

2014b). We describe a more general approach for

scoring models based on out-of-sample data in what

follows.

The practice of evaluating models based only on point

estimates of parameters or predictions does not natu-

rally incorporate our uncertainty pertaining to those

quantities. One of the primary advantages of Bayesian

inference is the ability to account for various sources of

uncertainty, thus we now describe a method for model

validation that appropriately accommodates uncertain-

ty. In doing so, it is critical to recall how prediction

works from the Bayesian perspective. In general, data

that have not been observed are considered to be

random quantities, thus we treat them like all other

random quantities in the Bayesian setting and seek their

posterior distribution. The posterior distribution for

predictions is called the ‘‘posterior predictive distribu-

tion’’ and can be found using the integral

½yoos j y� ¼
Z
½yoos jy; h�½h j y�dh: ð14Þ

One option for the point prediction itself (ŷoos) could

be the posterior predictive mean, which technically

requires another integral. That is

ŷoos ¼ Eðyoos j yÞ ¼
Z Z

yoos½yoos j y; h�½h j y�dhdyoos

ð15Þ

which can be easily approximated as long as the out of

sample data yoos can be sampled from the distribution

[yoos j y,h] within an MCMC algorithm. If this condition

is met, one can use composition sampling (Tanner 1996)

and Monte Carlo integration to approximate the point

prediction by

ŷoos ’

PT
t¼1 y

ðtÞ
oos

T
ð16Þ

where ŷðtÞoos is the tth MCMC sample (out of T total

MCMC samples) of the predicted out-of-sample data.

That is, we draw y
ðtÞ
oos as a sample from [yoos j y, h(t)] at

every MCMC iteration t for t ¼ 1, . . . , T and then

average them.

The procedure we have just described provides a way

to obtain Bayesian point predictions, but it does not

directly accommodate uncertainty pertaining to a score

function. As it turns out, the log predictive density log

[yoos j y] is a local and proper scoring function that is

appropriate for Bayesian model validation (Gelman et

al. 2014b). In the situation where we have actual out-of-

sample data yoos, then we could just compute

log

PT
t¼1½yoos j y; hðtÞ�

T

 !
ð17Þ

using MCMC samples h(t), as a Monte Carlo integral

representation of the score function

log½yoos jy� ¼ log

Z
½yoos jy; h�½h jy�dh: ð18Þ

This score can then be used to rank all models in the

set M and find the one that yields the best predictions.

Out-of-sample validation is almost as efficient as simply

fitting the individual models because it only requires the

additional calculation of [yoos j y, h(t)] on each MCMC

iteration, which is a low-order operation. Thus, for large

ecological data sets, the out-of-sample validation

approach is a very reasonable way to find good

predictive models. However, as the out-of-sample size

reduces, this validation procedure becomes less stable

and thus more sensitive to the set of out-of-sample data.

Cross-validation

The concept of cross-validation was developed as a

way to increase the stability of validation based on out-

of-sample data for smaller sample sizes. Cross-valida-

tion is similar to out-of-sample validation in that we

exclude a subset of the data (yk) from the fitting

procedure so that the model is unaware of it, and then

compute the score based on the excluded data. The

problem with choosing a single subset of the data to

leave out is that you can only assess predictive ability for
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those measurements. Thus, it is common to leave out all

of the data, but only in small subsets sequentially.

K-fold cross-validation involves grouping the data

evenly (or approximately even) into K groups and then

using each set of left out data yk to compare with the

model predictions based on the remaining data (y�k).

We then iterate through all groups of data yk for k ¼
1, . . . , K and compute component scores which are

summed to yield the full cross-validation score for the

whole data set

XK

k¼1

log

PT
t¼1½yk j y�k; h

ðtÞ�
T

 !
: ð19Þ

In the case where K ¼ n (n is the sample size), the

procedure is often referred to as leave-one-out cross-

validation. Leave-one-out cross-validation may be

preferable when the sample size is small and there are

few observations to use as training data, though the

resulting estimate of prediction error becomes less stable

as K ! n.

In general, the major disadvantage of K-fold cross-

validation for Bayesian models is that we are required to

refit each statistical model K times to obtain the

complete set of out-of-sample predictions. Acquiring K

3 L individual model fits may be reasonable for simple

models, but for more complicated models that take

longer to fit, a K-fold increase in required computing

time may not be reasonable. However, despite these

challenges, when true predictive ability is the main

criterion of interest, cross-validation is still very

appealing for model comparison. In fact, it underlies

several parsimony-based model comparison methods.

Conditional predictive ordinates

To improve computational tractability for large data

and model sets, one could consider the posterior

predictive distribution for within-sample data. That is,

instead of cross-validation, simply compute the afore-

mentioned predictive score based on the predictive

distributions of the data [yi j y] for i ¼ 1, . . . , n. The

problem with this approach is that the predictive

performance of the model will be overestimated because

the data are used twice (i.e., once for model fitting and

another time for model validation). The overestimation

of predictive performance is referred to as ‘‘optimism’’ in

the statistics literature and we return to this concept in

Section 4.

As a potential remedy, consider the leave-one-out

predictive distribution for each observation in a data set

½yi j y�i� ¼
Z
½yi jh�½h jy�i�dh: ð20Þ

This quantity in Eq. 20 is referred to as the

conditional predictive ordinate (CPOi; Geisser 1993)

and represents the probability (or density) of the

observation yi when the model is fit without that

observation. Thus, large CPOi values correspond to

very likely observations under the current model,

whereas small CPOi indicates outliers and/or high-

leverage observations (Pettit 1990). In principle, the

computation of CPO would require a true cross-

validation involving an n-fold iterative model fitting

scheme. Fortunately, CPO can be approximated easily

within an MCMC algorithm for model fitting as the

harmonic mean of the predictive distributions evaluated

at the MCMC values for the parameters h

CPOi ’
TPT

t¼1½yi j hðtÞ��1
ð21Þ

where t ¼ 1, . . . , T represent the MCMC iterations. A

summary statistic of these individual CPO values, such

as �
P

i logðCPOiÞ, then provides an overall measure of

predictive performance. Notice the similarity in expres-

sions for the sum of the logged CPO values and the log

predictive score (Eq. 19) described in the previous

section. In terms of appropriateness for model selection,

the CPO involves a harmonic mean, which yields a

numerically unstable estimator in practice, but software

can often be constructed to flag problematic cases (Held

et al. 2010).

Willow Tit occupancy: model validation

Suppose that we are now interested in comparing the

four occupancy models we introduced in Model valida-

tion in terms of their predictive ability. We do not have

an auxiliary source of out-of-sample data to use for

model validation, but we can employ Bayesian cross-

validation and also compute the�
P

i logðCPOiÞ statistic
based on Eq. 21 to compare the information about

predictive ability using each of these methods.

We used 10-fold Bayesian cross-validation (i.e., K ¼
10) due to the moderate sample size and computed the

scoring function discussed in Eq. 19 as

�2
X10

k¼1

log

PT
t¼1 Binomðyk j Jk; p

ðtÞz
ðtÞ
k Þ

T

 !
ð22Þ

where, p(t) and z
ðtÞ
k are MCMC samples arising from

model fits not including observations yk and the �2 is

multiplied merely for convenience (so that small scores

are better and to compare with other model selection

criteria later). Thus, the inner sum in Eq. 22 is over the

MCMC iterations from a single fold of the validation

procedure and the outer sum is over the K folds. We

obtained 160 000 MCMC iterations to fit each model (in

each fold), discarding the first 16 000 as burn-in. To

illustrate the computational gains achieved using con-

temporary parallel programming methods we performed

the cross-validation using both non-parallel and parallel

algorithms. The non-parallel algorithm (i.e., a single

loop over the K folds) required approximately 1 hour,

whereas the parallel algorithm required over an order of

magnitude less computing time at approximately 5.7

minutes. Similarly, it required 1.4 minutes to compute

the CPO statistics in parallel (but 5.7 minutes in
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sequence). All computation was performed on a desktop

workstation with two 2.93 GHz 6-Core processors and
32 GB of RAM; we note that new laptops have

individual processors that are substantially faster, but

parallel computing is still more efficient on the desktop

we used with its many cores. All MCMC algorithms

were coded natively in R (R Core Team 2013) and the R

package snowfall (Knaus 2013) was used for parallel

computing.

In Table 4, we can see that the Bayesian cross-

validation score generally agrees with CPO in that the

two models with elevation as a covariate (i.e., M2 and

M4) out-perform the null model (M1) and model with

only an intercept and forest as a covariate (M3; note also

that lower scores are better). The null model performs

the worst based on the cross-validation score, while the

two models with elevation are nearly equivalent in terms

of prediction. CPO indicates that the null model may be

slightly better at prediction than the model with only

forest as a covariate (i.e.,M3), however, given that cross-
validation evaluates predictive performance based on

out-of-sample data, we might be skeptical of these CPO

results for the worst performing models. This potential

discrepancy between cross-validation and CPO is part of

the sacrifice we make when computation time is limited.

STATISTICAL REGULARIZATION AND INFORMATION CRITERIA

The assessment of a set of models in terms of their

predictive ability has been a central theme in the

development of information criteria. However, informa-

tion criteria involve specific approaches to model

selection that fall under the much broader umbrella of

statistical regularization. This concept of regularization,
though used on a daily basis in ecology, does not appear

to be widely recognized. However, regularization reveals

numerous theoretical and practical connections among

model selection and multimodel inference paradigms.

Specifically, regularization links Bayesian and non-

Bayesian approaches to model selection and here we

describe how this linkage occurs. We begin by presenting

the basic regularization concept, showing how it has

been used traditionally in the non-Bayesian context. We

then describe how regularization is inherently Bayesian

and highlight a few explicitly Bayesian approaches for

doing it (e.g., the Bayesian Lasso).

The term ‘‘regularization’’ refers to the use of an

external regulator that constrains the results of an

optimization problem (note that the term ‘‘regulator’’ is

borrowed here from physics but is not commonly used

in statistics, though it is perhaps more intuitive). In
statistical terminology, the optimization problem could

be a likelihood that needs maximizing or a posterior
distribution that needs exploring (perhaps via MCMC).
In the broader decision theoretic context, we might refer

to a negative log-likelihood more generically as a loss
function; that is, a function that expresses the ‘‘loss’’
incurred by inadequately estimating parameters of

interest. In certain cases, the loss function may have
too much freedom to be useful for inference and thus an
external constraint can help make it useful.

In placing this concept of regularization in a formal
statistical framework for decision making, or parameter
estimation, consider the generic expression

Lðy; hÞ þ rðh; cÞ: ð23Þ

L(y, h) represents the loss, a function of both knowns (y)

and unknowns (h) and, though it is related, should not
to be confused with a likelihood (which we label [y j h]).
The function r(h, c) in Eq. 23 represents the regulator or

constraint on the unknowns h. The regulator function r
may also depend on some other variables c that may or
may not be related to the loss function or its

components. There are other ways to express the loss
and regulator relationship, but the expression in Eq. 23
is perhaps the most common. Statistical inference can
now be obtained by minimizing the joint function (Eq.

23) with respect to h, and perhaps c, if not already
known. The primary advantage of regularization is that
it can yield improved inference, often reducing the

variance of estimates and increasing the accuracy of
predictions. Though not often discussed in the ecological
literature, this concept of regularization is quite com-

mon in many areas of statistics and machine learning
(Hastie et al. 2009). As we will see in the next sections,
regularization also underlies the dominant model

selection approaches used in ecology and has direct ties
with Bayesian statistics.

Traditional regulator: the penalty

To make the concept of regularization more concrete,
we place it in the context of classical non-Bayesian

regression modeling. That is, consider the linear model

yi ; Nðb0 þ x 0
ib;r

2Þ ð24Þ

where N denotes the normal distribution for i¼1, . . . , n,
where the ‘‘unknowns’’ are the regression coefficients b0
and b. For now, assume the error variance r2 is known,
but note that it need not be in general. If our goal is to

find estimates of b0 and b, then the loss function for this
optimization problem is proportional to the negative
log-likelihood L(y, b0, b) ¼

Pn
i¼1ðyi � b0 � x 0

ibÞ2. Now
consider the regulator function c1

Pp
j¼1 jbjjc2 , called the

‘‘penalty’’ in the statistical literature, such that the
optimization problem from Eq. 23 becomes

Xn

i¼1

ðyi � b0 � x 0
ibÞ2 þ c1

Xp

j¼1

jbjjc2 ð25Þ

TABLE 4. Willow Tit occupancy results for cross-validation
and CPO.

Model Covariates Cross-validation score �
P

i logðCPOiÞ

M1 NULL 552.4 240.2
M2 ELEV 478.4 220.0
M3 FOR 526.9 246.2
M4 ELEV þ FOR 478.8 220.4
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where p corresponds to the dimension of b (i.e., the

number of covariates in the model), c1 is often referred

to as the penalization or bandwidth parameter (in the

statistics literature, k is often used instead of c2; we

avoid the k notation here to reduce any confusion with

the leading eigenvalue of a Leslie matrix in demographic

modeling), and the exponent c2 is the chosen degree of

the ‘‘norm.’’ Note that the penalty is commonly written

using norm notation, that is, ||b||c2 [
Pp

j¼1 jbjjc2

(referred to as the Lc2 norm for a specific value of c2).
The parameters c1 and c2 control the amount and type

of regularization that occurs in the estimation problem.

Although the parameters c1 and c2 are sometimes

chosen only implicitly, based on adherence to a

particular philosophical underpinning, there seems to

be greater variety in the rationale and practical choices

for c1 than for c2. We discuss commonly used choices

for c2 next.
Ridge regression.—So-called ‘‘ridge regression’’ is a

direct application of above optimization problem in Eq.

25 where the parameter c2 ¼ 2 is used in the penalty

term. In this case, we seek to minimize

Xn

i¼1

ðyi � b0 � x 0
ibÞ2 þ c1

Xp

j¼1

b2
j ð26Þ

with respect to the regression coefficients b0 and b given

a certain value for the penalty parameter c1. If c1 ¼ 0,

then the negative log-likelihood is not penalized and the

resulting estimated coefficients will be the maximum

likelihood estimates (MLEs). However, as c1 increases,

it will ‘‘shrink’’ the estimated coefficients b toward zero

when Eq. 26 is minimized as a trade-off between

maximizing the likelihood and meeting the constraint.

This is why regularization methods in the maximum

likelihood setting are commonly referred to as ‘‘penal-

ized’’ or ‘‘shrinkage’’ methods. The shrinkage of b can be

incredibly useful in parameter estimation and predic-

tion.

In parameter estimation, shrinkage induces an in-

creasing bias in b̂ with increasing c1 but simultaneously

reduces the variance of b̂. Thus, in ridge regression, we

accept a small amount of bias in our estimation of b in

return for a potentially large reduction in variance. The

reduction in variance of b̂ also decreases prediction

error, providing improved prediction accuracy. More

complex models provide an excellent fit to within-sample

data but are poor predictors of out-of-sample data.

Shrinking model parameters toward zero reduces

effective model complexity thereby improving our

ability to predict out-of-sample data.

These features of ridge regression are undoubtedly

desirable, but may overshadow one of the most useful

aspects of the regularization: alleviation of the effect of

multicollinearity in the covariates (e.g., Graham 2003).

When columns of our ‘‘design matrix’’ X are correlated

with each other, the associated coefficients b have to

compete for the overall effect on the response variables

y. This competition causes the coefficient estimates b̂ to

offset each other, forcing some to be very large (positive)

and some very small (negative). In cases where

significant multicollinearity exists, the penalty term in

the optimization problem will shrink these exaggerated

parameter estimates back to reasonable values. Thus, in

ridge regression, we can use the ‘‘full’’ model including

all the variables in X at once, regardless of how much

they are correlated with each other. The alternative

approach is to construct a finite model set where no

single model contains any two covariates that are

correlated beyond a certain threshold (e.g., correlation

coefficient q ¼ 0.6, as advocated by Burnham and

Anderson [2002]). This latter approach is a type of

discrete regularization, rather than a continuous one

such as ridge regression.

There are a few practical considerations in the proper

application of regularization methods for regression

models. First, notice that we have separated the

intercept b0 from the rest of the regression coefficients

b in Eq. 25. We isolate b0 because we do not wish to

shrink the general mean of the regression model to zero,

rather, only the coefficients that interact with covariates.

Second, it is advisable to standardize the covariates in X

prior to analysis (i.e., subtract the mean and divide by

the standard deviation). This standardization of covar-

iates allows us to use a single penalty parameter c1
rather than one for each coefficient bj so that they do not

need to be shrunk differentially. The third consideration

is the choice of c1, which we discuss in the next section.

Lasso: Least absolute shrinkage and selection opera-

tor.—Continuing with the linear regression example

(Eq. 25) used in the previous section, now consider a

different regulator function where we set c2¼1 such that

Xn

i¼1

ðyi � b0 � x 0
ibÞ2 þ c1

Xp

j¼1

jbjj : ð27Þ

This new penalty term ðc1

Pp
j¼1 jbjjÞ is commonly

referred as the ‘‘Lasso’’ or L1-norm penalty and induces

a markedly different constraint on the optimization

problem. The acronym Lasso stands for least absolute

shrinkage and selection operator (Tibshirani 1996)

because the use of an L1-norm penalty implies a sum

of absolute coefficient values. While the L2-norm

penalty in ridge regression shrinks b toward zero

nonlinearly (with increasing c1), the L1-norm Lasso

penalty shrinks the coefficients linearly in such a way

that they eventually can equal zero exactly in the

optimization. Thus, Lasso drops covariates from the

model by setting their coefficients to zero. This absolute

variable selection concept seems quite familiar to many

ecologists who learned about model selection from a

traditional perspective. This heuristic familiarity has

made the Lasso approach very popular (Dahlgren 2010).

To summarize, we have now seen that both c1 and c2
in Eq. 25 play important roles in statistical regulariza-

tion. Given that c1 controls the amount of shrinkage
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induced, it acts as a type of scale parameter, while c2
controls the form of the shrinkage and could be thought

of as a shape parameter. For now, we suspect that the

choice of c2 is more a result of personal preference based

on desired inference, but what about c1? How should we

choose the amount of shrinkage?

Heuristically, we seek inference concerning model

parameters that is based on a balance between model

fit and predictive ability. Thus, we could treat c1 as we do
any other model parameter and estimate it simulta-

neously with the others. The problems with this

approach are manifold, but relate to the same basic

concept: within-sample data vs. out-of-sample data.

Even if there is enough information in the data to

actually estimate an ‘‘extra’’ model parameter, the fact

that within-sample data are being used to learn about c1
limits its utility as a regulator. Recall from our discussion

of cross-validation, that there are trade-offs in using the

same set of data to both fit and validate (i.e., select)

models. The primary trade-off is that predictive perfor-

mance can only truly be assessed using out-of-sample

data. Thus, it seems most reasonable to estimate model

parameters based on within-sample data and choose

regulator parameters based on out-of-sample data.

A strategy employed in many machine learning

studies is to optimize the regularized loss function (Eq.

23) given the within-sample data y for the first term and

use an iterative cross-validation approach to choose c1
based on predictive ability of out-of-sample data. In

practice, a strategy for the regression model would

involve first optimizing Eq. 25 using c1 ¼ 0 assigning a

cross-validation score, and then incrementally increasing

c1 over a range of values yielding a set of predictive

scores. Given a sufficiently fine range of values for c1, we
would then choose the regularized model yielding the

best predictive score. In the case of ridge regression, our

inference would consist of a full set of coefficient

estimates b̂ that are properly shrunk to provide the best

predictions of out-of-sample data. For Lasso, we would

obtain a subset of non-zero coefficient estimates that

have been shrunk according to the L1-norm penalty, and

the remaining coefficients would be zero (i.e., no longer

in the final model). In either case, we will obtain a

justifiably parsimonious model that is better at predic-

tion than the unpenalized full model. Another advan-

tage is that we did not have to do prior variable

elimination based on highly collinear covariate pairs.

Despite the many advantages to classical regulariza-

tion, there are also several disadvantages. Aside from

the somewhat ad hoc and subjective feel of the

procedure, these methods are based on optimization

and they yield point estimates for the model parameters

of interest, but learning about the uncertainty of b̂ is not

necessarily trivial or even possible in some cases. Finally,

because we may want to rely on out-of-sample data to

choose appropriate regulator parameters (c), this can

dramatically increase the computational requirements of

cross-validation-based regularization.

Akaike’s information criterion.—Continuing in a non-

Bayesian context, we now explain how information

criteria fit into the regularization concept. Statistical

regularization is appealing for the reasons discussed in

the previous section, but for many ecologists, the

increased computational burden and need to select

regulator parameters can be daunting. Enter the

information criterion approach to statistical regulari-

zation. The general idea behind information criteria is

that we choose a scoring function a priori that will be

used to ‘‘score’’ each of the models based on the

balance of fit using the within-sample data and

parsimony (or overall predictive ability; Gneiting

2011). Not surprisingly, most commonly used infor-

mation criteria take the same form as the previously

introduced regularization expression (Eq. 23). For

example, in the linear regression class of models,

Akaike’s information criterion (AIC) takes the form

of Eq. 25 with regulator parameters c1 ¼ 2 and c2 ¼ 0

such that the penalty is 2
Pp

j¼1 jbjj0 ¼ 2p. The L0-norm

used in AIC implies that the shrinkage is only based on

the number of parameters rather than the parameter

values themselves. This implication is useful because

each model in the model set can be fit independently

and then post hoc scored using AIC (lower AIC

implying better predictive ability of the model).

However, we must be careful to avoid inducing obvious

bias in the estimates by choosing a model set such that

no single model contains correlated covariates because

the penalty cannot provide feedback to the estimation

of the parameters themselves.

AIC provides the same regularization as leave-one-out

cross-validation under certain conditions (Stone 1977).

We find this a very appealing result on first glance

because it could dramatically reduce the computational

burden in finding a good predictive model. However,

upon closer inspection, we find that the result only holds

in linear Gaussian settings (i.e., regression models with

additive normal errors) and under the assumption that

the ‘‘true’’ model is in the model set being considered.

This latter assumption (i.e., truth in the model set) seems

to conflict with one of the main advantages of AIC

extolled by proponents. Still, empirically, AIC seems to

perform well in situations where it can be used (Hastie et

al. 2009). For Bayesians, AIC (being a function of

maximum likelihood estimates) does not appear to have

a clear Bayesian interpretation, at least outside of a few

contrived situations (as we discuss later in Bayesian

regulator: the prior).

The use of an information criterion like AIC requires

a compromise: We trade the continuous aspects of

model selection using more general regulators (e.g.,

ridge regression, Lasso) for the reduction in computa-

tional burden achieved by avoiding cross-validation.

Bayesian information criterion.—The so-called Bayes-

ian information criterion (BIC; Schwarz 1978) arises

from a different motivation than does AIC and many

other regularization methods. AIC is an information
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criterion that seeks to provide a measure of predictive

ability, whereas BIC is distinctly concerned with multi-
model inference (Link and Barker 2006, Gelman et al.

2014b).

Recall the marginal data distribution [y jMl] for

model Ml from Model averaging (Eq. 10). The marginal
data distribution is critical for computing Bayes factors

and model probabilities in the Bayesian paradigm. In a
maximum likelihood setting, if we consider the loss

function to be�2 log[y j ĥ], as is assumed with AIC, then

we can approximate the marginal data distribution using
a Laplace approximation (Ripley 1996) such that for

model Ml

BIC ¼ �2log½y j ĥ;Ml� þ logðnÞp ’�2log½y jMl� ð28Þ

where log(n) is the natural logarithm of the sample size

(or dimension of y) and p is the number of ‘‘free’’

parameters, as before. Note that, for the linear
regression model (Eq. 24), this definition of BIC still

retains the general regularization form of (Eq. 25), but

with regulator parameters c1 ¼ log(n) and c2 ¼ 0.
The utility of BIC in multimodel inference arises when

we exponentiate negative one-half times the BIC (Eq.

28); normalizing this quantity over all models in the
model set M provides an approximation to the Bayesian

model weights (Eq. 9) described previously. Unfortu-

nately, this approximation only holds when equal prior
model weights (i.e., P(Ml) ¼ 1/L for l ¼ 1, . . . , L) are
assumed. Furthermore, because of its reliance on
maximum likelihood parameter estimates, BIC does

not appear to be inherently Bayesian (despite its name).

Finally, BIC can only be used to approximate posterior
model probabilities when the Bayes factors are well

defined, which is not the case if improper priors are used

in the models.
From a classical perspective, there is no clear

choice, nor consensus, among statisticians, between

AIC and BIC for model selection purposes (Hastie et
al. 2009). Each form of automatic regulator has

advantages and disadvantages. For example, BIC

can be shown to be a consistent model selector (i.e.,
the oracle property). That is, when the ‘‘true’’ model is

in the model set and the data set is sufficiently large,

BIC will select the true model, while AIC will select
models that are too large in general. On the other

hand, for smaller sample sizes, BIC may indicate
models that are too parsimonious because log(n) . 2

implies more shrinkage from BIC than AIC. Further-

more, BIC is motivated from a model averaging rather
than prediction perspective, and thus it may be more

justified for approximating Bayesian model weights

than for model selection.

Bayesian regulator: the prior

The previous section describes regularization from a
classical perspective, where we penalize a statistical

optimization problem in such a way that it yields a
better predictive model. As we hinted at earlier, the

fact that the classical regularization approach seems

to ‘‘work’’ is encouraging, but its lack of formality

brings up a set of new questions (e.g., What type of

regulator function to use? How much shrinkage is too

much?). Furthermore, on the surface, the classical

regularization methods do not appear to be able to

accommodate uncertainty about the parameters or

regulator function. For ecologists using Bayesian

models, what is the analog to regularization in the

Bayesian setting?

Natural Bayesian shrinkage.—The analog to regular-

ization in the Bayesian setting is simply the Bayesian

model itself! To see this, consider the linear regression

example (Eq. 24) used in the previous section, but now,

we specify priors for the unknown model parameters b
such that the model itself is specified as

yi ; Nðb0 þ x 0
ib;r

2Þ

b ; Nðl;r2
bIÞ ð29Þ

where, for illustrative purposes, we assume the intercept

b0 and variance parameter r2 are fixed and known for

now. The posterior distribution for b is then easily

shown to be

½b jy�}½y j b�½b�

}
Yn

i¼1

Nðyi jb0 þ x 0
ib;r

2Þ
Yp

j¼1

Nðbj jlj;r
2
bÞ

} exp � 1

2

Pn
i¼1ðyi � b0 � x 0

ibÞ2

r2

 !
exp � 1

2

Pp
j¼1ðbj � ljÞ2

r2
b

 !

} exp � 1

2

Pn
i¼1ðyi � b0 � x 0

ibÞ2

r2
þ
Pp

j¼1ðbj � ljÞ2

r2
b

 ! !

} exp � 1

2r2

Xn

i¼1

ðyi � b0 � x 0
ibÞ2 þ

r2

r2
b

Xp

j¼1

ðbj � ljÞ2
 ! !

:

ð30Þ

If we let lj¼ 0 for all j¼ 1, . . . , p, and reparameterize

the ratio of variances such that c1 ¼ r2/r2
b in the last

expression of Eq. 30, then we arrive at the exact same

regularization expression used in ridge regression (Eq.

26) in the inner parentheses of our posterior distribution

for b (Eq. 30). Thus, by reducing our prior variance for

the regression coefficients, we increase the effective

regulator parameter c1 and induce the same sort of

shrinkage on b as in ridge regression, but in a formal

Bayesian probability framework. In fact, one could say

that we are always doing a form of regularization in

Bayesian statistics because the prior acts as the

regulator. Given that the Bayesian posterior provides a

rigorous framework for regularization, it could be

argued that other classical forms of regularization are

inherently Bayesian, or at least Bayesian in spirit.
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Regardless of the interpretation of the regulator, as a

non-Bayesian penalty or as a Bayesian prior, we can

enjoy the same benefits of regularization from either

perspective. However, the Bayesian perspective makes it

clear that we are constraining the model parameters with

‘‘prior’’ information such that it assists us in finding a

better predictive model. We are often taught that the

Bayesian prior should either be chosen objectively as to

minimize the influence on the posterior, or retrospec-

tively, to best represent existing prior knowledge about

the parameters. However, the only rule for specifying

prior information in a Bayesian model is to not use the

within-sample data to choose the prior. The reason for

this rule is that it maintains the acyclicity in the Bayesian

‘‘graph.’’ Bayesian models are often referred to as

directed acyclic graphs because of their conditional

specifications such that the data depend on the

parameters and the parameters depend on either other

parameters or fixed quantities. The acyclic nature of the

Bayesian graph guarantees that we can use valid

probability statements to learn about the unknown

quantities. Interestingly, this rule of ‘‘don’t use the data

twice’’ is commonly broken, and the model is referred to

as empirical Bayesian in that setting. Empirical Bayesian

methods seem to perform well, as does classical

regularization, but have much weaker theoretical

foundations than fully Bayesian methods. It seems clear

that to fit a rigorous Bayesian model we should not use

the within-sample data in the likelihood and the prior,

but there is no such rule about the use of out-of-sample

data to inform the prior. Thus, we could think of the

three ways to specify valid priors as (1) objectively, (2)

retrospectively, and (3) prospectively. The term ‘‘pro-

spective’’ in this sense implies the use of future data,

perhaps collected at the same time as the within-sample

data but not used until after (rather than before) the

likelihood is specified. This third approach to specifying

priors opens up the door for Bayesian cross-validation.

For example, the Bayesian cross-validation procedure

for regularization of the regression model might proceed

as follows: Specify the model as in Eq. 29, fit it for each

of the K sets of hold-out data using a vague prior for b
with mean zero and obtain a predictive score as

described in Model validation: Cross-validation. Choose

an incrementally smaller prior variance r2
b and repeat

the model fitting and cross-validation scoring process.

Continue this procedure, using smaller and smaller prior

variances until an optimal predictive model is identified

(typically via a small score function). Finally, fit the

optimal predictive Bayesian regression model using the

full data set to obtain desired inference.

The problem arises in the last step of this cross-

validation procedure. Once we use the prior (i.e., penalty

or regulator) that has been informed by an aggregate of

hold-out data, we technically cannot put all of the hold-

out data back into the model to fit one last time for final

inference in a fully Bayesian paradigm. In this case, the

options are to use the data twice in this way and accept

that the procedure is empirical Bayesian, or use two

completely separate data sets, one for training (y) and

another for validating (yoos). Of course, the second

option is not always preferable when analyzing data that

have already been collected, but in larger data sets or

when setting up new studies, collecting two independent

data sets for two different purposes allows for fully

rigorous Bayesian inference and model selection.

Bayesian lasso.—The previous section illustrates how

the standard Bayesian regression model with a Gaussian

prior on the coefficients provides a natural mechanism to

perform statistical regularization similar to ridge regres-

sion, but how can we manipulate the regulator function?

The answer is simple in the regression case: We only need

to find a prior with the same form as the desired regulator

function. For example, to construct a Bayesian regular-

ization that has a penalty similar to the Lasso penalty, we

need only find a prior containing an L1-norm on the

parameters. In this case, the Laplace distribution contains

the L1-norm that will impose a Lasso penalty as a prior.

That is, consider the same regression data model, but

with a new prior for b such that

yi ; Nðb0 þ x 0
ib;r

2Þ

bj ; Laplaceðl ¼ 0;r2
bÞ} exp �

jbjjffiffiffiffiffiffi
r2

b

q
0
B@

1
CA ð31Þ

for j ¼ 1, . . . , p where bj are independent a priori. Park

and Casella (2008) propose a similar prior for b, as well as
more standard priors for b0 and r2 and dub it ‘‘the

Bayesian Lasso.’’ In fact, they go a step further and

carefully specify a prior for a transformation of the

regulator parameter that enables them to construct a fully

conjugate MCMC algorithm for fitting the model. Unlike

in a Metropolis-Hastings MCMC algorithm, the resulting

Gibbs sampler requires no tuning of any parameters

(Kyung et al. 2010). Thus, it is nearly as computationally

efficient to fit the Bayesian Lasso regression model as it is

the standard Bayesian regression model. Of course,

Bayesian cross-validation could also be used in this

scenario and would likely yield better out-of-sample

predictive performance, but would also require substan-

tially more computational effort.

Finally, after seeing the connection between Bayesian

priors and regulator functions, one might wonder what

sort of prior yields an AIC penalty? Following the same

approach described in the Bayesian Lasso (Eq. 31), it

appears that the implicit AIC prior for each coefficient is

[bj] } exp (�jb jj0), such that the joint prior distribution

for b is [b] } exp(�p).

Willow Tit occupancy: Bayesian regularization

In applying Bayesian regularization to the Willow Tit

occupancy model, we first remind the reader that the

model already contains a natural regularization mech-

anism: the prior for b. Recall the process component of
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the hierarchical occupancy model from Eq. 3

vi ; Nðb0 þ x 0
ib; 1Þ ð32Þ

and prior from Eq. 6

b ; Nðlb;r
2IÞ: ð33Þ

Notice that if we standardize the covariates to have

mean zero and variance one then we can reasonably set

the prior mean lb ¼ 0. In this case, the full-conditional

distribution for b becomes

½b j ��} exp � 1

2

Xn

i¼1

ðvi � b0 � x 0
ibÞ2 þ

1

r2
b

Xp

j¼1

b2
j

 ! !

ð34Þ

as was demonstrated for the regression model (Eq. 30).

Thus, this full-conditional distribution for b has the

same form as the general regularization expression (Eq.

25) and the hyperparameter r2
b serves as the regulator

or shrinkage parameter, where c1 ¼ 1/r2
b. In other

words, the smaller we make the prior variance, the

stronger the penalty in the regularization. The strategy

is to explore the space of r2
b for an optimal value that

provides the best predictive model according to the

score function of choice. To find the optimal penalty,

we can explore the space of r2
b using a grid search (i.e.,

try a range of nb total values for r2
b) and compare

scores based on cross-validation. This cross-validation

approach requires K 3 nb separate model fits, resulting

in a potentially unreasonable amount of required

computational time. For example, a 10-fold cross-

validation, at 1.4 minutes per model fit and nb ¼ 24

dimensional grid search would require 5.6 hours to

implement. However, using 24 processors in parallel,

the required time could be reduced to under an hour on

a high-performance desktop workstation. The three

easy ways to reduce computation time are to (1) use

more processors (e.g., a high-performance computing

facility), (2) decrease the number of folds in the cross-

validation (e.g., an n-fold cross-validation for the

above example would require almost 5 days in

sequence, but only a few hours in parallel) and (3)

use a lower-resolution grid search. The latter will

require fewer model fits on the same machine, but will

reduce the accuracy of the optimization.

We wouldn’t expect Bayesian regularization to

dramatically increase predictive ability for the simple

willow tit occupancy model because the two covariates

(elevation and forest) are relatively uncorrelated (i.e.,

correlation ’0.12) and the sample size (n¼ 200) is large

relative to the number of unknown parameters.

However, to demonstrate the regularization approach,

we use the full model for the Willow Tit data with one

intercept and two regression coefficients associated

with the occupancy probability (M4). We then perform

a grid search over 24 values for r2
b, implying a prior

that ranges from precise (r2
b ¼ 0.01) to vague (r2

b ¼
2.25).

We used the log posterior predictive score for 10-fold

cross-validation introduced earlier (22). The complete

10-fold cross-validation at each value of r2
b, with model

fits based on 160 000 MCMC iterations (discarding

16 000 as burn-in), took approximately 24 minutes with

parallel computing.

We found that the optimal prior variance for

prediction occurs at r2
b ¼ 1.02; this is less than half of

the variance we would typically use in a vague prior

scenario for the occupancy model. In Fig. 3 we see the

posterior means for b taper toward zero as r2
b

decreases. At the optimal level of regularization, the

predictive score was 478.4, yielding a model that

predicts as well as M2 (the elevation only model) but

uses both covariates. Notice also that the cross-

validation score function increases more sharply away

from the optimum as r2
b decreases toward zero. This

effect indicates that the null model (i.e., occurring at r2
b

¼ 0) performs substantially worse than the full model

(i.e., occurring at r2
b ¼ 2.25), a result similar to that

found in the former cross-validation of the discrete

model set (Table 4).

FIG. 3. Willow Tit occupancy: Bayesian regularization. (a)
Shrinkage trajectories for the posterior mean of model
parameter b (y-axis) plotted against prior variance for b (x-
axis). Parameter estimates yielding the best predictive model
based on the two covariates occur at the vertical gray line. Note
that the correlation between elevation and forest is 0.12. (b) The
cross-validation score (y-axis) presented in Eq. 22 plotted
against prior variance for b (x-axis). The optimal score (i.e.,
smallest; score¼478.5) for prediction occurs at the vertical gray
line (i.e., minimum score occurs at r2

b ¼ 1.02).
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Deviance information criterion

We have seen that a natural framework for regular-

ization in the Bayesian context already exists and can be

used in conjunction with out-of-sample data to help

select an appropriate penalty. However, the classical

information criteria were developed, at least in part, to

alleviate the need for cross-validation and seem to

perform quite well in many settings. Is there a Bayesian

equivalent?

Spiegelhalter et al. (2002) proposed the deviance

information criterion (DIC), which has a similar form

as other information criteria, in that it contains a loss

function plus a penalty or regulator function. The loss

function is chosen to be the deviance

DðhÞ ¼ �2log½y jh� ð35Þ

as in most other information criteria, but in order to be

similar to AIC or BIC the penalty needs to incorporate

the number of free parameters as a measure of model

complexity. Recall that, even in the simplest Bayesian

models, most parameters are constrained in some way

by their priors. Furthermore, in hierarchical Bayesian

models, we may have numerous latent state variables

that are technically unknown but are also highly

constrained by both the likelihood and prior. Thus,

one crucial issue in the development of a truly Bayesian

criterion is the specification of an ‘‘effective’’ number of

parameters, say pD. A further complication is that

maximum likelihood point estimates are used to

compute AIC and BIC, but this concept of maximum

likelihood is only meaningful under certain situations in

the Bayesian context. Thus, we can use a Bayesian point

estimate, the posterior mean, in lieu of the MLE in DIC

DIC ¼ �2log½y jEðh j yÞ� þ 2pD ¼ D̂þ 2pD ð36Þ

where E(h j y) corresponds to the posterior expectation

of h and the deviance evaluated at the posterior mean

for h is commonly written as D̂.

To arrive at a measure of model complexity,

Spiegelhalter et al. (2002) consider the difference in the

deviance calculated two different ways: posterior mean

deviance and deviance computed at the posterior mean

of the parameters. That is, the effective number of

parameters was originally defined as

pD ¼ D̄� D̂ ð37Þ

such that the posterior mean deviance is

D̄ ¼ Eh jyð�2log½y j h�Þ ¼
Z
�2log½y jh�½h j y�dh: ð38Þ

In the case of linear regression, with vague priors on

the regression coefficients, the effective number of

parameters pD approaches the number of coefficients

p. Thus, the popularity of DIC has been a result of its

similarity to AIC, its simplicity, and its ease of

calculation using MCMC samples. There are only two

quantities that need to be computed for DIC: The

deviance evaluated at the posterior mean of the

parameter set D̂, which is as trivial as the deviance

calculation in AIC, and the posterior mean deviance,

which can be embedded into an MCMC algorithm with

one or two lines of code.

For many Bayesian models (which we describe in the

next section), DIC can be used for ranking models and

finding those that should predict better than others, just

as AIC would. DIC addresses the issue of model

complexity and in many cases yields results quite similar

to AIC. A common question is whether DIC can be used

for Bayesian model averaging? That is, if one follows the

AIC-based guidance of Burnham and Anderson (2002),

and calculates wj ¼ e�DDICj=2/
P

l e�DDICl=2, where DDICj

represents the difference of DIC for model j and the

minimum DIC across all models in the model set, do

these weights wj approximate posterior model probabil-

ities? Despite the fact that this approach is used

occasionally, the answer has not been justified in the

literature. Link and Barker (2006) make a strong case

for the use of BIC to approximate posterior model

probabilities and perform a small set of empirical

comparisons between AIC, BIC, and DIC model

weighting schemes, but the theoretical foundation for

Bayesian model averaging using DIC is much weaker.

Modified DIC.—Despite its convenience, DIC has

several limitations, notable among them are the poten-

tial for poorly estimating model complexity ( pD),

inappropriateness with mixture models, and the lack of

a direct connection with predictive ability. We elaborate

on some of these issues with conventional DIC before

discussing some attractive alternatives.

There have been many alternative specifications for

the effective number of parameters pD (Eq. 37), which is

sometimes referred to as model complexity, or degrees of

freedom, in the statistical literature. For example,

Plummer (2002) suggests that a more appropriate

measure of model complexity can be computed by

averaging

log
½ỹð1;tÞ jhð1;tÞ�
½ỹð2;tÞ jhð2;tÞ�

 !
ð39Þ

over all MCMC samples (i.e., t¼ 1, . . . , T ), where ỹ(1,t)

and ỹ(2,t) are two independent posterior predictive

realizations of the data arising from two different chains

(for h(1,t) and h(2,t)) based on separate model fits. This

version of model complexity (Eq. 39) arises as an

estimate of the expected Kullback-Leibler divergence

between predictive distributions at two values for h
(Plummer 2002). Unfortunately, Plummer (2008) later

indicates that the average of Eq. 39 may only be an

appropriate penalty when the sample size is very large

(i.e., n ! ‘). Plummer (2008) also recommends an

alternative estimator for model complexity with better

properties, but its calculation requires n separate model

fits, which puts it on par with cross-validation, thus

reducing the appeal of DIC in terms of computational
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efficiency. Overall, it appears that DIC (Eq. 36) is most

appropriate as a model selection criterion in linear

models with independent data (conditional on h) where
the pD is much smaller than n. Thus, DIC is good for

comparing Bayesian versions of the same classes of

models that AIC is good for comparing.

Several others have suggested that DIC is not

appropriate for model selection with mixture models or

missing data models (e.g., Spiegelhalter et al. 2002,

Celeux et al. 2006, Plummer 2008). Zero-inflated models

comprise the largest and most heavily used class of

models in wildlife ecology (i.e., capture–recapture and

occupancy models) and are a form of mixture model

(Martin et al. 2005). The original version of DIC is thus

not suitable for comparing zero-inflated models. Celeux

et al. (2006) provide several suggestions that could be

used as an alternative to the standard DIC for mixture

models, but ultimately they do not recommend any of

them as a gold standard. However, one of these modified

versions of DIC was also discussed earlier by Richardson

(2002) and lacked a theoretical justification until recently

(Watanabe 2010). Celeux et al. (2006) numbered this

information criterion DIC3, and we discuss it next.

Watanabe-Akaike information criterion

Aside from the aforementioned caveats, DIC is a

useful information criterion in the parametric Bayesian

modeling context when prediction is of primary impor-

tance. However, DIC does not best represent the actual

Bayesian predictive procedure. To arrive at predictions,

the Bayesian approach is to find and summarize the

posterior predictive distribution (Eq. 14). In computing

DIC (Eq. 36), the posterior predictive distribution is not

needed. This seems to be a mismatch between the type of

inference desired and the tool used to obtain it.

Along the same lines of reasoning we used in the

previous section on out-of-sample validation, for

Bayesian model comparison based on predictive ability,

we should seek a statistic that considers the log posterior

predictive distribution for new data ỹ

log½ỹ jy� ¼ log

Z
½ỹ j h�½h jy�dh: ð40Þ

The quantity in Eq. 40 is stochastic because ỹ is

assumed to be unknown (but not so in true out-of-

sample validation scenarios; hence the change in

notation from yoos to ỹ), therefore a common technique

in the development of most information criteria is to

then consider the mean of Eq. 40 over ỹ

Eỹðlog½ỹ j y�Þ ¼
Z

log

Z
½ỹ j h�½h j y�dh½ỹ�dỹ ð41Þ

which is impossible to compute directly because the true

distribution of the new data [ỹ] is unknown. Thus, in

finding an estimator of mean log posterior predictive

PLATE 1. Willow tit (Parus montanus) observed in the Swiss Alps. Note that an alternate genus name for the willow tit is
Poecile. Photo credit: copyright� Marcel Burkhardt, used with permission.
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score, Richardson (2002), Celeux et al. (2006), and

Watanabe (2010) propose the log point-wise predictive

score

log
Yn

i¼1

½yi j y� ¼
Xn

i¼1

log

Z
½yi j h�½h j y�dh ð42Þ

where Monte Carlo integration can be used to compute

the integral (Gelman et al. 2014b). There are two issues

with the score in Eq. 42: (1) the product representation

of the posterior predictive distribution implies that the

data are independent (conditioned on h) and (2) it relies

completely on the observed data y rather than the new

data ỹ. The first issue suggests that the score should not

be used with models containing dependence in the data

(e.g., spatial and time series models). The latter issue

implies that Eq. 42 will be optimistic in its predictive

score for a given model because the within-sample data

are being used twice. As in DIC, the amount of

optimism with this score (Eq. 42) can be expressed as

the effective number of parameters pD (Watanabe 2010).

Thinking of the effective number of parameters pD in

this way is not intuitive because most ecologists have

been trained to view the penalty in AIC as p, the actual

number of parameters. In fact, p in that sense is really a

measure of model complexity that arises naturally in the

derivation of many information criteria. Thus, it is

helpful to think of pD as a measure of model complexity

rather than strictly a count of the model parameters.

Gelman et al. (2014b) present two possible estimates

for pD

pD;1 ¼ 2
Xn

i¼1

�
logEh jy½yi jh� � Eh jyðlog½yi j h�Þ

�
ð43Þ

and

pD;2 ¼
Xn

i¼1

varh jyðlog½yi j h�Þ ð44Þ

but prefers pD,2 for its relationship with leave-one-out

cross-validation. As with DIC, we can use Monte Carlo

integration to approximate pD,2 by computing the sum

of the MCMC sample variances of log[yi j h(t)] (sample

variance computed over t ¼ 1, . . . , T MCMC samples)

over the observations yi for i ¼ 1, . . . , n.

The Watanabe-Akaike information criterion can then

be defined as�2 times the log point-wise predictive score

plus the estimated optimism

WAIC ¼ �2
Xn

i¼1

log

Z
½yi jh�½h jy�dhþ 2pD;2 ð45Þ

with both elements in the sum approximated using

MCMC samples at no extra computational cost beyond

that required for calculating DIC (Watanabe 2013). The

addition of the estimated optimism in Eq. 45 serves as a

bias correction in estimating posterior predictive accu-

racy similar to that of AIC and DIC, even though we

have not mentioned it until now. The term ‘‘optimism,’’

which is often used in the statistical literature, is merely

another word for regulator or penalty.

This new criterion enjoys many benefits. Among them

are the fact that WAIC is based on the posterior

predictive distribution and is fully Bayesian, but yields

the same results as DIC in linear Gaussian models with

uniform priors. Furthermore, unlike DIC, WAIC is

valid in both hierarchical and mixture models (Wata-

nabe 2013). Also, unlike DIC, the effective number of

parameters calculated using pD,2 in Eq. 44 will always be

positive. In pD,2, a parameter gets counted as a 1 if all of

the learning we gain about it comes from the likelihood.

Conversely, a parameter counts as a zero in the

calculation of pD,2 if the learning comes entirely from

the prior. To figure out the correct proportion of each

parameter to count, WAIC needs to use the data (like in

DIC) to compute the optimism pD,2. This is essential in

the Bayesian context where we regularly use hierarchical

structures with strong interdependencies and informa-

tive priors.

Overall, WAIC seems very appealing, however, the

main disadvantage is substantial depending on the area

of application: its calculation relies on an independence

assumption of the data given the parameters. This

assumption is regularly violated in spatial models where

dependence among the data is one of the key features

being modeled. Ando and Tsay (2010) provide a way to

relax the independence assumption, but the resulting

criterion requires numerous model fits, which eliminates

one of the key practical benefits of WAIC (Gelman et al.

2014b).

Posterior predictive loss

In a similar spirit as that motivating WAIC, and in

contrast with CPO, another approach to prediction-

based model choice was presented by Laud and Ibrahim

(1995) and later justified by Gelfand and Ghosh (1998).

This approach, referred to as ‘‘posterior predictive loss,’’

considers prediction from a decision theoretic perspec-

tive. Understanding this approach requires a familiarity

with statistical decision theory, which we describe briefly

here, referring the interested reader to more compre-

hensive references (e.g., Berger 2006, Vehtari and

Ojanen 2012) for further details.

Statistical decision theory provides a rigorous frame-

work for the decision making process in the presence of

data and uncertainty (Berger 2006). The phrase ‘‘deci-

sion-making process’’ is quite general, encompassing

decisions like choices of alternatives for management,

but also including a justification for parameter estima-

tion and prediction. In fact, behind every statistical

estimator lies a set of implicit or explicit decision

theoretic assumptions. A formal decision theory exists

in both the classical and Bayesian realms, though Berger

(2006) makes a compelling case for the completeness of

the Bayesian decision theory.

In essence, a Bayesian decision theory involves three

main concepts: (1) a loss function, (2) an ‘‘action’’ or
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decision, and (3) a posterior risk function. The loss

function is a mathematical expression of the loss

incurred if a certain decision is made and the posterior

risk function is the loss averaged over the posterior

distribution for the unknown quantities of interest.

Thus, risk is a version of loss that has accounted for our

uncertainty about the study system. The statistical

literature refers to the decision minimizing the posterior

risk as a ‘‘Bayes rule’’ (Lehmann and Casella 1998).

For example, suppose we are interested in estimat-

ing a parameter h given data y. In the case of

parameter estimation, the ‘‘decision’’ is actually just

a point estimator of h. A point estimate ĥ that

minimizes our risk seems desirable, thus the Bayes

rule for point estimation is called a Bayes estimator.

To find this Bayes estimator, we simply define a

function L(y, h) that suitably represents the loss we

incur for poorly estimating h and minimize its average

with respect to the posterior distribution. The value

for h that minimizes the posterior risk ĥ is the resulting

Bayes estimator.

As it turns out, the Bayes estimator for squared error

loss (i.e., L(y, h)¼ (h� ĥ)2) is the posterior mean of h, a
result that we often use for inference without putting

much thought into the rationale for why we use it.

Different loss functions result in different estimators.

For example, the absolute loss (i.e., L(y, h) ¼ jh � ĥj)
results in the posterior median as the Bayes estimator

and zero-one loss (i.e., L(y, h)¼ 0 or L(y, h)¼ 1 if h¼ ĥ
or h 6¼ ĥ, respectively) results in the posterior mode

being the Bayes estimator.

Returning to the topic of model selection, Gelfand

and Ghosh (1998) recommended a decision theoretic

approach based on prediction rather than parameter

estimation. In doing so, they proposed a loss function

in terms of hypothetical replicates of the data ỹi (i.e.,
unobserved new data) that is a sum of two components

Lðỹi; ŷiÞ þ wLðyi; ŷiÞ ð46Þ

where ŷi represents a predictive realization for the

unobserved new data point ỹi, and yi represents the

observed within-sample data point. In the proposed loss

function (Eq. 46), the w is constrained to be nonneg-

ative and expresses the relative weight given to loss for

the within-sample vs. new data at the same prediction

ŷi.
Gelfand and Ghosh (1998) derived a posterior

predictive risk by averaging their proposed loss function

(46) over the posterior predictive distribution of ỹi j y.
The resulting risk is then minimized with respect to the

prediction ŷi and summed over all observations i ¼ 1,

. . . , n to yield the model selection criterion

Dw ¼
Xn

i¼1

minŷi

Z
ðLðỹi; ŷiÞ þ wLðyi; ŷiÞÞ½ỹi j y�dỹi ð47Þ

where we would seek to find a model with the smallest

Dw out of a proposed set of models given a chosen loss

function L(�) and weight w. In practice, it can be difficult

to compute the necessary integrals in Eq. 47, thus a

squared error loss (sel) function is commonly used,

yielding the criterion

Dw;sel ¼
w

wþ 1

Xn

i¼1

ðyi � Eðỹi j yÞÞ
2 þ

Xn

i¼1

Varðỹi j yÞ: ð48Þ

Further, it is often assumed that the weight is very

large (w ! ‘) thus resulting in a D‘,sel criterion

D‘;sel ¼
Xn

i¼1

ðyi � Eðỹi jyÞÞ
2 þ

Xn

i¼1

Varðỹi jyÞ: ð49Þ

Note the similarity of D‘,sel to the WAIC (Eq. 45) and

DIC (Eq. 36, for large n) in that they both contain two

terms in a sum, the first being a goodness-of-fit measure

and the second acting as a penalty or regulator. In this

case, we can see that the penalty
Pn

i¼1 Varðỹi j yÞ will

increase in overfitted models where the prediction

variance becomes larger with an increasing number of

parameters.

For more general loss functions, such as deviance, Dw

takes on a similar two component form, but the penalty

is only guaranteed to be positive under certain

constraints on the loss (i.e., convexity in y) and the

criterion may not be suitable for mixture models.

Despite this caveat, Dw does appear to be appropriate

for many classes of hierarchical models because it

depends directly on the posterior predictive distribution

rather than the likelihood and posterior mean of the

parameters alone. Also, unlike WAIC, the general form

of posterior predictive loss approach appears to be

suitable for correlated data models (e.g., spatial and

temporal models).

Even though the posterior predictive loss approach

does not technically fall into the same category as the

rest of the information criteria, the form of the general

loss function proposed by Gelfand and Ghosh (1998) is

similar enough to the regularization expression (Eq. 23),

and equivalent to DIC and WAIC in certain settings,

that we chose to describe it here rather than place it in its

own section.

Willow Tit occupancy: information criteria

In a continued assessment of predictive performance

for the occupancy model set using the Willow Tit data,

we calculated WAIC, DIC, and D‘,sel for each of the 4

models previously considered (Table 5). To calculate

WAIC for the occupancy model in this example, we used

TABLE 5. Willow Tit occupancy results for WAIC, DIC, and
D‘,sel (posterior predictive loss).

Model Covariates WAIC DIC D‘,sel

M1 NULL 481.7 462.2 288.0
M2 ELEV 440.2 432.2 270.8
M3 FOR 492.4 483.8 305.2
M4 ELEV þ FOR 440.7 432.9 271.2
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MCMC samples to approximate the effective number of

parameters

pD;2 ’

Xn

i¼1

PT
t¼1

�
logð½yi j Ji; p

ðtÞz
ðtÞ
i �Þ �

PT
t¼1 logð½yi j Ji; p

ðtÞz
ðtÞ
i �Þ=T

�2

T

ð50Þ

based on Eq. 44, where [yi j Ji, p(t)z
ðtÞ
i ] is the binomial

probability mass function and the first term in WAIC (Eq.

45) is approximated as

�2
Xn

i¼1

log

PT
t¼1½yi j Ji; p

ðtÞz
ðtÞ
i �

T
: ð51Þ

Recall that this expression (Eq. 51) has the same form

as the cross-validation score (Eq. 22), but is based only

on within-sample data.

For DIC, we used the traditional method for

calculating the effective number of parameters (Eq. 37)

and approximated D̄ and D̂ by

D̄ ’

PT
t¼1�2log½y jJ; pðtÞzðtÞ�

T
ð52Þ

D̂ ’�2log½y jJ; p̂ẑ� ð53Þ

where p̂ and ẑ are the posterior means for detection

probability and true latent occupancy status across all

sites, and [y j J, p(t)z(t)] ¼
Qn

i¼1½yi j Ji; p
ðtÞz
ðtÞ
i � is the

likelihood based on the conditionally independent data

for the willow tit occupancy model.

For the posterior predictive loss method, we calculat-

ed D‘,sel as in Eq. 49 based on the expectation and

variance approximations

Eðỹi j yÞ’
PT

t¼1 ỹ
ðtÞ
i

T
ð54Þ

Varðỹi j yÞ’
PT

t¼1ðỹ
ðtÞ
i �

PT
t¼1 ỹ

ðtÞ
i =TÞ2

T
ð55Þ

where ỹ
ðtÞ
i ; [yi j Ji, p(t)zðtÞi ] is drawn on each MCMC

iteration (for t ¼ 1, . . . , T ) as a posterior predictive

realization.

Of the three criteria considered in this example, recent

statistical literature suggests that only WAIC is truly

appropriate for the occupancy model (Gelman et al.

2014b). However, given that DIC is commonly used to

compare Bayesian occupancy models, we provide a

comparison here. Furthermore, the criterion based on

posterior predictive loss (D‘,sel) is not ideal for the

occupancy model setting because the squared error loss

function (Eq. 49) may not be best representative for the

zero-inflated binomial data model. A different loss

function could be chosen, but then a derivation would

be required to find a computable approximation based

on MCMC samples. Still, we felt that a comparison of

the methods could illuminate potential empirical differ-

ences between the approaches. If this were a real

application rather than a pedagogical example, we

would have only computed WAIC for this model and

data set. In terms of computational time, it only

required 6.1 minutes to fit the models sequentially and
obtain these metrics (using 160 000 MCMC iterations

for each model fit with a burn-in period of 16 000

iterations).

All of these approaches (i.e., WAIC, DIC, and D‘,sel)

provide similar information in ranking the willow tit

occupancy models by predictive ability based on within-

sample data (Table 5). WAIC, DIC, and D‘,sel all

suggest model M3, the model containing only the forest

covariate, as the worst predictive model, with the null

model next (M1), and a virtual tie among the two models
containing the elevation covariate (i.e., M2 and M4).

This latter result is in agreement with the earlier cross-

validation and CPO model comparison.

MODEL-BASED MODEL SELECTION

To a certain extent, the regularization methods

discussed in the previous section (especially the fully
Bayesian Lasso) are model-based approaches to model

selection. They are model based because they contain a

formal mechanism that trades off model fit for model

parsimony. We saw that the Bayesian model itself

provides a natural model reduction mechanism via the

prior. In contrast to this form of continuous shrinkage

induced by a strong prior on the parameters, other
methods have been developed in a similar spirit that

explicitly augment the overall model structure with

selection components whose job it is to switch on and off

various effects in the full model (O’Hara and Sillanpaa

2009). The basic idea then is to build a model that

contains all of the potential model components and then

let the model decide which of them are helpful and
which are not.

Indicator variable selection

For instructive purposes, consider again the basic

linear regression model from Eq. 24

yi ; Nðb0 þ x 0
ib;r

2Þ

where, the parameter vector b ¼ (b1, . . . , bj, . . . , bp)0

contains the individual coefficients corresponding to the

p predictor variables of interest. A modification of the

original regression model has been proposed such that bj
¼ zj 3 hj for j¼ 1, . . . , p, where each original parameter

is written as a product of a binary indicator variable zj
and a regression coefficient hj (e.g., George and
McCulloch 1993, Carlin and Chib 1995, Kuo and

Mallick 1998). In general, a prior would be specified

for each (zj, hj) pair and the full Bayesian model could

then be fit, yielding inference not only about the

coefficients bj, but also the selection indicators zj. In

this setting, if the posterior mean for a particular zj is

large (i.e., closer to one than zero) it would indicate that
the jth covariate is important in the model; conversely,

M. B. HOOTEN AND N. T. HOBBS22 Ecological Monographs
Vol. 85, No. 1

C
O
N
C
E
P
T
S
&
S
Y
N
T
H
E
S
I
S



when the posterior mean of zj is close to zero it

effectively removes the jth effect from the model thereby

inducing a certain parsimony.

In implementing an indicator variable selection

model, one would be tempted to use independent priors

for zj and hj; for example, we might specify

zj ; Bernð/Þ

hj ; Nð0; s2
j Þ

for all j ¼ 1, . . . , p, assuming the covariates are

standardized (where Bern stands for Bernoulli ). How-

ever, an independent prior specification can cause

computational problems if the prior for hj is too vague

(i.e., the prior variance, s2
j , is large) because when zj¼ 0

in an MCMC algorithm, hj will be sampled from its

prior and the subsequent sampling of future zj ¼ 1 will

rarely occur since the hj is likely to be far from the

majority of posterior mass. Thus, to alleviate these

computational problems, others (e.g., George and

McCulloch 1993, Carlin and Chib 1995) have suggested

joint priors for zj and hj that include explicit dependence
between the indicators and coefficients.

In Gibbs variable selection, Carlin and Chib (1995)

and Dellaportas et al. (1997) suggest decomposing the

joint prior distribution [zj, hj] ¼ [hj j zj][zj]. In this joint

prior specification, the Bernoulli prior for zj is retained,

but the prior for hj conditional on zj is written as

hj j zj ; zjNð0; s2Þ þ ð1� zjÞNðltune;r
2
tuneÞ ð56Þ

which has the form of a mixture distribution and is often

referred to as a ‘‘slab and spike’’ prior (Miller 2002). The

Gibbs variable selection procedure then involves choos-

ing the tuning parameters ltune and r2
tune such that

N(ltune, r2
tune) is near the posterior so that the MCMC

algorithm exhibits better mixing. Surprisingly, the

seemingly informative prior (Eq. 56) does not actually

influence the posterior for bj, but rather only influences

the behavior of the MCMC algorithm (Carlin and Chib

1995).

In a similar model-based approach called ‘‘stochastic

search variable selection,’’ George and McCulloch

(1993) proposed a joint prior for zj and hj. However,

unlike in the Gibbs variable selection, this alternative

prior does influence the posterior and can be written as

hj j zj ; zjNð0; cs2Þ þ ð1� zjÞNð0; s2Þ: ð57Þ

In stochastic search variable selection, both c and s2

are tuned such that s2 is quite small, providing an

effective spike at zero while cs2 is larger, creating a slab

around zero. The slab then provides the prior for hj
when the variable bj is in the model (i.e., when zj ¼ 1).

Both Gibbs and stochastic search variable selection

methods require tuning to ensure well-mixed MCMC

algorithms, but both can be useful for model-based

model selection.

Reversible-jump MCMC

A related model-based approach to model selection is

referred to as reversible-jump Markov chain Monte

Carlo (RJMCMC; Green 1995). Normally, we reserve

the names of computational approaches for algorithms

only, not statistical models; however, in this case, the

method really describes a model, but we retain the label

RJMCMC for convention. In describing the RJMCMC

approach, first recall the model set fM1, . . . , Ml, . . . ,
MLg described earlier in Model averaging: The utility of

the marginal data distribution. Now suppose that each of

the models contain their own corresponding parameters

hl. Note that the lengths, say pl, of these parameter

vectors hl may vary. In RJMCMC, we treat the model

index l as a random quantity to be modeled along with

the set of all possible parameters h. Or alternatively, we

treat the number of parameters pl as a random quantity

and specify a model for it. Under certain assumptions,

the posterior distribution of interest then is

½h; l j y�}½ y jhl; l�½hl j l�½l� ð58Þ

where [hl j l] is the prior distribution for the parameters

in modelMl and [l ] is the prior distribution for modelMl

itself. The beauty of this specification is that it places

multimodel inference directly in a fully Bayesian

context.

The use of MCMC to implement this model (Eq. 58)

involves the usual steps: specify initial values for

unknowns and then cycle through the unknowns,

updating each one sequentially. The complication arises

when sampling the model index l, and hence its

associated parameters hl, because the model dimension

changes depending on which model is sampled. Thus,

care must be taken to account for the potentially

different model dimension when accepting a Metropo-

lis-Hastings proposal for the parameters in an MCMC

algorithm. The term ‘‘reversible’’ derives from the fact

that certain properties of the Metropolis-Hastings

update must be retained to arrive at a valid posterior

distribution (Green 1995, Godsill 2001). Specifically, if

we leave one model space with a particular dimension

for another of a different dimension, we need to ensure

that we can revert back to the former dimension later in

the Markov chain. Thus, a modified version of the

Metropolis-Hastings ratio can be constructed for certain

models that corrects for the transdimensional nature of

the algorithm.

RJMCMC approaches have become a popular option

for computing Bayes factors and Bayesian model

probabilities (e.g., Johnson and Hoeting 2011). When

prior model probabilities are assumed to be equal, the

Bayes factor (Bl,l̃) can be computed simply by calculat-

ing the quotient of summed number of visits to each

model (Ml and Ml̃) in the RJMCMC algorithm (Hastie

and Green 2012).

Due to its model-based form, RJMCMC is an

appealing method for Bayesian multimodel inference
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but can be tricky or impossible to implement for

complicated models. To that end, Barker and Link

(2013) described a method that provides RJMCMC

results using a post hoc approach that only requires

one to fit the L individual models and then post-

process the resulting MCMC samples using a second

MCMC algorithm in the form of a Gibbs sampler. We

describe this approach and apply it to the willow tit

data next.

In the big picture, Godsill (2001) and O’Hara and

Sillanpaa (2009) show that the RJMCMC and indicator

variable selection approaches are related. The key

difference is that the auxiliary variables zj are effectively

moving the model between dimensions by switching on

and off model components. In doing so, Gibbs and

stochastic search variable selection side-step the trans-

dimensional complication altogether.

Willow Tit occupancy: RJMCMC

We presented results pertaining to Bayesian model

averaging earlier in Model averaging. To compute those

Bayesian model averaging quantities, we used the

RJMCMC approach described by Barker and Link

(2013), which we briefly summarize here. One advantage

of the Barker and Link (2013) approach is that the

individual models can be fit separately and then

recombined subsequently with a secondary MCMC

algorithm to obtain posterior model probabilities. After

the initial set of four occupancy models were fit

individually (requiring only 5.7 minutes in sequence),

the following secondary algorithm was constructed to

iteratively sample the model and associated parameters:

1) Set MCMC iteration index to t ¼ 1.

2) Choose initial model M
ðtÞ
l . In our case we used M

ð1Þ
l ¼

M4, the full model.

3) Select p
ðtÞ
l , bðtÞ0;l, and bðtÞl from the former MCMC

output for model M
ðtÞ
l .

4) If there are remaining parameters from the full model

not obtained in step 3 (i.e., for models M1, M2, and

M3) then sample those from a known distribution (the

form of which is arbitrary according to Barker and

Link 2013). We used a standard normal distribution

to sample remaining parameters, N(0, 1).

5) Order the parameter values from steps 3 and 4 and

combine to form h. For example, if M
ðtÞ
l ¼M2, then h

[ (p
ðtÞ
l , bðtÞ0;l, bðtÞ1;l, u

ðtÞ
2 )0, where u

ðtÞ
2 ; N(0, 1).

6) Compute the full-conditional model probability

PðMl j �Þ ¼
½y j h;Ml�½h jMl�PðMlÞP4
l̃¼1
½y j h;Ml̃�½h jMl̃�PðMl̃Þ

ð59Þ

for each model l ¼ 1, . . . , 4.

7) Sample M
ðkþ1Þ
l from a categorical distribution with

probabilities P(M1 j �), P(M2 j �), P(M3 j �), and

P(M4 j �).
8) Increment the MCMC iteration t ¼ t þ 1 and go to

step 3.

A few of the terms in step 6 of the Barker and Link

(2013) algorithm need further clarification with respect

to the specific model set under consideration. The

likelihood term for our Willow Tit occupancy model

simplifies to [y j h, Ml] [ [y j pðtÞl , bðtÞ0;l, bðtÞl ], which can be

found by integrating z and v out of the hierarchical

model such that

½y j pl; b0;l; bl� ¼
Yn

i¼1

�
wip

yið1� pÞJi�yi I yi . 0f g

�

þ
�

1� wi þ wið1� pÞJi

�
I yi¼0f g ð60Þ

where we have omitted the MCMC indexing for clarity.

In the integrated likelihood (Eq. 60), wi ¼ /ðx 0
l;iblÞ and

If. . .g is an indicator variable that is one when the

condition in the subscript is true and zero otherwise. The

prior term can be factored into terms relevant for the

current model being considered and terms for the

remaining parameters: [h jMl] [ [p
ðtÞ
l ][bðtÞ0;l][b

ðtÞ
l ][uðtÞ].The

last term, [u(t)], is simply a product of independent

standard normal distributions in our occupancy model.

This secondary MCMC algorithm required only

seconds to run, as compared with the original model

fits, which required minutes. Furthermore, we found the

secondary MCMC algorithm suggested by Barker and

Link (2013) easier to program than the inline RJMCMC

algorithm because we didn’t have to modify the actually

model fitting code. Obtaining the posterior model

probabilities from the secondary MCMC algorithm

output simply requires calculating the number of times

each model M
ðtÞ
l is sampled out of the total number of

MCMC iterations (e.g., P(M2 j y) ¼ 83 200/160 000 ¼
0.52).

Several other alternatives exist for implementing

RJMCMC and obtaining required BMA quantities.

Notable among them are techniques for regression

models that exploit orthogonality properties in the

design matrix allowing for a simplification in the model

sampler (Clyde et al. 1996). More recently, a form of

data augmentation has been proposed to generalize

these methods for cases where the design matrix is non-

orthogonal (Ghosh and Clyde 2011). Overall, the suite

of new approaches for model-based model selection is

rapidly expanding and is making Bayesian model

averaging more accessible than ever for ecologists. Still,

fully automated software for performing BMA for a

huge class of potential models is lacking due to the

complexity of rigorously calculating the required quan-

tities. As with many of the cutting-edge statistical

methods, ecologists who wish to use them are acquiring

the necessary statistical and computational skills to

implement them on their own.

GUIDANCE

Thus far we have provided a fairly comprehensive

review of methods for Bayesian model selection and

multimodel inference, along with the advantages and
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disadvantages of each. One can use this document as a

reference in deciding what type of model selection is

appropriate depending on the desired statistical infer-

ence in a particular project. Assuming that the

researcher desires some form of model selection or

multimodel inference, and that they plan to use Bayesian

methods, we provide the following set of questions and

answers to help guide the researcher in finding an

appropriate set of tools:

1) Is the researcher planning a new study? If so, he or

she may want to consider collecting two sets of data,

one for training, and another for validation. When

prediction is of utmost importance, there is no

substitute for out-of-sample data in model selection.

It may be time for a paradigm shift in the way we

design ecological studies. If predictive model selec-

tion is desired, we need to collect data that facilitates

inference on both parameters and models.

2) Is the researcher using a historical data set? (a) If the

data set is large and computation time is not an

overriding issue, the researcher may want to consider

K-fold cross-validation for a set of candidate models

or Bayesian regularization. Most Bayesian cross-

validation implementations will require K separate

fits of the model, thus increasing the computational

time significantly. However, parallel computing is

now possible on the desktop computer thanks to

several user friendly software packages. So, cross-

validation may not be as impractical as one might

initially think. (b) If the data set is small, n-fold

cross-validation over a set of candidate models or

Bayesian regularization may be more appropriate.

The caveat is that leave-one-out cross-validation is

not as stable as K-fold for K , n. Small data sets are

always going to present problems for statistical

inference and there is not much one can do to

alleviate these issues, regardless of statistical para-

digm.

3) Is the researcher wanting to do prediction-based

model selection with a simple Bayesian model when

computational time is limited? If so, they might want

to consider using DIC. As a prediction-based

information criterion, DIC performs similar to AIC

in choosing parsimonious models. The caveat is that,

like AIC, DIC will also choose larger models than

necessary when the sample size is large. The biggest

caution about DIC arises when the posterior mean of

the parameters does not describe the central tendency

of the posterior distribution well. Thus, DIC is not

appropriate when there exist multiple modes in the

posterior. Furthermore, DIC is best as a selection

criterion when the number of effective parameters is

much smaller than the sample size, which may not be

the case in hierarchical models where the number of

latent variables scales with sample size.

4) Does the researcher want to do prediction-based

model selection with a hierarchical Bayesian model

when computational time is limited? If so, Gelman et

al. (2014b) recommend using WAIC to select models.

Unlike DIC, WAIC does not rely on posterior means

of parameters, instead it uses the posterior predictive

distribution and is the ‘‘most Bayesian’’ of all the

information criteria. However, despite all the benefits

of WAIC, it still only depends on within-sample data

and its computationally friendly form requires an

independence assumption at the data level, which is

not appropriate for time series or spatial models. In

these cases, posterior predictive loss provides an

alternative.

5) Does the researcher desire model averaged inference

on parameters or predictions? Bayes factors are the

appropriate tool for doing Bayesian model averag-

ing, but they often can only be approximated. Bayes

factors can be approximated using BIC, but only

under certain circumstances, and since BIC is not

actually Bayesian, it has limited utility in a fully

Bayesian setting. Hoeting et al. (1999) provided a

good summary of methods for approximating model

weights that have a formal justification. Note that,

aside from BIC, none of the other information

criteria have a solid foundation for Bayesian model

averaging (e.g., AIC, DIC, WAIC). Bayes factors are

not recommended in cases where models include

improper priors (Spiegelhalter and Smith 1982).

6) Does the researcher want a fully integrated model

fitting and selection procedure? If so, a model-based

approach like indicator or Gibbs variable selection,

stochastic search variable selection, or RJMCMC

may be warranted. Furthermore, connections exist

between many model-based approaches and BMA

under certain conditions. These model-based meth-

ods perform best with some tuning of the algorithms,

but when tuned, they perform quite well and seem to

be more computationally efficient than cross-valida-

tion. As with information criteria, model-based

model selection methods depend only on within-

sample data and thus have the same set of caveats.

Also, RJMCMC can be quite difficult to implement

for certain models, but there are newer approaches

that can be used to provide the same inference based

on individual model fits (e.g., Barker and Link 2013).

CONCLUSION

Ecologists are fascinated with model selection, and

many have customized their research questions around

likelihood methods for model selection and multimodel

inference as illustrated by the recent forum on P values

and model selection in Ecology (2014, volume 95).

Bayesian methods are becoming more common in

ecological studies, but due to a fracturing of the

literature pertaining to Bayesian model selection, it

appears that many studies simply rely on conventional

methods without much thought. Many Bayesian ecolo-

gists are aware of issues with certain Bayesian model
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selection approaches (e.g., Bolker 2009), but are

unaware of alternatives and how these alternatives

may relate to each other. We have compiled and

summarized the large body of literature on Bayesian

model selection and multimodel inference methods in

this guide so that ecologists can be better informed

about their options.

What stands out to us is that, despite the seeming

consensus among ecologists and wildlife biologists in

how to perform model selection and multimodel

inference, it is far from settled among statisticians;

particularly in the Bayesian realm of inference. What

also stands out is that nearly all model selection and

multimodel inference methods are focused on improving

predictive capabilities of models by balancing model fit

and model parsimony. Prediction is often most impor-

tant to the machine learning community (e.g., classifi-

cation and regression trees, boosting and bagging

algorithms) and related methods rely almost exclusively

on out-of-sample data for model validation to improve

prediction, but in the ecological and biological sciences,

our scope seems to be limited to within-sample data.

With an increasing ability to collect more data through,

for example, better telemetry devices, remote sensing,

citizen science efforts, and operations like NEON

(National Ecological Observatory Network), ecologists

are finally finding themselves with more data to answer

scientific questions. Thus, model selection methods that

rely on a separate set of validation data are now more

accessible than ever for ecologists.

Cross-validation is an incredibly useful tool for model

selection when only a single data set is available, a tool

that is often overlooked or ignored on the grounds that

it may be computationally infeasible. However, the

current era of computing is seeing the most improve-

ment in processor quantity and no longer in processor

speed (Sutter 2005). The one thing that computers are

getting better at is parallel processing, and that happens

to strongly favor the notion of model selection via cross-

validation. A bit of extra effort spent on bookkeeping

aspects of programming can make true prediction-based

model selection feasible through the parallelization of a

cross-validation procedure. Using the occupancy model

as an example, we demonstrated that parallel program-

ming requires relatively little extra effort to implement

but can improve computational efficiency dramatically

(e.g., from hours to minutes, sometimes seconds).

When it seems that fitting a single model is the

computational bottleneck, we need to remember that

there are several entire subfields within statistics and

computer science devoted to finding more efficient ways

to specify and fit models. Automated MCMC software

has been a boon for science, allowing ecologists to easily

specify and fit complicated Bayesian models (e.g., Kery

2010), but a common complaint is that these software

packages are slow. Fortunately, a wave of new

automatic Bayesian software is becoming available

(e.g., INLA, STAN, LibBi) that has shown dramatic

increases in speed, but improvements can also be gained

just by creating our own MCMC algorithms. This gives

us the flexibility to use model reparameterizations and

newer computational tricks such as variational Bayes

(e.g., Omerod and Wand 2010) and statistical emulators

(e.g., Hooten et al. 2011) to speed up the model fitting

process, which in turn aids in out-of-sample model

selection.

Finally, as a closing thought, we feel that it is the right

time for ecologists to become more open-minded about

the use of strong priors. It is somewhat ironic that many

popular non-Bayesian statistical methods (e.g., model

selection, penalized likelihood, Lasso) depend on the

implicit use of strong priors while at the same time

Bayesians are warned against them. Bayesian priors

provide a formal mechanism for placing constraints on

models and, when used correctly, such constraints can

be incredibly helpful (e.g., Moreno and Lele 2010).

Furthermore, seemingly vague priors can have a

dubious effect on inference (Seaman et al. 2012) in

models commonly used in ecological analyses. Yet,

stronger priors can help with model selection, multi-

collinearity, and algorithm stability, not to mention

formally incorporating existing scientific information

into new analyses (e.g., Garrard et al. 2012).
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