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Comparing Ecological Models

Model selection based on information theory is a relatively new paradigm in the

biological and statistical sciences and is quite different from the usual methods

based on null hypothesis testing.

Why Compare Models?

{\ tatistical models provide a reliable mechanism
D for learning about unknown aspects of the natu-
ral world. By their very nature, however, statistical
models are placeholders for true data-generating pro-
cesses. Because true data-generating processes are
unknown, statistical models represent our mathe-
matical understanding of them while accounting
for inherent randomness in how the underlying
ecological process operates and how the data we
may observe arise. In designing statistical models,
we may have multiple perspectives about the
mechanisms that give rise to the data. Therefore, a
critical component of the scientific process involves
the assessment of model performance, often in
terms of predictive ability. We value statistical
models that provide accurate and precise predic-
tions because they excel at mimicking the data-
generating mechanisms. We refer to an assessment
of the predictive ability of a statistical model as
validation.

We are also generally interested in model inter-
pretation, which is focused on the question of which
variables are more or less important in predicting the
response. In a high-dimensional problem, it is likely
that some subset of predictor variables is not strongly

—Burnham and Anderson (2002:3)

associated with the response variable or, in the ex-
treme, not associated at all (such that the estimates
for these variables are zero). This interest in variable
selection is often intrinsically linked to questions
about relative scoring among a set of candidate mod-
els fit to a set of data.

In this chapter, we introduce the concept of
model scoring for parametric statistical models,
how we calculate model scores, and what we do
with the scores. We place the concept of scoring in a
broader discussion about parsimony and its utility
for prediction. We begin with likelihood-based meth-
ods and then shift to Bayesian methods, providing
examples throughout based on a generalized linear
model (GLM) for avian species richness. We also
discuss the relationship between model scoring and

variable selection.

Scoring Models
Deviance

Given that prediction is an important indicator by
which to compare models, we often rely on a quan-
titative metric (i.e., a score) for assessing the predic-
tive ability of models. Prediction is a form of learn-
ing about unobserved random quantities in nature.
In statistics, prediction typically refers to learning
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about unobserved data (e.g., at future times or new
locations). For example, suppose there are two sets
of data, one you collect (y, an nx 1 vector) and one
youdo not collect (y,) (i.e., data that are unobserved).
Statistical prediction involves learning about y, given
y- A point prediction results in our single best un-
derstanding of the unobserved data ¥, given the
observed data (y) and statistical model M. Then, to
assess our prediction, we might consider a score
that measures the distance between our prediction
and truth (Gneiting 2011).

Numerous issues arise when scoring statistical
models based on predictive ability. First, we typi-
cally do not know the unobserved data (y,), so a
score cannot be calculated. Second, if we did have
access to the unobserved data, the score would de-
pend on the way we measured distance. We can ad-
dress the first issue by collecting two data sets—
one for fitting the model and one for validating the
model. If the validation data set is large enough, it
will provide an accurate representation of the pre-
dictive ability. The second issue is impossible to
resolve without setting some ground rules. Thus,
statisticians have traditionally recommended scor-
ing functions that are based on distances inherent
to the type of statistical model being used for infer-
ence. Such scores are referred to as proper scores
(Gneiting and Raftery 2007).

The deviance is a proper score (also referred to as
the “logarithmic score”; Gneiting and Raftery 2007).
It is proper because it involves the likelihood associ-
ated with the chosen statistical model (i.e., hypoth-
esized mechanism that gives rise to the data). The
deviance is usually expressed as D(y) =—2log f (y| B),
which involves a function f representing the likeli-
hood evaluated for the data based on the model par-
ameters f=(f,,...,3,)". We use the —2 multiplier
in the deviance to be consistent with historical liter-
ature, and it implies that smaller scores indicate
better predictive ability. There are other types of
proper scoring functions, but because the deviance is
one of the most commonly used scores, we focus on
it throughout.

Validation

It is tempting to use the within-sample data y to score
a model based on the deviance D(y). However, the
score will be “optimistic” about the predictive abil-
ity of the model because we learned about the par-
ameters in the model using the same set of data
(Hastie et al. 2009). “Optimism” is a term commonly
used by statisticians to refer to an artificially inflated
estimate of true predictive ability. This idea is easily
understood by considering a data set with n data
points, to which we wish to fit models containing as
many as p predictor variables. Using a familiar least-
squares approach, we seek to minimize residual sums
of squares (RSS), a commonly used objective func-
tion in linear regression. However, the RSS will de-
crease monotonically as the number of parameters
increases (often characterized by an increase in the
calculated R? for the model). While this may seem
like a positive outcome, there are two important
problems. First, a low RSS (or high R?) indicates the
model has low error with respect to the within-
sample data (sometimes referred to as the “train-
ing” data), when our interest is in choosing a model
that has a low error when predicting out-of-sample
data (validation, or “test” data). Coefficient esti-
mates will be unbiased, and, if n is much larger than
p. coefficient estimates will have low variance. How-
ever, as p —> n, there will be a substantial increase
in variance. In the extreme, where p2n, the vari-

ance of the coefficient is infinite, even though

R%*=1. Second, if the criterion for model selection
is based solely on minimizing RSS in the training
data (in the least squares context; equivalently, mini-
mizing deviance in a likelihood framework for linear
models), then the model containing all p parameters
would always be selected. In fact, we want to select 2
model with good ability to predict the response out-
side the sample (i.e., we seek low test error).
Formally, the preceding relates to what is known
as the bias-variance tradeoff. As a model becomes
complex (more parameters), bias decreases, but vari-
ance of the estimates of parameter coefficients in-
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creases. Following Hastie et al. (2009), we illustrate
the basis for this relationship by proposing that a re-

* sponse variable y can be modeled as y=g(x) + €. The
- corresponding expected prediction error is written

as E((y- §(x))2). If g(x) is the prediction based
on the within-sample data, then

E((y - (x))")= o2+ (E(§(x)) ~ g(x))) +var(§(x))

= irreducible error + bias?+ variance

The first term, irreducible error, represents the uncer-
tainty associated with the true relationship that can-
not be reduced by any model. In effect, the irreducible
error is a constant in the expression. Thus, for a given
prediction error, there is an explicit trade-off between
minimizing the variance and minimizing the bias
(i.e., if one goes down, the other goes up).

Out-of-sample validation helps control for opti-
mism by using separate procedures for fitting and
scoring models. Out-of-sample validation corre-
sponds to calculating the score for the out-of-sample
data. In the case where two data sets (i.e., training
and validation data) are available, the deviance can
be calculated for each model using plug-in values for
the parameters based on the point estimates B from
a model fit to y. Thus, for a set of models M, . . .,
M, ..., M, we calculate D(y,) and compare to as-
sess predictive performance (lower is better).

A completely independent second data set is not
often available to use for validation. In that case,
cross-validation can be useful to recycle within-
sample data for scoring. In cross-validation, the data
set is split into two parts—a temporary validation
data set y, and a temporary training data set y_,
(where the —k subscript refers to the remaining set
of data from y after the kth subset is held out). For
each “fold” of training data y_, we fit model | and
calculate the score D((y,) for the validation data set.
After we have iterated through all K folds, we com-
pute the joint score as > §=1 D(y,) and compare
among the L models to assess predictive ability.

Cross-validation is an appealing method because
it automatically accounts for optimism and can be
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used in almost any setting without requiring a sepa-
rate set of validation data. However, it is based on a
finite set of data and includes a circular procedure
because, presumably, the best predicting model iden-
tified in the comparison would then be fit to the en-
tire data set for final inference and/or additional
prediction. Furthermore, cross-validation can be
computationally intensive if the associated algorithms
require substantial computing resources. In modern
computing environments, the computational burden
is less of an issue than it was decades ago, but the
cross-validation procedure (i.e., fitting the model for a
set of folds and models) can require slightly more of
an overhead programming investment.

SPECIES RICHNESS: CROSS-VALIDATION
As a case study, we consider continental U.S, bird
species richness (Fig. 4.1) as a function of state-
level covariates throughout this chapter. Suppose
that we wish to model the bird counts (y,) by U.S.
state based on a set of state-level covariates x;, for
i=1,..., n where n=49 continental states in the
United States (including Washington, DC) and the
covariates are: state area (sq. km/1,000), average
temperature (average degrees F), and average pre-
cipitation (average inches per year). Because the
data y, are nonnegative integers, a reasonable start-
ing place for a data model for y, is the Poisson dis-
tribution such that

¥~ Pois(4). (4.1)

We link the mean richness (A; also known as “inten-
sity”) to the covariates (x;) and regression coeffi-
cients (B, . . ., B;) using a log link function

(4.2)

log(A) =B+ Bixy;+ - - + Bxy,

for a set of covariates (x).’i, j=1,...,p). Itis common
to see the regression part of the model written as
log(A)=B,+x; B or log(1;)=x;B, depending on
whether the intercept is included in 3 (in the latter
case, the first element of vector x, is 1).
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Bird Species Richness

4.00 349 685

Temperature (avg F)

Fig. 4.1. Bird species richness in the continental United States and covariates: state area, average annual temperature,

average annual precipitation.

The set of models we seek to compare are:

null model with only an intercept (no covariates)
. intercept and area as covariate

. intercept and temperature as covariate

. intercept and precipitation as covariate

I O T

. intercept and area and temperature as covariates

We excluded models with both state area and pre-
cipitation because they are strongly negatively cor-
related (r =—0.63). We also excluded models con-
taining both temperature and precipitation because
of moderate collinearity (r= 0.48). Substantial mul-
ticollinearity among covariates can cause regression
models to be unstable (i.e., “irregular;” more on this
in what follows) and result in misleading inference
(Christensen 2002; Kutner et al. 2004). Further-
more, we scaled the covariates to have mean zero
and variance one before conducting all analyses.
Standardizing covariates like this can reduce collin-
earity in some models and also puts the regression

coeflicients on the same scale so that they can be
more easily compared.

In this case, because we had 49 observations, we
used 7-fold cross-validation, breaking the data up into
seven subsets. For each fold, we fit the models to
6/7ths of the data and computed the validation score
(i.e., deviance) for the remaining 1/7th of the data
(summing over all folds). The resulting deviance
score, calculated using cross-validation 211:1 Di(¥,)»
for each of our five models 1 =1, . . ., 5) was 762.8,
5971, 687.8, 755.4, and 551.5, respectively. The cross-
validation scores indicated that models 5 and 2,
both containing the “area” covariate, perform best
for prediction because they have the lowest cross-

validation scores.

Information Criteria

The inherent challenges associated with scoring
models based on out-of-sample validation and cross-
validation inspired several developments that con-
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In the maximum likelihood paradigm for specifying
and fitting statistical models to data, two scoring ap-
proaches have been popularized: Akaike’s informa-
tion criterion (AIC; e.g., Akaike 1983; Burnham and
Anderson 2002) and Bayes information criterion
(BIC; e.g., Schwartz 1978; Link and Barker 2006).
They are both similar in that they depend on the de-
viance as a primary component of the score, and they
account for optimism in the predictive ability by
penalizing the deviance based on attributes of the
model or data collection process. Because smaller
deviance indicates a better score, AIC and BIC pe-
nalize the score by adding a positive term to the de-
viance. For AIC, we calculate the score as D(y) +2p,
where p is the number of unknown parameters 8 in
the model. The score for BIC is calculated similarly
as D(y) + log(n)p, with n corresponding to the di-
mension of the data set y (i.e., the sample size). Note
that as log(n) becomes larger than 2, the penalty will
have more influence on the score in BIC than AIC.
Within-sample scores are referred to as informa-

‘tion criteria because the derivation of their penalties
corresponds to certain aspects of information theory.

Information theory arose from early work in signal
processing and seeks to account for the information
content in data. Given that statistics allows us to
model data using probability distributions, informa-
tion theory is concerned with how close the proba-
bility distribution we used to model the data is to the
truth (Burnham and Anderson 2002). While it is
impossible to calculate the distance between our
model and the truth when the truth is unknown, the
penalty used in AIC allows us to compare among a
set of models to assess which is closest to the truth
(with the lowest score indicating the closest). Con-
veniently, a separate derivation of the AIC penalty
showed that it can also identify the best predicting
model in certain circumstances (Stone 1977). Criti-
cally, the AIC penalty (2p) is a function of the num-
ber of unknown model parameters. Thus, complex
models are penalized more than simpler ones. The
concept of Occam’s razor indicates that there is a
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sweet spot in model complexity that provides the
best out-of-sample predictive ability (Madigan and
Raftery 1994), with highly parameterized models be-
ing poorer predictors in limited data situations.
Thus, it is often said that information criteria seek
to balance model fit (to within-sample data) with
parsimony (reducing model complexity to control for
optimism in predictive ability).

The BIC score was derived with a different goal in
mind than that of AIC. Under certain conditions, BIC
identifies the data-generating model out of a set of
models that includes the truth. It is also naturally a
good score to use for calculating weights for model
averaging, again, under certain conditions (Link and
Barker 2006). Both AIC and BIC tend to rank models
similarly when there are large gaps in the model per-
formance, but AIC will select more complex models in
general when the differences among models are small.

SPECIES RICHNESS: INFORMATION CRITERIA
Recall that AIC is defined as AIC = D(y) + 2p (based
on the plug-in point estimates [Ai), where p is the
number of model parameters (p is equal to 1, 2, 2,
2, 3 for our five models, respectively). Similarly,
BIC is defined as BIC = D(y) + log(n)p, where n=49
for our case study. For our models, the deviance is
calculated as

D(y)=—23", log(Pois(y,| exp(, + B x.

A (4.3)
et o))

where “Pois” stands for the Poisson probability mass

function. We calculated AIC and BIC for each of our

five models.

The results in Table 4.1 indicate that AIC and BIC
are similar and agree on the ranking of the models,
The information criteria also agree with the results
of the cross-validation, in that models 5 and 2 are
the top two models for our data. Across all models,
the intercept was fairly consistent and the esti-
mated coefficients for the “area” and “temp” predic-
tor variables were positive while that for “precip”
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Table 4.1. Likelihood-based information criteria and coefficient point estimates.

Model AIC! BIC? Intercept Area Temperature Precipitation
1 741.1 743.0 5.761 - - -

2 571.2 575.0 5.755 0.100 - -

3 669.2 673.0 5.758 - 0.069 -

4 706.1 709.8 5.759 - - 0.049

5 526.7 5324 5.754 0.092 0.055 -

!Akaike information criterion

“Bayes information criterion

was negative. These results imply that increases in
state area and average temperature predict higher
bird species richness, while an increase in average
precipitation predicts lower bird species richness.

Regularization

The concept of penalizing complex models to ac-
count for optimism and improve predictive ability
is much more general than the way in which it is
used in AIC and BIC. Regularization is a type of pe-
nalization that allows users to choose a penalty that
suits their goals and meshes well with their per-
spective about how the world works. A general
scoring expression is D(y)+aX%,|B; |, where a
and b are regularization parameters that affect the
type and strength of penalty. Because the user can
set b, there are infinitely many regularization forms,
but the two most commonly used are the “ridge”
penalty (b=2, equation 4a; Hoerl and Kennard
1976) and the “lasso” penalty (b=1, equation 4b;
Tibshirani 1996):

k
D(y)+aX | B> ridgepenalty, (4.4a)

=1

D(y)+ ai |B;| lassopenalty. (4.4b)
=1

It is intuitive to view these penalties geometri-
cally. For example, in the case where a model has
two parameters, we can view the penalty as a shape
in two-dimensional parameter space. Consider all
possible values that the parameters §, and 3, can as-

sume in the space depicted in Fig. 4.2. When the
model is fit to a particular data set without any pe-
nalization, the point estimate [;‘ will fall somewhere
in this space (the lower right quadrant in the exam-
ple shown in Fig. 4.2). When penalized, the esti-
mates will be “shrunk” toward zero by some amount
controlled by the penalty.

The ridge penalty (b= 2) is represented as a cir-
cle with its radius being a function of the regular-
ization parameter a. The lasso penalty (b=1) is rep-
resented as a diamond where the area is a function
of the regularization parameter a. For more than
two parameters, the constraint shapes become
higher dimensional (e.g., spheres and boxes for
p=3). Note that the lasso constraint has corners
whereas the ridge constraint is smooth. These fea-
tures play an important role in the penalization.
The penalized parameter estimates are snapped
back to a point on the shape (i.e., where the error
ellipses intersect with the shape of the particular
constraint function). ;

The ridge and lasso coefficient estimates repre-
sent a compromise between the model fit to the
available data and a penalty to account for optimis-
tic predictive ability. The strength of the penalty is
induced by the regularization parameter a. As a
increases, the shapes shrink in size (i.e., distance
between the edge and the origin decreases), taking
the penalized parameter estimates with them.
Notice that as the regularization parameter a in-
creases past a certain point, the lasso-penalized
estimate will shrink to exactly zero for one of the
parameters, whereas the ridge-penalized estimate
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Fig.42. Ridge penalty (gray circle, b=2) and lasso penalty (gray diamond, b= 1) with three point estimates in parameter
space for a model with two parameters (By, B)): the unpenalized estimate (), the ridge estimate (Bige), and the lasso
estimate (B,,). The arrows indicate the shrinkage induced by the penalty in each case. The ellipses represent contours of

the distribution for the unpenalized estimate ().

will shrink toward zero but at an asymptotic rate
never reaching zero exactly until @ — . These tra-
jectories are a result of simple geometry. The sharp
corners of the lasso penalty imply that the lasso
estimates will more likely fall on a point of the dia-
mond shape, which means that one of the two para-
meters will be estimated as zero (effectively remov-
ing that effect from the model, as in Fig. 4.2, where
Biasso2=0)- By contrast, the ridge penalty will shrink
all parameters in the model, but not to zero unless
a—> oo,

The application of these differences in shrinkage
trajectory represents the user perspective about the
world. In the case of lasso, when certain parameters
are set to zero by the penalty, they are effectively re-
moved from the model, making the model discretely
less complex. By contrast, the ridge estimates leave
all parameters in the model, but reduce their influ-
ence appropriately. Some have argued that the ridge
penalty better mimics the real world because every-
thing is affected by everything else, even if only by
an infinitesimal amount, although this may compli-
cate the interpretability of the model. However,
lasso regularization has other beneficial properties,

such as retaining sparsity in the parameter space
(by forcing some parameters to be zero) and it has
become popular (Tibshirani 1996).

Regularization can also help alleviate the effects of
multicollinearity on inference. When covariates are
highly correlated (ie., collinear), the associated coef-
ficient estimates will often oppose each other (ie.,
one gets large and the other gets small) because they
are effectively fighting over the same type of variabil-
ity in the data. In extreme collinearity cases, the pa-
rameter estimates can oppose each other strongly.
Regularization shrinks the parameter estimates
toward zero, thereby reducing the effects of collinear-
ity. The resulting regularized estimates are technically
biased, but have much lower variability. Ridge regres-
sion was developed for precisely this purpose. The
term “regularization” is so named because it induces
regularity in models (Hoerl and Kennard 1976).
Because regular models have fewer parameters than
data and do not have highly collinear predictor vari-
ables, regularization helps with both cases.

The catch with regularization is that the user has
to choose the parameters a and b. The shape para-
meter b is often chosen based on the goals of the study
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and the desired type of shrinkage, but the strength
parameter a is not as easy to set. In principle, it would
be most satisfying to formally estimate a along with
the other model parameters B. However, the within-
sample data do not carry enough information to es-
timate a by themselves. Thus, a is typically set based
on how well it improves the predictive ability of the
model for out-of-sample data using the same valida-
tion or cross-validation techniques described in the
previous section. We illustrate the cross-validation
approach to regularization and finding an optimal
value for g in what follows. The shape parameter b
can also be chosen using cross-validation alone, or it
can be selected a priori depending on whether the
user wants some parameter estimates to be set to

zero if necessary.

SPECIES RICHNESS: REGULARIZATION
Regularization allows for the comparison of an infi-
nite set of models because we can include all covari-
ates and let the penalty shrink them toward zero
based on cross-validation. We fitted both ridge and
lasso Poisson regression to the bird richness data set
using values of a ranging from 0 to 100. We included
a simulated covariate (“sim”) that is strongly corre-
lated with the “area” covariate to demonstrate the
differences among coefficient estimate trajectories
for the real versus simulated covariates. The result-
ing trajectories and cross-validation scores are
shown in Fig. 4.3. Both types of regularization, ridge
and lasso, shrink the coefficient estimate for the
simulated covariate (“sim”) to zero faster than the
others. The simulated covariate is shrunk exactly to
zero by lasso, immediately resulting in the optimal
model for prediction. With the ridge penalty, the co-
efficient estimate for the simulated covariate actu-
ally changes sign (from negative to positive) but ends
up near zero in the optimal model for prediction. The
regularization results in larger effects for the real co-
variates for both ridge and lasso. Between the two
types of penalties, the resulting optimal score for the
ridge penalty was better (542.7) than the score for
lasso (544.2).

Scoring Bayesian Models
Posterior Predictions

Bayesian statistics are similar to likelihood-based
statistics in that a parametric probability distribu-
tion is chosen as a model for the data. The differ-
ence is that parameters are treated as unobserved
random variables in Bayesian models, as opposed
to fixed variables in non-Bayesian models (Hobbs
and Hooten 2015). We use conditional probability
statements to find the probability distribution of
unknown variables (i.e., parameters and predic-
tions) given known variables (i.e., data). Thus, if we
treat our model parameters f3 as random variables
with distribution f(8) before the data are observed,
our Bayesian goal is to find the posterior distribu-
tion f(f3]y) after the data are observed. Using con-
ditional probability, we find that the posterior dis-
tribution is f(Bly)=f(y| B (Bf(y), which is a
function of likelihood f(y|f), the prior f(f3), and
the marginal distribution of the data f(y) in the de-
nominator (Hobbs and Hooten 2015). The marginal
distribution of the data is often the crux in solving
for the posterior distribution because it usually in-
volves a complicated integral or sum. Therefore, we
use numerical approaches such as Markov chain
Monte Carlo (MCMC) algorithms for approximat-
ing the posterior distribution and associated quanti-
ties (Gelfand and Smith 1990).

The Bayesian mechanism for prediction is the pos-
terior predictive distribution f(y, |y). Bayesian point
predictions can be calculated by ¥,=3Z,y"/T
(i.e., the mean of the posterior predictive distribu-
tion) using posterior predictive samples yi') arising
from the MCMC modelfitting algorithm. How-
ever, the posterior predictive distribution provides
much more information about the unobserved data
as well, such as the uncertainty in our predictions.
Thus, while it is tempting to use only the point pre-
dictions, we can obtain a much deeper understand-
ing of what we know, and do not know, about the
things we seek to predict using additional character-
istics from the posterior predictive distribution.
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Fig.43. Poisson regression coefficient estimate (f8 ) trajectories (top panels) based on the ridge penalty (left panels;
b=2) and lasso penalty (right panels; 5= 1); regularization score trajectories (bottom panels) based on cross-validation,
Vertical gray lines represent the values for the strength parameter a based on the optimal scores.

Scoring Bayesian Models

In principle, the same concept of scoring described
in previous sections can be applied to Bayesian point
predictions (Vehtari and Ojanen 2012). In this case,
the deviance can be calculated using the same likeli-
hood as in the non-Bayesian models but with Bayes-
lan point estimates as plug-in values for the par-
ameters 3. Alternatively, we can leverage one of the
key benefits that comes for free with MCMC: namely,
the ability to obtain inference for any function of

model components (e.g., data, predictions, and par-
ameters). Therefore, a natural Bayesian score would
be the mean posterior predictive deviance D(y,),
which can be calculated using MCMC samples as

L D(Yff))/ T, where t corresponds to a MCMC it-
eration and T is the total number of MCMC itera-
tions. The posterior predictive distribution pro-
vides the Bayesian mechanism for obtaining predic-
tions from a model. Thus, because the deviance
can be calculated using predictions, we treat it as a
derived quantity (i.e., a statistic that does not affect
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model fit, but that is a function of predictions or
parameters in the model). MCMC makes it easy to
obtain an estimate of this statistic, which becomes
the score for our model. Calculating this new
score using Bayesian methods, we can compare
models as before based on out-of-sample data or
cross-validation to account for optimism.

Bayesian models may require more time to fit than
non-Bayesian models. Although Bayesian models can
provide richer forms of inference, cross-validation
may become infeasible for very large data sets and/or
complex Bayesian models. Thus, within-sample scor-
ing methods for Bayesian models have been devel-
oped. The most commonly used within-sample score
for Bayesian models is the deviance information crite-
rion (DIC; Spiegelhalter et al. 2002; Celeux et al.
2006). DIC takes the same form as AIC, with the de-
viance based on a plug-in Bayesian point estimate for
B, plus a penalty. The DIC penalty is 2pp, with py, rep-
resenting the effective number of parameters. It is not
possible to count parameters discretely in Bayesian
models because the prior provides some information
about inodel parameters. Instead, we can think of a
measure for model complexity (i.e., the optimism) as
the difference in score between the deviance that ac-
counts for the uncertainty in model parameters (D)
and the deviance based on only the plug-in parameter
estimates (D), resulting in p,=D-D. As it turns
out, for simple models, p;, is close to the number of
parameters p when priors are less informative,

An alternative Bayesian score based on within-
sample data uses the posterior predictive distribu-
tion directly (Richardson 2002; Watanabe 2010).
The so-called Watanabe-Akaike information crite-
rion (WAIC; Watanabe 2013) substitutes in the
logarithm of the posterior predictive density for
the deviance and uses a different calculation for the
penalty. Thus, WAIC is specified as ~2 log f (y|y) +
2pp,. Using the MCMC sample, WAIC can be calcu-
lated as -2 log¥ ., f(3,| )/ T+ 2p,, where
Pp= Ly var(log f(,| B)) and the “var” corresponds
to the variance over the posterior distribution for f8.
Heuristically, WAIC balances fit with parsimony to

improve predictive ability because the uncertainty :
will increase as the model complexity increases, '
Thus, as the posterior variance of the deviance in-
creases, the model is penalized more.

SPECIES RICHNESS: BAYESIAN
INFORMATION CRITERIA

Recall that DIC is defined as DIC=D +2p,, for -

pp =D~ D. These different forms of deviance can be 5

computed using MCMC output from our model using -

D=-23 log(Pois(y,| 1)), (4.5)
i=1 b

and

L, 31, log (Pois(y, |exp(B+ .
ﬁit)X1,i+'”+ﬂg)xp’i)) (4.6)
T 5

D=-2

where A; is the posterior mean of A and ﬂ?) is the
jth coefficient on the tth MCMC iteration (for
j=1 ..., pand a MCMC sample of size T). 3

Similarly, the Watanabe-Akaike information cri- = 1

i
iy

terion is

WAIC=—2Y Ippd + 2p,,

i=1

(4.7) <2
s ;

where “Ippd” stands for log posterior predictive den- -
sity for y; and can be calculated using MCMC as

i, Pois(y, | exp(BY
+B %15+ -+ BVx,0))

Ippd, =log T s

(48)

and where Gelman and Vehtari (2014) recommend ¢ 3
calculating py, as ‘

PD=2 T

i=1

n (Z;F:l (log(Pois)"'— X1 log(Pois)"/ T)? ]

49)



1og(Pois)§’) = log(Pois(y,| exp(ﬁg) + ﬁgt)xl,i
+ot BV, ).

To specify a Bayesian model for the bird species
" richness data, we used the same Poisson likelihood
as previously and then specified priors for the par-
ameters. A reasonable prior for unconstrained re-
gression coefficients is Gaussian (because the support
for B, includes all real numbers). Thus we specify
B;~N;, of) for j=1...p, (410)
as priors with means {4 =0 and variances o}=100.
© Using these priors, we fit each of our models to
7 the bird richness data and calculated DIC and
WAIC.
While the values in Table 4.2 for DIC and WAIC
are different, the ordering of models remains the
; same and is consistent with the non-Bayesian in-
* formation criteria (although that may not always be
_ true). Again, we see that models 5 and 2 provide the
~ best predictive ability among our set of five models.

Bayesian Regularization

Comparing Bayesian models is not limited to use
¢ with out-of-sample scoring and information criteria.
. The concept of regularization also naturally transfers
to the Bayesian setting (Hooten and Hobbs 2015). In
fact, the regularization penalty already exists in

Jabfe 4.2. Bayesian information criteria.

¢ Model pIC! WAIC?
§
1 741.2 748.4
; 2 571.3 5774
3 669.2 680.1
4 706.1 720.3
i 5 526.7 533.8

1 Deviance information criterion

2Watanabe-Akaike information criterion
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Bayesian models as the prior. To see this connection,
notice that the logarithm of the numerator in condi-
tional probability is log(f(y| B)) + log(f(f3)). Thus,
multiplying by —2, we have the same regularization
expression as in previous sections, but with the pen-
alty equal to —2 log(f(3)). Therefore, the penalty is
a function of the prior.

In regression models, the most common prior for
the coefficients is a normal distribution. If we let the
prior for the intercept be §,~N(0, 63) and the prior
for the slope coefficients be §;,~N(0, 0}), thenthe
regularization shape parameter is b=2 (as in ridge
regression) and the strength of the penalty a is pro-
portional to the reciprocal of prior variance
(1/ o'f,; Hooten and Hobbs 2015). Thus, to induce a
stronger penalty, we simply make the prior vari-
ance for the slope coefficients small, hence shrink-
ing the posterior for the slope coefficients toward
zero. To choose the optimal value for 63, we can
perform cross-validation (or out-of-sample valida-
tion), as before, to improve predictive ability of the
model (Watanabe 2010).

The Bayesian regularization procedure can be
used with a suite of different model specifications
that involve regression components (e.g., logistic
regression, Poisson regression, occupancy models,
capture-recapture models; Hooten and Hobbs 2015).
Different reguiarization penalties can be imposed by
using different priors. For example, using a double
exponential prior for f, instead of a Gaussian prior
results in a Bayesian lasso penalty (Park and Casella
2008; Kyung et al. 2010). The only potential disad-
vantage is that a Bayesian regularization procedure
may involve more computation than fitting the
model a single time when cross-validation is applied
and the regularization is tuned. Even so, when fitting
many types of models on modern computers, Bayes-
ian regularization is feasible. Alternatively, strong
priors that are set in the traditional way, using pre-
existing scientific knowledge about the process, may
be enough to facilitate a natural Bayesian regulariza-
tion without requiring an iterative model-fitting
procedure (Seaman et al. 2012).
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Discussion

We presented several different approaches for com-
paring parametric statistical models in this chapter.
Our focus was mainly on comparing models with re-
spect to predictive ability, but not all of the methods
are designed to be optimal for prediction in the same
sense. For example, BIC is more closely related to
model averaging, and model averaged predictions
outperform the predictions from any one model
alone. Thus, multimodel inference can refer to a
comparison of models based on predictive ability or
an explicit combination of models to improve de-
sired inference.

Any probability distributions (e.g., predictive dis-
tributions) can be averaged to form a new distribu-
tion, but the weights with which to average them are
not unique, and any one set of weights is optimal
only under certain circumstances. Bayesian meth-
ods provide the most coherent justification for
model averaging because the optimal weights have
been shown to equal the posterior model probabili-
ties, P(M,|y), for I=1, ..., L (Hoeting et al. 1999;
Link and Barker 2006; Hooten and Hobbs 2015).
The posterior model probability blends information
from the model and data with a prior understanding
of model suitability. Posterior model probabilities
can be calculated easily for some Bayesian models,
but they are intractable for others. Thus, BIC was de-
veloped for computing the optimal model averaging
weights under certain conditions (equal prior model
probabilities and flat prior distributions; Schwarz
1978).

The model averaging weights associated with BIC
are proportional to e”¥", where BIC, is the Bayes-
fan information criterion calculated for model M.
Burnham and Anderson (2002) suggested replacing
BIC; with AIC, and using it in a non-Bayesian con-
text to model average parameter estimates and
predictions, a practice that has become popular in
wildlife biology and ecology. However, model aver-
aging should be performed only for quantities that
do not change in their interpretation across models

(Cade 2015; Banner and Higgs 2017). Regression
parameters have different interpretations among
models unless the predictor variables are uncorre-
lated; they are interpreted conditional on the other

parameters in the model. However, predictions of .|

data always have the same interpretation in models,
so they can be safely averaged for final inference
(Burnham and Anderson 2002; Burnham and An-
derson 2004).

To illustrate model comparison based on predic-
tive ability, we employed a Poisson GLM for count
data and compared a set of five models including a

variety of covariates. Across all methods we demon-

strated, state area always appeared in the best predict- =
ing model. However, all of the covariates improve pre- -

dictive ability beyond the null model (i.e., intercept

only). In the models we considered, the information "

criteria provided similar insights as cross-validation,
and the non-Bayesian information criteria agreed
with the Bayesian approaches. This occurred because

we used relatively vague priors for the regression coef- "= ;

ficients, and thus, the information content from the
data was approximately the same across models. ‘

The regularization approaches also provided sim- fo
ilar results for our data. However, while lasso im- '

mediately shrunk the simulated covariate to zero,
ridge regression shrunk this covariate, and the others,

more slowly. In this particular case, the smoothness :
of the trajectory allowed the regularization proce- . >
dure to find a better predicting model (out of infi-

nite possibilities) under the ridge penalty.

The algorithms required to fit the specific models
we presented in this chapter, and its relatively small -
example data set, yielded nearly immediate results -

in all cases. However, for larger data sets, the cross-

validation and Bayesian approaches may require i
more time to implement. Still, we used readily avail- . =

able software to fit all models and nested model-
fitting commands within “for loops” to perform
cross-validation when necessary. With modern com-
puting resources and easy parallel computing, cross-

B N R S s
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validation can be sped up substantially with minimal

extra effort, so the added computational burden is
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- pot nearly as limiting now as it was in the past. How-

ever, while cross-validation automatically accounts

" for optimism in scoring predictive ability, it still de-

pends on the initial data set and is limited in repre-
senting true out-of-sample predictive ability.
Finally, Ver Hoef and Boveng (2015) argue that

 there are valid situations that call for the use of a sin-

gle, well-designed model that best represents the

' gcientist’s understanding of the ecological mecha-
" pisms and data collection process. In such cases, the
_ emphasis is not on predictive ability, but rather on

gaining a better understanding of the model compo-
nents. A model component may be a simple popula-

" tjon mean that is unknown, such as the average bio-

mass in a survey plot, or it could be the true animal

~ abundance in a closed study area. In these cases, we
" may have no need for model comparison because the

desired inference is clear and the study design can
be customized to answer these questions.
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