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a b s t r a c t

Analyzing spatial data often requires modeling dependencies
created by a dynamic spatio-temporal data generating process. In
many applications, a generalized linear mixed model (GLMM) is
used with a random effect to account for spatial dependence and
to provide optimal spatial predictions. Location-specific covariates
are often included as fixed effects in a GLMM and may be
collinear with the spatial random effect, which can negatively
affect inference. We propose a dynamic approach to account
for spatial dependence that incorporates scientific knowledge of
the spatio-temporal data generating process. Our approach relies
on a dynamic spatio-temporal model that explicitly incorporates
location-specific covariates. We illustrate our approach with a
spatially varying ecological diffusion model implemented using
a computationally efficient homogenization technique. We apply
ourmodel to understand individual-level and location-specific risk
factors associated with chronic wasting disease in white-tailed
deer from Wisconsin, USA and estimate the location the disease
was first introduced. We compare our approach to several existing
methods that are commonly used in spatial statistics. Our spatio-
temporal approach resulted in a higher predictive accuracy when
compared tomethods based onoptimal spatial prediction, obviated
confounding among the spatially indexed covariates and the spatial
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random effect, and provided additional information that will be
important for containing disease outbreaks.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The generalized linearmixedmodel (GLMM) is an important tool for spatially continuous and areal
data (Besag et al., 1991; Gotway and Stroup, 1997; Diggle et al., 1998), is widely used in fields such
as econometrics, epidemiology, and ecology (e.g., Waller and Gotway, 2004; Bolker et al., 2009), and
is the building block for more sophisticated hierarchical models (Cressie and Wikle, 2011). In many
applications of the spatial GLMM, the goal is to obtain inference about the regression coefficients by
accounting for spatial dependence while simultaneously obtaining optimal predictions at locations
thatwere not sampled. Although the spatial GLMM iswidely used in discipline-specific domains, there
are surprisingly few examples where the model component that accounts for spatial dependence
is specified by incorporating subject matter knowledge (Hanks, in press). For example, the spatial
pattern of disease occurrences in wildlife may be driven by host species movement patterns across a
landscape (e.g., Smith et al., 2002;Wheeler andWaller, 2008) and incorporating this information into
model components that account for spatial dependence may be useful.

In contrast, subject matter knowledge is commonly used in spatio-temporal applications of the
GLMM, often by specifying a partial differential equation (PDE) that incorporates a priori knowledge
of the data generating process (Wikle, 2003;Wikle andHooten, 2010). The discrepancy in howmodels
for spatial and spatio-temporal data are specifiedmight be related to the notion that spatial data, with
respect to a spatio-temporal generating process, are informationpoor relative to spatio-temporal data.
Although spatial data generated by an underlying spatio-temporal process contain no information
about the temporal dynamics, incorporating subjectmatter knowledge of the spatio-temporal process
is needed to understand the spatial dynamics. For example, the phenomenon of spatial confounding
that occurs when the spatial random effect is collinear with the covariates (Reich et al., 2006; Hodges
and Reich, 2010), can negatively influence inference and might be obviated by considering subject
matter knowledge (Hanks et al., 2015; Hanks, in press). In what follows, we briefly review the spatial
GLMM as well as common practices in spatial data analysis. We then introduce an approach for
modeling spatial data that incorporates subject matter knowledge of spatio-temporal data generating
process.

The GLMM for spatial processes can be written as

y ∼ [y|µ, ψ] (1)
g(µ) = β0 + Xβ + u (2)

u ∼ N

0, σ 2

u C(φ)

, (3)

where y ≡ (y1, . . . , yn)′ is a set of n observations at fixed spatial locations si (i = 1, 2, . . . , n) that
arise froman arbitrary distribution belonging to the exponential family denoted by [·]. The parameters
µ and ψ are the conditional expected value and dispersion of [·] respectively. The inverse of the link
function g(·) is applied element-wise and transforms the linear predictor β0 + Xβ + u so that it has
the same support asµ. The linear predictor has four components: an intercept term β0, a n×pmatrix
that contains covariates (X), a p × 1 vector of fixed-effect regression coefficients (β), and a zero-
mean Gaussian random effect (u ≡ (u1, . . . , un)

′) with variance σ 2
u and spatial correlation matrix

C(φ)with parameters φ. In many applications, however, subject matter knowledge of the underlying
spatio-temporal data generating process is not explicitly considered when specifying the correlation
matrix for spatial data (Hanks, in press). Rather, a semiparametric approach is typically taken, with
the class of spatial covariance chosen based on the support of the data. For example, when using point
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referenced data, the spatial random effect u is most commonly modeled using a covariance function
of the Matérn class (e.g., Cressie, 1993; Stein, 1999).

Spatial data almost always arise from a spatio-temporal generating process observed over a fixed
interval of time. For example, spatial patterns observed in binary data that capture the presence of
an infectious disease can be explained by a dynamic transmission process occurring in space and
time (e.g., Smith et al., 2002; Hooten and Wikle, 2010). Incorporating scientific knowledge about
the spatio-temporal data generating process is critical to specifying an appropriate random effect in
(1)–(3) that adequately models the spatial dependence. For example, the popular Matérn covariance
function can be motivated by considering the spatial process to be a stationary solution to a spatio-
temporal stochastic PDE (Whittle, 1954, 1963; Hanks, in press). Relating stochastic PDEs to covariance
functions has aided in linking the spatial random effect to a spatio-temporal data generating process
(Hanks, in press) and for developing computationally efficient implementations of the spatial GLMM
(Lindgren et al., 2011).

When implementing the spatial GLMM in (1)–(3), covariates associated with a spatial location
(hereafter location-specific covariates) are sometimes collinear with the spatial random effect when
both have smooth spatial structure (Reich et al., 2006; Hodges and Reich, 2010; Paciorek, 2010;
Hughes and Haran, 2013; Hanks et al., 2015; Murakami and Griffith, 2015). When using model
specifications that included location-specific covariates with smooth spatial patterns and spatially
structured random effects, both the regression coefficients and the random effect compete to explain
variability in the response, which can produce surprising and counterintuitive results (e.g., Hodges
and Reich, 2010; Hefley et al., 2016). The term ‘‘spatial confounding’’ has been used to describe
collinearity among location-specific covariates inX and the spatial random effect u in (2) andmay be a
consequence of model misspecification (Hanks et al., 2015). This is in contrast to observation-specific
covariates, which are the covariates associated with a particular observation, but not necessarily
anchored to any specific spatial location (e.g., sex or age of a mobile individual). Observation-specific
covariates may lack spatial structure and, therefore, are less likely to result in spatial confounding,
although the potential for confounding does exist.

The standard spatial GLMM does not differentiate location-specific covariates from observation-
specific covariates, both of which are included in X. For point referenced data, one could specify
a covariance function that depends on location-specific covariates as an alternative to specifying
location-specific covariates as fixed effects (e.g., Calder, 2008; Reich et al., 2011; Gladish et al.,
2014; Ingebrigtsen et al., 2014; Poppick and Stein, 2014; Vianna Neto et al., 2014; Risser and
Calder, 2015). Specifying a covariance function that depends on location-specific covariates has the
obvious advantage of obviating collinearity between covariates and the spatial random effect in
(1)–(3), but also allows for the covariates to influence the properties of the spatial random effect.
For example, Ingebrigtsen et al. (2014) extended the work of Lindgren et al. (2011), developing a
flexible class of non-stationarymodelswhere location-specific covariates can be specified to influence
parameters of a stochastic PDE and, thus, influence the spatial random effect. Although it is possible
to specify the spatial GLMM so that location-specific covariates influence the spatial random effect,
a principled approach to determine the role of location-specific covariates is needed. For example,
what subject matter knowledge should be used to determine if a location-specific covariate should be
included inX and, therefore, influence the expected value of (1) or included in the covariance function
and, therefore, influence the spatial random effect in (3)?

One way to view the stochastic PDE approach of Lindgren et al. (2011) is that the spatial random
effect, u, is the stationary (time-limiting) solution to a spatio-temporal stochastic PDE (Hanks,
in press). One disadvantage of this approach is that assuming u is the stationary solution to a spatio-
temporal stochastic PDE results in a loss of information about the initial conditions that gave rise to
the data. For environmental and ecological applications, the spatio-temporal data generating process
might demonstrate transient (non-equilibrium) dynamics and, therefore, could be used to make
critical inference. For example, spatial data pertaining to disease outbreaks are a result of a dynamic
spatio-temporal transmission process that has not reached equilibrium and is dependent on the initial
conditions (e.g., location of introduction). Likewise, when a species invades a novel environment, the
underlying spatio-temporal population dynamics are transient (e.g., Wikle, 2003; Hooten et al., 2007;
Williams et al., 2017). When attempting to control disease outbreaks or halt the invasion of a pest
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species, identifying the initial conditions, such as the location of introduction, is critical to containing
the incident and preventing future invasions or outbreaks (e.g., Snow, 1855; Nash et al., 2001).

Our goal is to develop an approach formodeling spatial random effects as the transient distribution
of the spatio-temporal data generating process. This approach can be applied to large data sets,
incorporates scientific knowledge of the spatio-temporal data generating process, allows for inference
on initial conditions, eliminates spatial confounding, and has competitive predictive ability when
compared tomethods based on optimal spatial prediction (e.g., Gotway and Stroup, 1997; Diggle et al.,
1998). To implement our method for large data sets, we apply the homogenization technique that is
used in appliedmathematics to obtain approximate solutions to PDEs, but only recently has been used
in statistical applications (Garlick et al., 2011; Holmes, 2012; Hooten et al., 2013). We then use our
spatial modeling approach to understand individual-level and location-specific risk factors associated
with chronic wasting disease in white-tailed deer fromWisconsin, USA. We compare our approach to
the methods developed by Lindgren et al. (2011) and Ingebrigtsen et al. (2014) and show that spatial
confounding can be obviated by specifying a spatio-temporal component that depends on location-
specific covariates.

2. Methods

We propose replacing the spatial random effect in (1)–(3), or any other appropriate hierarchical
model, with the transient solution to a spatio-temporal PDE. Given a model for which a spatial effect
is desired, we propose constructing the spatial effect as follows:

1. Define a deterministic spatio-temporal generating model for the spatio-temporal effect u(s, t)

∂

∂t
u(s, t) = F (u(s, t); z(s)) (4)

where s indexes space, t indexes time, and F depends on the location-specific covariates z(s). For
example, use the differential operator such that F (u(s, t); z(s)) ≡


∂2

∂s21
+

∂2

∂s22


δ(s)u(s, t) where

s1 and s2 are the spatial coordinates contained within the vector s, δ(s) is the spatially varying
diffusion rate that depends on z(s) and regression coefficients α (see example in Section 3.4).

2. Solve (4) to obtain u(s, t) at the desired t and use the solution to model the spatial process in a
hierarchical model (e.g., (1)–(3)).

Solving (4) requires the initial state u(s, t0),∀ s. (si ∈ S ⊂ R2), where t0 is the time the process
was initiated. In many cases, the initial state u(s, t0) is identifiable if an informative constraint or an
informative prior under a Bayesian specification are justifiable. The specification of such informative
constraint or prior will be problem specific (see Section 3.4). Our method also assumes that the time
elapsed since initiation (t0) and when the spatial data were collected (t) is known. The implication of
the assumption that the elapsed time is known will depend on the specific PDE that is used. As such,
we address the impact of this assumption in our data example.

2.1. Homogenization

Obtaining the spatio-temporal effect u(s, t) in (4) requires solving the PDE. Although several
numerical methods exist to solve PDEs (e.g., finite element methods, finite difference methods), they
become computationally prohibitive at the discretization required for fine-scale inference over a large
spatial domain. To address this computational challenge, we apply the homogenization technique
(Garlick et al., 2011;Holmes, 2012;Hooten et al., 2013). Homogenization is an analytical approach that
takes advantage of multiple scales to solve a particular PDE on small scales and derives a related PDE
at the large scale that accurately represents the integrated consequences of the small-scale solution
behavior (Holmes, 2012). Homogenization of PDEs leads to more efficient numerical solutions when
the goal is to capture large scale dynamics with rapid fine-scale spatial variability (Hooten et al., 2013;
Powell and Bentz, 2014; Hefley et al., 2017b).
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2.2. Hierarchical modeling framework

Hierarchical models with PDE process components are flexible and can be tailored to match the
specifics of the study (e.g., Wikle et al., 2001; Wikle, 2003; Hooten et al., 2007; Hooten and Wikle,
2008; Wikle and Hooten, 2010; Zheng and Aukema, 2010; Williams et al., 2017). We describe a
hierarchical modeling framework consistent with the terminology common to statisticians who use
GLMMs, but modify the linear predictor in (2) to appropriately capture the dynamics of the process.
Our modeling approach replaces the linear predictor (2) with

g(µi) = h

x′

iβ, u(si, ti)


(5)

where the inverse of the link function g(·) transforms the (possibly) nonlinear predictor to the
support of µi. The nonlinear predictor (5) has three components: a vector of observation-specific
covariates (xi) associated with each observation yi, a vector of regression coefficients (β), and the
spatio-temporal effect (u(si, ti)) that is a solution to a PDE. The function h(·), in (5), combines the
influence of x′

iβ and the spatio-temporal effect u(si, ti). For example, the linear form of h(·) used in
the standardGLMMresults in: g(µi) = x′

iβ+u(si, ti). Althoughuseful in some contexts, linear forms of
h(·)may not be the most appropriate (e.g., Hooten et al., 2007; Cangelosi and Hooten, 2009;Williams
et al., 2017). Determining how x′

iβ and u(si, ti) are combined via h(·) will be problem specific and
require knowledge of the process being modeled, which we demonstrate in the next section with an
example.

3. Example: predicting the geographic distribution of chronic wasting disease

3.1. Data

The spread of infectious diseases is inherently a spatio-temporal process (e.g., Waller et al., 1997;
Hooten andWikle, 2010). During the initial stages of disease outbreak, researchers might have access
to spatial data from only a single biologically relevant time period (e.g., one season). In what follows,
we describe a spatial data set that exemplifies many of the challenges facedwhenmodeling the initial
stages of a disease outbreak.

Chronic wasting disease (CWD) is a fatal transmissible spongiform encephalopathy that occurs in
cervids (Williams and Young, 1980). In the state of Wisconsin, CWDwas first detected in white-tailed
deer in 2001 as a result of the Wisconsin Department of Natural Resources surveillance efforts. After
initial detection of CWD in 2001, increased sampling in 2002 resulted in a large spatial data set (Joly
et al., 2009, Fig. 1). Using this data set, we analyzed records from 14,648 tested deer (168 positive
deer) that were sampled within a 15,539 km2 region in the southwestern portion of Wisconsin and
had location information collected at the public land survey system section-level or better (Fig. 1).
Althoughdynamics of CWDwithin a yearmight be important,most deer (>90%)were collected during
the fall hunting season (October–December); therefore, we lack sufficient resolution in the data to
model a finer temporal scale (e.g., monthly) and have only a single snapshot in time of the spatio-
temporal data generating process.

We used the 2011 National Land Cover Dataset to calculate landscape risk factors (Homer
et al., 2015). Although many different landscape risk factors could be used, we considered only the
proportion of hardwood forest within a grid cell that was the same area of a section of land (2.6 km2;
Fig. 2(a)), because this location-specific covariate resulted in a high level of spatial confounding in
previous analyses (Hefley et al., 2017a). In addition to the location-specific covariate, we also used the
observation-specific covariates sex and age of the tested deer.

For initial model fitting and statistical inference, we used all 14,648 tested deer within our study
area. To evaluate the predictive ability of our model, we fit our model using 50% of the data and
calculated the logarithmic score for the remaining 50% of the data using predictions from our model.
In section four, we compare the predictive ability of our method to existing methods. To facilitate
comparison, we calculate the logarithmic score evaluated using the posterior mean of the probability
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Fig. 1. Location and infection status of white-tailed deer tested for chronic wasting disease in Wisconsin, USA in 2002. Our
models were applied to 14,648 tested deer with locations contained within the yellow box.
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Fig. 2. A location-specific covariate used tomodel the geographic distribution of CWD inwhite-tailed deer (panel a; proportion
of deciduous forest within each 2.6 km2 grid cell). Posterior expectation of the scaled diffusion rate δ(s) (panel b) from the
ecological diffusion model presented in (10)–(14) and fitted to the data in Fig. 1. Posterior expectation of the probability of
CWD infection in male white-tailed deer that are 4 years of age or older (panel c; see Fig. 1 for study area).
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of infection (i.e., yi log(pi)+ (1 − yi) log(1 − pi)where yi is the ith out-of-sample observation and pi
is the posterior mean probability of infection; Gneiting and Raftery, 2007; Gneiting, 2011).

3.2. Ecological diffusion

Ecological diffusion has been motivated by tracking the location of a single individual that is
undertaking a random walk in discrete time (e.g., Turchin, 1998; Hooten et al., 2017, pp. 189–191;
see Fig. 1 in Hefley et al., 2017b). Motivated by the Lagrangian (individual-based) perspective of
movement, the Eulerian (population-level) description of movement is captured by the ecological
diffusion PDE

∂

∂t
u(s, t) =


∂2

∂s21
+
∂2

∂s22


δ(s)u(s, t), (6)

where u(s, t) is the density of the dispersing population (or disease), s1 and s2 are the spatial
coordinates contained within the vector s, and t is the time. The diffusion coefficient (or motility
coefficient), δ(s), is inversely related to the amount of time an individual spends in a particular area
(i.e., residence time) and could depend on location-specific covariates (Garlick et al., 2011). There are
two other common types of diffusion, Fickian and constant diffusion, which differ in their motivation,
derivation, and interpretation (Garlick et al., 2011). Mathematically, the difference between Fickian
and constant diffusion is the position of the diffusion coefficient within (Fickian) or outside (constant)
the partial derivatives in (6). Ecologically, Fickian diffusion describes a smooth process where the
equilibrium state is a homogeneous (uniform) spatial distribution of u(s, t), even when the diffusion
coefficient (defined asmotion downdensity gradients) is spatially heterogeneous (see Fig. 1. in Garlick
et al., 2011 or Hooten et al., 2013). In contrast, ecological diffusion describes the consequences of
random walks with varying residence times and results in a spatially heterogeneous equilibrium
distribution of u(s, t) that captures local variability and abrupt transitions.

From a Lagrangian (individual-based) perspective, we expect that the geographic spread in the
prevalence of CWD among white-tailed deer is driven by the movement of individuals from a central
location during the initial stages of an outbreak. For example, white-tailed deer demonstrate habitat
preferences that, from a Eulerian (population-level) perspective, result in a heterogeneous geographic
distribution in the abundance of deer due to variable residence times.When viewed from a Lagrangian
perspective, the heterogeneous geographic distribution of a species is a result of individuals moving
quickly through habitat of poor quality and congregating in more favorable habitat. During the initial
outbreak of a disease such as CWD, the transmission and spread may be driven by the movement of
individuals; thus, ecological diffusion (6) is a realistic model for a population-level spatio-temporal
process representing the latent prevalence of CWD (Garlick et al., 2014).

3.3. Homogenization

Homogenization is a useful approach for ecological diffusion models because the implementation
is conceptually simple and involves solving a piecewise constant diffusion PDE over a much
coarser discretization (Garlick et al., 2011; Hooten et al., 2013). Following Hooten et al. (2013),
homogenization for the ecological diffusion PDE in (6) results in

∂

∂t
c(s, t) = δ(s)


∂2

∂s21
+
∂2

∂s22


c(s, t), (7)

where c(s, t) is the underlying process that results from diffusion with a locally constant diffusion
rate δ(s). The locally constant diffusion rate δ(s) is

δ(s) =


1

|A|


A

1
δ(s)

ds
−1

, (8)

where A is a polygon (with area |A|) at the broad-scale discretization and δ(s) is the diffusion
coefficient in (6). Approximating the locally constant diffusion rate δ(s) in (7) involves calculating
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the harmonic mean of δ(s) using values contained within A from the fine-scale discretization. The
u(s, t) from the original ecological diffusion PDE in (6) is related to c(s, t) in (7) by

u(s, t) ≈
c(s, t)
δ(s)

. (9)

3.4. Hierarchical Bayesian model

To understand the geographic pattern in the prevalence of CWD, we used the model:

yi ∼ Bernoulli (p(si, ti)) (10)

g(p(si, ti)) = u(si, ti)ex
′
iβ (11)

∂

∂t
u(s, t) =


∂2

∂s21
+
∂2

∂s22


δ(s)u(s, t) (12)

log (δ(s)) = α0 + z(s)′α, (13)

where yi is 1 if the ith deer is CWD-positive and 0 otherwise. The probability that a deer is CWD-
positive (p(si, ti)) depends on the spatio-temporal effect u(si, ti) defined by the PDE in (12), and
the effect of xi, a vector that includes observation-specific covariates sex and age of the tested deer.
For the ecological diffusion PDE, u(si, ti) ≥ 0 ∀ s, t; the quantity ex

′
iβ scales u(si, ti) depending on

characteristics of the individual deer. We used the multiplicative form in (11), rather than the more
common additive form, to maintain the nonnegative nature of the latent prevalence process u(s, t).
Scaling u(si, ti) by a quantity that depends on covariates specific to the infected and non-infected
individuals mimics the dynamics of CWD because individual-level risk factors should not influence
the probability of infection unless the disease process has spread to the location where the individual
is located (i.e., u(si, ti) > 0). The product, u(si, ti)ex

′
iβ ≥ 0,∀ s, t , and therefore, the inverse of the

link function g(·) must map the positive real line [0,∞) to the unit line (0, 1). In our example, we
used a cumulative normal distribution truncated below zero as a link function (i.e., truncated probit
link function). The diffusion rate δ(s) > 0,∀ s, t , which motivated the log link function in (13), and
depends on an intercept term (α0) and the location-specific covariate proportion deciduous forest
cover (z(s); Fig. 2(a)). For regression coefficients β and α, we used the following priors: β ∼ N(0, 10I)
and α ∼ N(0, 10I). For the intercept term, we used the prior α0 ∼ N(0, 10).

At the boundary, we assume u(s, t) = 0,∀ t . For the initial state, we assume

u(s, t0) =


θj if s = ωj
0 if s ≠ ωj,

(14)

where θj is the unknown initial concentration of the process andωj are the unknown coordinates of the
jth location of introduction (j = 1, 2, . . . , J). Ecologically, (14) assumes that CWD was introduced at
J unknown locations within the study area at time t0. For our data, we assumed J = 1 and assigned θ1
the priors θ1 ∼ TN(0, 106) (TN refers to a normal distribution truncated below zero).We assignedω1 a
conditional HPP prior (HPP refers to a homogeneous Poisson point process). A conditional HPP implies
that the number of points J in (14) is known, thus the location density of the HPP is the necessary
probability density function (Cressie, 1993, p. 651; Illian et al., 2008, p. 119–120). Ecologically, the
conditional HPP prior is equivalent to assuming CWDwas introducedwith equal chances at J locations
within the study area. In cases where J is unknown, a HPP prior could be specified and J could be
estimated.

Solving the PDE in (12) also requires that the time since introduction is known (i.e., t − t0);
that is, when solving for u(s, t) in (12), we need to know the limits of integration. For most disease
outbreaks, the time of introduction (t0) is unknown, although prior knowledge may be available in
some situations (see Discussion). In Appendix A, we show that the units associated with the diffusion
rate are nonidentifiable because only the product δ(s)(t − t0) is identifiable. As a result, the diffusion
rate δ(s) should be interpreted as a relative rate, with the intercept (α0) in (13) being unidentifiable,
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but the proportional effect of covariates on the spatially-varying diffusion rate δ(s) being identifiable
(i.e., α). Given that the intercept (α0) is unidentifiable, we report δ(s) scaled such that the minimum
value within the study area is one (Appendix A).

3.5. Implementation

The location accuracy of the observation (section level) results in a natural spatial gridwith 2.6 km2

cells within the study area (Fig. 1). Using traditional finite-difference methods to solve (12) results in
a spatial grid with 10,000 cells and would be computationally challenging to implement (note that an
enlarged study area of 25,900 km2 was used for implementation of the finite-difference method; see
Appendix B). Instead, we use homogenization and solved (7) over a spatial grid with 65 km2 cells (400
total cells). The homogenization technique allows this solution to be analytically downscaled to the
2.6 km2 cells using (9). We solved (7) to obtain c(s, t) using a finite-difference approximation with
eight iterations and ∆t = 1. For a fixed ∆t , the number of iterations chosen to obtain c(s, t) in (7)
using the finite-difference approximation implies a specific value for t0, namely t0 = t − m∆t where
m is the number of iterations. As a result, the number of iterations will be inversely proportional to
the estimated value of α0 in (13), which can be illustrated by substituting m∆t for t − t0 in (S1).
To maximize computational efficiency, we chose the number of iterations of the finite-difference
approximation of (7) to be as small as possible, but large enough so that the approximationwas stable
and convergent.

We implemented the model presented in (10)–(14) using a Markov Chain Monte Carlo algorithm
(MCMC) coded in R (R Core Team, 2016, Appendix B). We obtained 400,000 samples from a single
chain using our MCMC algorithm, resulting in an effective sample size of>1,000 for all parameters in
the model (Givens and Hoeting, 2012). For this example, fitting the model at the 2.6 km2 scale using
homogenization required approximately 5min to acquire 1,000MCMC samples on a laptop computer
with a 2.8 GHz quad-core processor, 16 GB of RAM, and optimized basic linear algebra subprograms.
We include computational details for this example and the necessary computer code to reproduce all
results and figures in program R (R Core Team, 2016, Appendix B).

3.6. Results

The prevalence of CWD was highest in the center of the study region and the relative rate of
diffusion was influenced by the deciduous forest covariate (Figs. 2 and 3). The posterior mean of the
coefficient for the deciduous forest covariatewas−0.29 and the 95% equal-tailed credible interval (CI)
was−0.46 to−0.11. The prevalence of CWD increasedwith age andwithin an age classwas highest for
male deer (Fig. 4). The posterior distribution of the location of introduction (ω1) shows that the point
of introduction likely occurred near the center of the study area (Fig. 4). The logarithmic score was
−384. In the following section, we fit two alternative models to the data and compare the inference
and predictions obtained using our approach to existing approaches.

4. Spatial confounding and comparison

For our CWD data example, one might consider using a binary GLMM with a Gaussian spatial
random effect. Several studies in the applied literature have used a GLMM with a Gaussian spatial
random effect to identify risk factors associated with the landscape that might influence the
prevalence of CWD (e.g., Walter et al., 2011; Evans et al., 2016; Hefley et al., 2017a). For purposes of
comparison, we fit a binary GLMMwith a probit link that uses the stochastic PDE approach of Lindgren
et al. (2011) and the generalization proposed by Ingebrigtsen et al. (2014). The spatial random effects
of Lindgren et al. (2011) and Ingebrigtsen et al. (2014) can be viewed as the stationary (time-limiting)
solution to the spatio-temporal stochastic PDE (see Hanks, in press)

∂

∂t
u(s, t) =


∂2

∂s21
+
∂2

∂s22
− κ(s)


τ(s)u(s, t)+ W(s), (15)
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Fig. 3. Posterior distribution for parameters of the ecological diffusion model (10)–(14). The first row shows the posterior
distribution for the effect for the proportion of deciduous forest covariate as well as the effect of sex and age of the deer. The
bottom two rows show the posterior distribution of the location of introduction at two different spatial scales. The panels with
colored heatmaps are a kernel density smooth of the location of introductionwhere red represents area of higher density. Note
that the yellow box corresponds to the study area in Fig. 1.
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Fig. 4. Posterior expectation of τ(s) from (1)–(3), (15) and (17) that depends on the proportion of deciduous forest covariate
(panel a in Fig. 2). Posterior expectation of the probability of chronicwasting disease infection inmalewhite-tailed deer that are
4 years of age or older from a binary GLMM where the location-specific forest covariate was specified to influence the spatial
random effect (Ingebrigtsen et al., 2014, panel b) and treated as a traditional covariate (Lindgren et al., 2011, panel c).
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where κ(s) is a scaling parameter, τ(s) is parameter that rescales the field u(s, t), and W(s) is
spatial Gaussian white noise. As discussed in Ingebrigtsen et al. (2014), both κ(s) and τ(s) could
vary as a function of location-specific covariates (e.g., proportion deciduous forest cover). The scaling
parameter κ(s) can be linked to the range parameter (ρ(s)) of a Matérn correlation function using
the empirically derived relationship ρ(s) ≈

√
8

κ(s) . As shown by Ingebrigtsen et al. (2014), both κ(s)
and τ(s) control the non-stationary marginal variance of the Gaussian process, where the marginal
variance (σ 2(s)) can be approximated with

σ 2(s) ≈
1

4πκ(s)2τ(s)2
. (16)

We first consider a binary GLMMwith a Gaussian random effect letting τ(s) in (15) be modeled as
a log linear function

log (τ (s)) = γ0 + z(s)′γ, (17)

where γ0 is an intercept term and z(s) is a vector that contains the location-specific covariates and
γ is the associated coefficients. The linear predictor (2) of the GLMM contains the spatial random
effect as well as the covariates sex and age of the tested deer. As in the ecological diffusion example
(10)–(14), we used the location-specific covariate proportion deciduous forest cover (z(s); Fig. 2(a)).
In this model, κ(s) was assumed to be spatially constant. Our motivation for fitting a model where
τ(s) depended on the deciduous forest covariate and κ(s) was constant is that this specification is
similar to the ecological diffusion PDE in (6).

We also consider an alternative specification of the binary GLMM where τ(s) is constant and
the deciduous forest covariate is included in X of (2). In this model specification, there is potential
for collinearity between the location-specific covariate proportion deciduous forest and the spatial
random effect. To assess the potential for collinearity, we calculated the Pearson product-moment
correlation coefficient between the forest covariate and the posterior mean of the spatial random
effect at the location of each observation (Hanks et al., 2015; Hefley et al., 2017a). To assess the
predictive performance, we fit both models using 50% of the data and calculated the predictive score
using the remaining 50% of the data (using the same partitions as in Section 3). We calculated the
logarithmic score using the projected posterior mean of each variable and the CWD data (Krainski
et al., 2016). We implemented the models of Lindgren et al. (2011) and Ingebrigtsen et al. (2014),
presented in this section, using the R-INLA software (Appendix B; Rue et al., 2009).

4.1. Results

Using the GLMM specification from Ingebrigtsen et al. (2014), τ(s) in (15)–(17) depended on
the proportion deciduous forest covariate and had coefficient (γ1) with a posterior mean of −1.70
(−2.63,−0.86; 95% CI; Fig. 4(a)). The spatial map of τ(s) from (15)–(17) was similar in appearance
to the spatial map δ(s) of our ecological diffusion model (12; cf. Figs. 2(b) and 4(a)). Using the GLMM
specification from Lindgren et al. (2011), where location-specific covariates are included with the
observation-specific covariates in X of (2), the posterior mean of the regression coefficient for the
deciduous forest covariate was 0.45 (−0.27, 1.18; 95% CI; Fig. 4(a)) and the correlation between the
forest covariate and spatial random effect was r = 0.49. The projected posterior expectation of
the probability of CWD infection across the study area obtained from the Ingebrigtsen et al. (2014)
and Lindgren et al. (2011) models are shown in Fig. 4(b and c). The logarithmic score for the GLMM
with τ(s) in (15)–(17) that depended on the forest covariate (i.e., Ingebrigtsen et al., 2014) was −408
and −387 for the standard GLMM of Lindgren et al. (2011). Our ecological diffusion model (10)–(14)
had the best predictive score of −384.

5. Discussion

Statisticians and researchers face many choices when specifying models for spatial data. One
important choice, as illustrated in our study, is incorporating the spatio-temporal data generating
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process into a model for spatial data. Although the inference for the location-specific covariate
(proportion deciduous forest cover) from our ecological diffusion model cannot be compared directly
to the stochastic PDE approach of Ingebrigtsen et al. (2014), if one were to infer an influence of the
percent of deciduous forest cover on the spatio-temporal process (based on 95% CIs that did not
overlap zero), then both models would result in a ‘‘significant’’ effect. Such inference is in contrast
to the standard GLMM, which relies on treating observation-specific covariates (e.g., sex, age) and
location-specific covariates similarly, where the 95% CI for the forest covariate overlapped zero.
Based on the predictive score, our ecological diffusion model was the best predictive model with the
stochastic PDE approach of Lindgren et al. (2011) a close second.

The term ‘‘spatial confounding’’ has been used to describe collinearity among covariates in X and
the spatial random effect (2) in the spatial GLMM (Reich et al., 2006; Hodges and Reich, 2010). For the
analysis of spatial data, confounding can present major challenges to inference and the interpretation
of location-specific covariates (Hodges and Reich, 2010; Hanks et al., 2015). One approach that can
obviate traditional spatial confounding is to use scientific knowledge of the process when specifying
how location-specific covariates are incorporated into the model. Incorporating the spatio-temporal
data generating process into our model yields a principled approach to determine how location-
specific covariates should be included. Our approach, and that of Ingebrigtsen et al. (2014), allow
the location-specific covariate to influence the spatio-temporal process directly and offer two viable
options when considering model specifications other than the standard spatial GLMM.

The scientific approach we used to model the CWD data is borrowed from the approaches used
for modeling spatio-temporal data (e.g., Wikle, 2003; Hooten and Wikle, 2008; Wikle and Hooten,
2010; Hefley et al., 2017b), but is rarely used for spatial data that arise as a single snapshot in time
of a spatio-temporal data generating process. For spatial data, the spatio-temporal approach offers
three main advantages over existing spatial models, while providing comparable or better predictive
performance for our example. The first advantage of the scientific approach is thatmodels, such as the
ecological diffusion PDE in (6), have interpretable parameters related to the spatio-temporal process.
For example, the diffusion rate in the ecological diffusion PDE has physically interpretable units that
are inversely related to the residence time of a spreading process (e.g., transmittable disease; Garlick
et al., 2011, 2014; Hefley et al., 2017b). Although the absolute diffusion rate is unidentifiable from
purely spatial data, the proportional effect of covariates on the diffusion rate is identifiable and
provides useful information about the process (Hanks, in press).

The second advantage of the spatio-temporal approach is that inference for the initial conditions
can be obtained andmay provide critical insight. For example, in our CWD data analysis, the posterior
distribution of the location of introduction (ω1 in (14)) showed that spatial data can provide precise
estimates regardingwhere a diseasewas introduced. Estimating the location of introduction is critical
in situations of disease outbreak or when attempting to halt the invasion of a pest species (e.g., Wikle,
2003; Zheng andAukema, 2010). Inference about the initial conditions cannot be obtainedwhen using
standard spatialmodels that account for dependence by specifying a semiparametric random effect or
when using the stationary solution to a stochastic PDE (e.g., Lindgren et al., 2011; Ingebrigtsen et al.,
2014).

The third advantage of the spatio-temporal approach, is that with the use of informative priors,
one can obtain dynamic forecasts rather than static spatial predictions (e.g., Figs. 2(c), 4(b) and
(c)). For example, because α0 in (13) is unidentifiable, the units associated with the diffusion rate
are unidentifiable from spatial data without prior knowledge about the time of introduction (t0). In
many situations, experts may have knowledge about when a disease or pest was first introduced.
Expert knowledge could be used to obtain informative priors (Kuhnert et al., 2005; Choy et al.,
2009) or auxiliary data about the process (Lele and Allen, 2006), which could help identify the units
associated with diffusion rate (e.g., using an informative prior for t0). In ongoing research, we are
incorporating the use of expert knowledge into the analysis of spatial data so that dynamic forecasts
of the geographic spread of diseases such as CWD can be obtained.
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Appendix A

Consider a diffusion PDE from (6) with a spatially constant diffusion rate defined on the unit line
0 < s < 1,

∂

∂t
u(s, t) =


∂2

∂s2


δu(s, t). (S1)

Specify the boundary conditions such that u(0, t) = 0 and u(1, t) = 0,∀ t and the initial state u(s, t0)
as a continuous function f (s),∀ s. Given the boundary conditions and initial state, the solution to
(18; Farlow, 1993 pp. 35-41) is

u(s, t) =

∞
n=1

Ane−δ(t−t0)(nπ)2 (S2)

where the coefficients An are given by

An = 2
 1

0
f (s) sin(nπs)ds.

The solution to (S1) depends on both the diffusion rate δ and t − t0 (the time elapsed since
introduction). Both δ and t0 are unknown and only the product is identifiable from data collected
at a single time point. Analogously, we expect that the diffusion rates from (12) will have unknown
temporal scaling units and should be interpreted as a relative rate of diffusion. The assumption that
δ(s) in (12) should be interpreted as a relative rate can be checked numerically by assessing the
sensitivity of estimates of δ(s) in (12) to changes in t0. For example, the map shown in Fig. 2(b) is
invariant to choice of t0, becauseα0 in (13) is unidentifiable andwe scaled δ(s) such that theminimum
value within the study area is one.

Appendix B. Supplementary data

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.
spasta.2017.02.005.
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