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Summary

1. Location error occurs when the true location is different than the reported location. Because habitat charac-

teristics at the true locationmay be different than those at the reported location, ignoring location error may lead

to unreliable inference concerning species–habitat relationships.
2. We explain how a transformation known in the spatial statistics literature as a change of support (COS) can

be used to correct for location errors when the true locations are points with unknown coordinates contained

within arbitrary shaped polygons.

3. We illustrate the flexibility of the COS by modelling the resource selection of Whooping Cranes (Grus ameri-

cana) using citizen contributed records with locations that were reported with error. We also illustrate the COS

with a simulation experiment.

4. In our analysis of Whooping Crane resource selection, we found that location error can result in up to a

five-fold change in coefficient estimates. Our simulation study shows that location error can result in coefficient

estimates that have the wrong sign, but a COS can efficiently correct for the bias.

Key-words: citizen science, ecological fallacy, errors-in-variables, hierarchical model, MAXENT,

Poisson point process, resource selection, species distributionmodel,Whooping Crane

Introduction

Determining the habitat preferences of a species is an impor-

tant component to conserving the world’s biodiversity. For

example, understanding how variables such as temperature

and vegetation influence the distribution of a species is neces-

sary to predict the impact of threats such as climate change

and habitat destruction (Elith, Kearney & Phillips 2010; Gui-

san et al. 2013). Accordingly, biogeographers, ecologists,

wildlife biologist, statisticians and the machine learning com-

munity have developed models that facilitate inference on the

habitat characteristics that individuals of a species prefer

(Manly et al. 2004; Elith & Leathwick 2009; Hefley & Hooten

2016).

Observed locations of species occurrence are a common

source of data used for modelling distributions and resource

selection. These type of data are termed use-availability or

presence-only data (hereafter referred to as presence-only

data; McDonald et al. 2013) and can arise from a variety of

sampling mechanisms such as citizen science and animal

tracking data obtained from telemetry devices (e.g. Hefley &

Hooten 2016; Hooten et al. 2017). An important property of

presence-only data, whether citizen-reported sightings of a

rare species or locations obtained from satellite-based

telemetry, is that errors can occur when the true locations are

different than the reported locations (Graham et al. 2008;

Montgomery et al. 2010; Montgomery, Roloff & Ver Hoef

2011; Mitchell, Monk & Laurenson 2017). Location errors

are problematic because habitat characteristics at the reported

locations might be different than the habitat at the true loca-

tions. For example, Brost et al. (2015) used a resource selec-

tion function to determine the influence of bathymetry on

harbour seal (Phoca vitulina) habitat use. However, over 66%

of the recorded presence-only locations from the Argos

telemetry data used by Brost et al. (2015) occurred within

inaccessible regions on land, where bathymetry could not be

calculated unless location error was explicitly modelled (see

Fig. 2 in Brost et al. 2015). Location error is also prevalent in

citizen science data, the locations of which are often reported

as the nearest road, town or other landscape feature. For

example, citizen-reported sightings of the critically endan-

gered Whooping Crane (Grus americana) have been used to

guide site selection for wind energy projects (Belaire et al.

2014), determine the influence of human disturbances (Hefley

et al. 2014), and evaluate a protected area that includes a crit-

ical habitat designation under the U.S. Endangered Species

Act (Hefley et al. 2015b). The studies of Belaire et al. (2014)

and Hefley et al. (2014, 2015b) relied on opportunistic records

of Whooping Cranes that were reported as the centroid of

administrative units. As shown in Hefley et al. (2014),*Correspondence author. E-mail: thefley@ksu.edu
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location errors compromise statistical inference concerning

species–habitat relationships.
Regression calibration can be used to account for location

error, but the method has four main limitations: (i) a subset of

the presence-only data must have exact locations (Hefley et al.

2014), (ii) the bias correction is not guaranteed to be optimal

(Carroll et al. 2006), (iii) accounting for heterogenous location

error is challenging, and (iv) specialized computational algo-

rithms are required to properly account for uncertainty (e.g. a

double bootstrap). Although the third and fourth challenges

are surmountable, the second challenge may affect inference

and the first challengemay cause an impasse; if at least a subset

of exact locations are not available, then bias caused by loca-

tion error cannot be corrected using regression calibration.

Furthermore, it may be impossible to verify records that are

reported to have exact locations for studies that rely on citizen

science data (e.g. Hefley et al. 2014).

We present an approach that corrects for location error in

presence-only data and resolves the four limitations associated

with regression calibration. We accomplish this by presenting

the Whooping Cranes records that motivated our study and

reviewing a unified approach for the analysis of presence-only

data. Next, we introduce a change of support (COS) that can

be used to account for location error. Then we demonstrate

the COS using theWhooping Crane data and conduct a simu-

lation study to evaluate the properties of the method. Lastly,

we provide future direction by connecting location error in

presence-only data to the common practice of aggregating

exact locations of individuals into survey units when using

count or presence–absence data to determine species–habitat
relationships. In all cases, the bias due to aggregation or loca-

tion error can be interpreted as an ecological fallacy when the

inference about resource selection at the location of individuals

differs from the conclusions at the survey units (Robinson

1950; Bradley,Wikle &Holan 2017).

Materials andmethods

WHOOPING CRANE DATA

Whooping Cranes are an endangered migratory bird with a single wild

population of 329 individuals [293–371, 95% confidence interval (CIs)]

as of winter 2015–2016 (U.S. Fish andWildlife Service 2016; see table 1

of Butler, Harris & Strobel 2013 for historical estimates). This popula-

tion overwinters in and around Aransas National Wildlife Refuge in

southern Texas (USA) and nests during the summer in and around

WoodBuffaloNational Park in Alberta and theNorthwest Territories,

Canada. Approximately 4000 km migrations are typically undertaken

in small groups and include multiple stopovers that last from several

hours to several weeks (Pearse et al. 2015, 2017). Stopovers provide

much needed rest and food during the migration and are critical to the

survival of individualWhooping Cranes and the species.

In 1978, a portion of the Central Platte River Valley in Nebraska

(USA) was designated as critical habitat for the Whooping Crane

under theU.S. Endangered Species Act (Fig. 1a; U.S. Fish andWildlife

Service 1978). One of the management objectives of the Platte River

Recovery Implementation Program, a multistate-federal cooperative

agreement, is to acquire and manage stopover habitat for Whooping

Cranes within the critical habitat area and surrounding region (Fig. 1a;

Freeman 2010). Within the region, habitat acquisition and manage-

ment decisions are based on a set of ‘minimum habitat criteria’ such as

the distance to nearest disturbance feature (defined as distance from a

point in any direction to the nearest disturbance feature; Platte River

Recovery Implementation Program 2012).

The presence-onlyWhoopingCrane locations used in our studywere

described by Hefley et al. (2015b) and the data are available from the

Dryad Digital Repository (Hefley et al. 2015a). For the purposes of

this study, we limit our analysis to the locations of 120 groups of

Whooping Cranes reported within a 6280 km2 region that contains the

critical habitat (Fig. 1a). A challenge associated with these data are that

the location of most groups (n = 103) were reported as the centres of

quarter-, half- or full-sections of land, which are administrative units

(i.e. polygons) designated by the Public Land Survey System (Fig. 2a;

Nebraska Department of Natural Resources 2016). Consequently, the

true location of the Whooping Crane group is only known to be con-

tained within a polygon having an area of roughly 0�65 km2 (quarter-

section), 1�3 km2 (half-section), and 2�6 km2 (full-section; Figs 1b and

2a). Relatively few groups (n = 17) were reported with locations

obtained using a global positioning system.

We derived two covariates, distance to the nearest developed area

and distance to water, from the 30 9 30 m2 resolution 2011 National

Landcover Cover Database (NLCD; Figs 1c,d and 2b,c; Homer et al.

2015). For the purposes of this study, we defined development as the

amalgamation of land classes 21–24 (open space, low-, medium- and

high-intensity development) and water as the amalgamation of land

classes 11 (open water), 90 (woody wetlands), and 95 (emergent herba-

ceous wetlands). Location error of Whooping Crane groups is prob-

lematic because of the spatial structure of the two covariates. For

example, roads, houses and other types of development typically occur

on the boundary of a section of land (Fig. 2a). Locations of Whooping

Crane groups are often reported as the centre of a section of land,

which typically results in themaximumpossible distance from develop-

ment within the study area (Fig. 2b).

POINT PROCESS MODEL

Multiple researchers have unified methods for analyzing presence-only

data by showing that many commonly employed modelling

approaches (e.g. logistic regression, MAXENT, resource selection

functions) estimate, with varying degrees of accuracy, parameters of an

inhomogeneous Poisson point process (IPP) distribution (Warton &

Shepherd 2010; Aarts, Fieberg &Matthiopoulos 2012; Renner &War-

ton 2013; Renner et al. 2015; Hefley&Hooten 2016). The IPP distribu-

tion describes the location of a random number of individuals (or

groups) within a geographic area. The IPP is constructed by assuming

the geographic distribution of individuals can be explained by an inten-

sity function, k(s), defined in continuous space (where s is a single loca-

tion contained within the study area). For example, the intensity

function is commonly specified using a linear combination of location-

specific covariates with

logðkðsÞÞ ¼ b0 þ xðsÞ0b; eqn 1

where b0 is the intercept, x(s) is a p 9 1 vector that contains covariates

at location s, and b � (b1, . . ., bp)
0
is a vector of regression coefficients.

The support of a distribution is the set of points (locations) where the

distribution is defined. For example, there are an infinite number of

points within the study area where Whooping Crane groups could

occur (Fig. 1a), and the continuous spatial support of the IPP distribu-

tion appropriately matches that of the true locations. Conversely, the
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support of the reported locations is discrete (or areal in a spatial con-

text) because there are a finite number of polygons (sections of land)

that Whooping Crane groups could occur within (Gotway & Young

2002).

An important property of the IPP distribution is the support can be

changed from continuous geographic space to discrete space, simply by

integrating the intensity function over the area containing the true loca-

tions.More precisely, after aCOS, the number of individuals (nj) within

non-overlapping polygons of arbitrary shape (Aj) follows a Poisson

distribution, with a rate parameter �kj, where

�kj ¼
Z
Aj

kðsÞds: eqn 2

As a result, when the true locations of individuals have unknown coor-

dinates contained within known polygons, standard Poisson regression

can be used to model the number of individuals within each polygon

provided the rate parameter is calculated as shown in eqn 2. In most

cases, the integral in eqn 2must be approximated. For example, using a

numerical quadrature approximation (Givens &Hoeting 2012, ch. 5)

�kj � 1

jAjj
1

Qj

XQj

q¼1

kðsqÞ
 !

; eqn 3

where jAjj is the area of Aj and Qj is the number of (equally spaced)

points on a grid that partitions the polygon Aj. Conceptually, eqn 3 is

the average value of the intensity function k(s) withinAj divided by the

area ofAj.

For theWhooping Crane example, the 6280 km2 study area (S) con-
tains 2679 sections of land (i.e. S ¼ S2679

j¼1

Aj; Fig. 1b). Within each sec-

tion of land (Aj), the number of Whooping Crane groups

(n1, n2, . . ., n2679), is the observed response. Of the 2679 sections of

land in our study area (Fig. 1b), 2610 of the sections had zero Whoop-

ing Crane groups reported, 41 sections had 1 group, 19 sections had 2

groups and 9 sections had >2 groups.

To assist readers implementing the COS, a tutorial with R code

illustrating the Whooping Crane data analysis and reproducing all

results and figures is given in Appendix S1 of the Supporting Infor-

mation. An in-depth presentation of the COS, including a detailed

explanation of the IPP and why the COS works, is provided in

Appendix S2.

SIMULATION EXPERIMENT

We conducted a simulation study to evaluate bias and efficiency in

parameter estimation. We simulated presence-only data from the IPP

distribution with a single covariate (x(s)) using the values of b1 = 1 (i.e.

log(k(s)) = b0 + b1x(s)) on the unit square. We simulated two different

sample sizes using b0 = 4�25 (small) and b0 = 6 (large). For each sam-

ple size, we simulated three different types of covariates (x(s)) that
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Fig. 1. Locations of opportunistic records

(n = 120) of Whooping Crane groups in

Nebraska (USA) from 1988 to 2012 (panel a).

The 120 records were the presence-only data

used in our analysis. The area shaded red is

the Platte River Recovery Implementation

Program associated habitat area which con-

tains the critical habitat designated for the

Whooping Crane. The study area is divided

into irregular polygons designated as sections

under the Public Land Survey System (panel

b). The two covariates used in our analysis

include distance to nearest development (panel

c) distance to nearest water (panel d).
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resulted in ‘habitat’ with: (i) small-scale spatial autocorrelation

(Fig. 3a); (ii) large-scale spatial autocorrelation (Fig. 3b); and (iii) large-

scale spatial autocorrelation with near minimum values of x(s) occur-

ringwithin the centre of each polygon (Fig. 3c).Given that spatial auto-

correlation is ubiquitous in spatial covariates, scenario 1 and 2

demonstrates the effect of different scales of autocorrelation on loca-

tion error (Naimi et al. 2011). The third scenario is similar to the

Whooping Crane example (i.e. distance to development is greatest at

section centres) and shows that increasing levels of spatial autocorrela-

tion in the covariate do not necessarily reduce the impact of location

error (e.g. Naimi et al. 2011), when the location error itself has spatial

structure relative to the covariate. For each scenario, we simulated

location error by placing a grid with m = 100 (fine grain) and m = 25

(course grain) polygons to mimic sections of land and assumed that the

‘reported’ locationswere the centre of each grid cell. For each simulated

dataset, we fit the IPP distribution using maximum likelihood estima-

tion to the presence-only data with the exact locations and data with

location errors (i.e. cell centres; Fig. 3). We also fit the IPP distribution

with the COS correction using data with location errors. In total, we

conducted three different covariate scenarios (1, 2 and 3), with two dif-

ferent sample sizes (small and large), and two levels of aggregation (fine

and course grain) for a total of 12 different settings. For each setting,

we simulated 1000 datasets and assessed bias in the maximum likeli-

hood estimates (MLEs) of b1. We assessed efficiency by calculating the

mean standard error of b̂1 from the COS correction using data with

location errors divided by the mean standard error for b̂1 obtained

from fitting the IPP distribution using data with exact locations (here-

after ‘ratio of standard errors’). We also report the estimated coverage

probability for the 95% CIs for b̂1 obtained from all model fits (i.e.

exact, ignored andCOS). A tutorial withR code implementing the sim-

ulation study and reproducing Figs 3 and S2–S4 is available in

Appendix S3.

Results

WHOOPING CRANE DATA

When we fit the IPP model and ignored location error, we

obtained estimates for the distance to nearest development of

b̂1 ¼ 2�2 (1�7, 2�8; 95% CI) and distance to nearest water of

b̂2 ¼ �5�7 (�6�8, �4�5). Using the COS to correct for loca-

tion error, we obtained b̂1 ¼ 1�4 (0�6, 2�2) and b̂2 ¼ �29�2
(�46�4, �12�1). These results represent roughly a two-thirds-

fold and five-fold estimated change in effect of distance to near-

est development and water, respectively, when location error is

corrected for (i.e. 1�42�2 ¼ 0�64 and �29�2
�5�7 ¼ 5�1).

SIMULATION EXPERIMENT

When location error was ignored, the MLE of the regression

coefficient (b̂1) was biased (Figs 3 and S2–S4) and coverage

probabilities of the 95% CIs were ≤0�21 for all settings

(Table 1). The bias was particularly pronounced in scenario 3

(i.e. large-scale spatial autocorrelation with near minimum val-

ues of x(s) occurring within the centre of each polygon), where

b̂1 was negative for every dataset from all settings when loca-

tion error was ignored (Fig. 3c; note the true value was b1 = 1).

The COS correction resulted in unbiased b̂1 for all settings and
coverage probabilities between 0�93–0�96 (Fig. 3 and S2–S4;
Table 1). Overall, the COS correction was efficient; the ratio of

standard errors was ≤2�5 for all simulation settings (Table 1).

Given the collective results of all simulations, we present the

‘worst case’ (small sample size and a course grid resulting in

large location errors) for the three covariate scenarios (Fig. 3).

Detailed results for all simulations are presented in Table 1 and

Figs S2–S4.

Discussion

Our analysis of the Whooping Crane presence-only data and

simulation study show that location error can result in biased

parameter estimates. In fact, biased estimates will always occur

unless the location errors result in reported locations that have

the same covariate values as the true locations. The magnitude

and direction of the bias caused by location errors depends on

the spatial structure of the covariates (e.g. Fig. 3; Hefley et al.

2014). Based on our simulation study, the COS is an efficient
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Fig. 2. Satellite photo illustrating the reported accuracy of aWhooping Crane group (panel a). The black boxes delineate sections of land. The yel-

low point ( ) is the exact location of aWhooping Crane group reported with locations obtained with a global position system (GPS). The red point

( ) represents the centre of the section. Of the 120 reported groups of Whooping Cranes used in our analysis, the location accuracy was: GPS

(n = 17), quarter-section (n = 73), half-section (n = 11) and section (n = 19). The two covariates used in our analysis include distance to nearest dis-

turbance (panel b) and water (panel c). The distance to nearest disturbance in panel b results in a regular pattern because most disturbance features

(e.g. roads, houses, etc) occur on the boundary of a section of land.
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Fig. 3. Results of a simulation study that used three types of covariates for x(s) which resulted in ‘habitat’ with: (i) small-scale spatial autocorrelation

(panel a); (ii) large-scale spatial autocorrelation (panel b); and (iii) large-scale spatial autocorrelation with near minimum values of x(s) occurring

within the centre of each polygon (panel c; note that black shading is the maximum values of x(s), white is the minimum of x(s)). The covariate x(s)

was used to simulate presence-only locations (gold ).Maximum likelihood estimates for the regression coefficients (b̂1; violin plots) from 1000 data-

sets for the IPP distribution using the exact locations (exact) and the locations with error caused by aggregating to the centre (cell centre). We also

applied the COS correction (corrected), which used locations reported at the centre of each polygon, to obtain b̂1 for each dataset. For each type of

autocorrelated covariate, we used multiple settings which included two different sample sizes (small and large) and two levels of location error (fine

grain) and (course grain). Shown in this figure is the ‘worst case’ settings (small sample size and a course grid resulting in large location errors; see Figs

S2–S4 for additional results).
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technique that corrects location error, even when the location

errors are relatively large (e.g. Fig. 3, Table 1). Location error

for presence-only data can easily be accounted for using the

COS when the true locations are unknown, but occur within

known polygons. In situations where it is not known if the true

locations are containedwithin polygons, the regression calibra-

tion approach of Hefley et al. (2014), movement constraint

approach of Brost et al. (2015) or the errors-in-variables

approach of Vel�asquez-Tibat�a, Graham & Munch (2016) are

viable alternatives.

The distribution of a species may have temporal dynamics.

For example, Hefley et al. (2015b) used the IPP distribution

to incorporate seasonal dynamics related to the migration of

Whooping Cranes. The IPP distribution can be used in spa-

tio-temporal species distribution models (Hefley & Hooten

2016). For spatio-temporal species distribution models,

covariates at any given point in space may change over time.

For example, the distance to nearest water may be dynamic

seasonally or annually. We used the 2011 NLCD to derive

the distance to nearest water even though NLCDs are avail-

able for the years 1992, 2001, 2006, 2011 and 2015. The dis-

tance to nearest water for the Whooping Crane locations

collected in, for example, 2008 might be derived from the

‘closest’ available NLCD (i.e. 2006). Obtaining covariates

associated with presence-only locations from covariates that

are closest in time is tempting (i.e. using the 2006 NLCD to

calculate distance to nearest water for the Whooping Crane

locations collected in 2008), but temporal mismatch in

covariates and observations may cause bias similar to

location error.

While the COS can correct for location error, the covariates

may also contain errors. For example, researchers may include

spatial climate covariates obtained from climate models.

A problem known as ‘errors-in-variables’ occurs when the

predicted climate at a location is different than the true climate

(Foster, Shimadzu & Darnell 2012). In addition to location

errors, errors-in-variables can be accommodated using a hier-

archical species distribution modelling framework (e.g. Stok-

losa et al. 2015; Hefley & Hooten 2016; Vel�asquez-Tibat�a,

Graham&Munch 2016).

Researchers that use spatial covariates that are only avail-

able at a coarse resolution will face challenges even when the

exact location of the species is known. For example, World-

Clim provides a set of global climate variables that are predic-

tions available on a 1 9 1 km2 grid and are commonly used as

covariates in species distribution models (Hijmans et al. 2005).

The value of climate variables for an exact location record of a

species will have the same value regardless of where the loca-

tion falls within the 1 9 1 km2 grid cell that contains the exact

location. As a result, the true value of the climate variable

where the species was located may be different than the value

reported in the 1 9 1 km2 grid cell. Climate could vary at a

finer resolution and it is well-known that the resolution of

covariates can influence results (e.g. Luoto, Virkkala&Heikki-

nen 2007; Scales et al. 2017). Although this problem is analo-

gous to location error, the COS will not correct for the bias

because the internal structure of the grid cells is unknown and

results in the intensity function of the IPP being constant

within each grid cell.

Although location error was the focus of our study, analyses

that rely on citizen science data suffer from other biases related

to the data collection process. For example, sampling bias

occurs when the probability a location is reported is less than

one and has spatial (or temporal) structure (e.g. Dorazio 2012;

Hefley et al. 2013; Warton, Renner & Ramp 2013; Fithian

et al. 2015). Simultaneously correcting for multiple biases,

such as location error and sampling bias, is needed to obtain

reliable statistical inference from presence-only data like the

Table 1. Results of a simulation study using three different types of covariates for x(s) which resulted in ‘habitat’ with: (i) small-scale spatial autocor-

relation (scenario 1; Fig. 3a); (ii) large-scale spatial autocorrelation (scenario 2; Fig. 3b); and (iii) large-scale spatial autocorrelation with near

maximum values of x(s) occurring within the centre of each polygon (scenario 3; Fig. 3c). For each covariate scenario we used two different sample

sizes (small and large) and two levels of location error caused by aggregation (fine and course) for a total of 12 different settings.We report the aver-

age number of presence-only locations ( �N) from 1000 datasets simulated for each setting and the estimated coverage probability (CP) for the 95%

CIs obtained by fitting the IPP distribution using maximum likelihood estimation to the exact locations (exact), the locations reported as the centre

(cell centre) and the COS correction (corrected). Also reported is efficiency, which was calculated as the mean standard error of b̂1 from the COS

correction using data with location errors divided by the mean standard error of b̂1 obtained from fitting the IPP distribution using data with

exact locations.

Scenario Location error Sample size �N CP (exact) CP (cell centre) CP (corrected) Efficiency

1 Fine Large 667�6 0�96 0�00 0�95 1�6
2 Fine Large 666�8 0�96 0�01 0�96 1�3
3 Fine Large 631�0 0�95 0�00 0�96 1�4
1 Fine Small 115�6 0�95 0�01 0�95 1�6
2 Fine Small 115�5 0�94 0�21 0�94 1�3
3 Fine Small 109�4 0�95 0�00 0�96 1�4
1 Coarse Large 665�3 0�96 0�00 0�95 2�5
2 Coarse Large 663�4 0�95 0�00 0�95 1�7
3 Coarse Large 651�3 0�95 0�00 0�95 1�7
1 Coarse Small 115�6 0�94 0�00 0�94 2�5
2 Coarse Small 114�8 0�95 0�03 0�94 1�7
3 Coarse Small 112�6 0�94 0�00 0�93 1�7
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Whooping Crane records used in our analysis (Hefley et al.

2015b;Hefley&Hooten 2016).

FUTURE DIRECTION

Count and presence–absence data arise from aggregating the

exact locations of individuals into polygons (hereafter survey

units; for example, Fig. 1�1 on p. 5 of K�ery and Royle 2016;

Aarts, Fieberg & Matthiopoulos 2012; Hefley and Hooten

2016). For example, the European Breeding Bird Atlas makes

presence–absence data available on a grid with 50 9 50 km2

resolution (European Bird Census Council 2016). Popular eco-

logical models for count and presence–absence data include

the N-mixture approach of Royle (2004) and the occupancy

model ofMacKenzie et al. (2002) and Tyre et al. (2003).Mod-

els for count and presence–absence data typically use covari-

ates that are the average values within the survey unit or values

of the covariates at the centroid of the survey unit associated

with each count or presence–absence observation. Conse-

quently, inference is relative to how abundance or presence

within the survey unit is influenced by covariates at the cen-

troid or the average. As with location error in presence-only

data, inference at the survey unit level may differ from the

inference obtained using the covariates at the exact location of

each individual.

Within a broader context, bias caused by mismatch in spa-

tial scale is known as the ecological fallacy when conclusions

at the exact locations of individuals differs from the inference

at the aggregate level (Robinson 1950; Cressie & Wikle 2011,

p. 197; Bradley, Wikle & Holan 2017). For example, suppose

that we modelled presence–absence data within 1 9 1 km2

quadrats using the elevation at the centre of the quadrats. If

the true elevation was variable within the 1 9 1 km2 quad-

rates, then the elevations where each individual was located

may be different than the elevation at the centre of the quad-

rats. We expect that the effect of aggregating the exact loca-

tions for surveys of abundance or presence–absence will

result in similar effects as location error in presence-only

data.

Within the fields of spatial and spatio-temporal statistics,

there are many well-established and recently developed meth-

ods for obtaining inference at the desired scale given data at

another spatial scale (e.g. Gotway & Young 2002; Wikle &

Berliner 2005; Bradley, Wikle & Holan 2016, 2017). Many of

the statistical methods developed to address the modifiable

areal unit problem, downscaling and change of support can be

applied to ecological models when there is a mismatch in the

scale at which the data were collected and inference is desired

(e.g. Bradley, Wikle & Holan 2017). For example, when the

locations of individuals are aggregated, as is common practice

for surveys of abundance or presence–absence, and the goal is

to obtain inference about the response of the species to covari-

ates at the true locations of the individuals (i.e. resource selec-

tion), the well-established COS should be used. The COS

involves linking the integrated intensity function to the

expected count or probability of occurrence within the quad-

rats (Hefley&Hooten 2016).
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