
Supplementary materials for this article are available at 10.1007/s13253-016-0274-1.

The Bayesian Group Lasso for Confounded
Spatial Data

Trevor J. Hefley, Mevin B. Hooten, Ephraim M. Hanks,
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Generalized linearmixedmodels for spatial processes arewidely used in applied statis-
tics. In many applications of the spatial generalized linear mixed model (SGLMM), the
goal is to obtain inference about regression coefficients while achieving optimal predic-
tive ability. When implementing the SGLMM, multicollinearity among covariates and
the spatial random effects can make computation challenging and influence inference.
We present a Bayesian group lasso prior with a single tuning parameter that can be cho-
sen to optimize predictive ability of the SGLMM and jointly regularize the regression
coefficients and spatial random effect. We implement the group lasso SGLMM using
efficient Markov chain Monte Carlo (MCMC) algorithms and demonstrate how multi-
collinearity among covariates and the spatial random effect can bemonitored as a derived
quantity. To test our method, we compared several parameterizations of the SGLMM
using simulated data and two examples from plant ecology and disease ecology. In all
examples, problematic levels multicollinearity occurred and influenced sampling effi-
ciency and inference. We found that the group lasso prior resulted in roughly twice the
effective sample size for MCMC samples of regression coefficients and can have higher
and less variable predictive accuracy based on out-of-sample data when compared to the
standard SGLMM.
Supplementary materials accompanying this paper appear online.
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1. INTRODUCTION

The SGLMMis an important andwidely used tool in fields such as agriculture, economet-
rics, epidemiology, ecology, and forestry (e.g., Schabenberger andGotway 2004;Waller and
Gotway 2004; Cressie andWikle 2011; Stroup 2012). In many applications of the SGLMM,
the goal is to obtain inference about the regression coefficients by accounting for spatial
correlation while simultaneously achieving good predictive ability at locations that were
not sampled. For example, researchers may be interested in understanding landscape level
risk factors associated with the geographic variability in prevalence of a disease as well as
predicting the probability of infection for individuals at locations that were not sampled.
As another example, the geographic distribution of a species may depend on complex and
difficult to observe ecological processes (e.g., seed dispersal) as well as easy to measure
habitat characteristics (e.g., soil type), both of which can generate spatial patterns. In both
examples, the SGLMMmay be the preferred tool by scientists due to (1) the interpretability
resulting from the linear structure of the model and (2) the ability to explicitly model the
spatial dependence through the specification of a random effect. Although the SGLMM
is widely used, difficulties can occur when covariates with spatial structure are of interest
(Clayton et al. 1993; Reich et al. 2006; Hodges and Reich 2010; Paciorek 2010; Hughes
and Haran 2013; Hanks et al. 2015; Murakami and Griffith 2015). The goal of our work
is to evaluate an alternative specification of the SGLMM for use with spatially structured
covariates.

The SGLMM for continuous spatial processes from Gotway and Stroup (1997) and
Diggle et al. (1998) can be written as

y ∼ [y|μ, ψ] (1)

g(μ) = Xβ + η (2)

η ∼ N
(
0, σ 2

ηC(φ)
)

, (3)

where y ≡ (y1, . . . , yn)
′
is a set of n observations at fixed spatial locations si (i =

1, 2, . . . , n) that arise from an arbitrary distribution belonging to the exponential family
denoted by [·]. The parameters μ and ψ are the conditional expected value and disper-
sion of [·], respectively. The function g−1(.) transforms the linear predictor Xβ + η so
that it has the same support as μ. The linear predictor has three components: X, an n × p
matrix that contains an intercept and covariates, β, a p×1 vector of regression coefficients,
and η ≡ (η1, . . . , ηn)

′
, a zero-mean Gaussian random effect with variance σ 2

η and spatial
correlation matrix C(φ) with parameters φ.

Regularization methods are widely used with non-spatial regression models to improve
predictive performance, computation, and inference (Hoerl and Kennard 1970; Tibshirani
1996). When implementing the SGLMM, regression coefficients are typically not regular-
ized, while the spatial effects are regularized due to the natural shrinkage imposed by the
hierarchical Gaussian random effect. Within a Bayesian framework, shrinkage priors have
been used to regularize coefficients in non-spatial regression models (e.g., Park and Casella
2008; Kyung et al. 2010; Mallick and Yi 2013; Bhattacharya et al. 2015). In Bayesian
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implementations of the SGLMM, regression coefficients β are often assigned a mean-zero
Gaussian prior, but the prior variance is typically assumed to be a known hyperparameter
and chosen to be large, leading to minimal shrinkage of the regression coefficients. The
spatial random effects η, however, are typically assigned a mean-zero Gaussian prior that
induces stronger regularization through the assumption of spatial smoothness of the random
field and estimation of the prior variance.

When implementing the SGLMM, covariates that are spatially indexed and structured
are sometimes collinear with the spatial random effect (Clayton et al. 1993; Reich et al.
2006; Hodges and Reich 2010; Paciorek 2010; Hughes and Haran 2013; Hanks et al. 2015;
Murakami and Griffith 2015). This phenomenon is known as spatial confounding and com-
plicates regularization of the regression coefficients in the SGLMM. When covariates are
collinear with the spatial random effect, both the regression coefficients and spatial random
effect compete to explain variability in the response. In the presence of collinearity, regu-
larizing the regression coefficients will influence the spatial random effect and vice-versa.
To ameliorate the explanatory trade-off when regularizing the SGLMM, one could treat the
variance of the spatial random effect σ 2

η as a tuning parameter and regularize both the spatial
random effect and regression coefficients. This independent regularization approach would
result in two tuning parameters and require two-dimensional optimization for tuning. An
alternative to regularizing the regression coefficients and random effects independently is
grouped regularization (e.g., Hui et al. 2016). In this paper, we propose a joint shrinkage
prior on both regression coefficients and spatial random effects in the SGLMM. This joint
prior can be viewed as a Bayesian group lasso prior and provides many of the benefits of
regularization to SGLMMs. In particular, we show that the Bayesian group lasso prior can
result in greater computational efficiency and the possibility of greater predictive power
when compared to the standard independent priors for SGLMMs.

The structure of this paper is outlined as follows. InSect. 2,wepresent theBayesian spatial
group lasso (SGL). In Sect. 3, we review spatial confounding and suggest an informative
diagnostic that is easy to monitor during MCMC sampling. In Sect. 4, we compare the SGL
to the SGLMM using two examples. In Sect. 5, we compare the SGL to the SGLMM using
simulated data. In Sect. 6,we concludewith a discussion of the advantages and disadvantages
of the SGL.

2. BAYESIAN SPATIAL GROUP LASSO

Motivated by the Karhunen–Loéve expansion, the SGLMM presented in (1)–(3) can be
parameterized as

g(μ) = Xβ + Z(φ)α (4)

α ∼ N
(
0, σ 2

η �(φ)
)

, (5)

where Z(φ) is an n × n matrix of eigenvectors and �(φ) is an ×n diagonal matrix of
corresponding eigenvalues obtained from a spectral decomposition of the spatial correlation
matrixC(φ) = Z(φ)�(φ)Z(φ)

′
, and α is an n×1 vector of basis coefficients (Wikle 2010).
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The SGL relies on the hierarchical group lasso from Kyung et al. (2010, pp. 378–379) and
the eigen basis vector parametrization (4) of the SGLMM, but uses the priors

β|σ 2
β ∼ N

(
0, σ 2

β I
)

(6)

α|σ 2
η ,φ ∼ N

(
0, σ 2

η �(φ)
)

(7)

σ 2
β |λ ∼ gamma

(
p+1
2 , λ2

2

)
(8)

σ 2
η |λ ∼ gamma

(
n+1
2 , λ2

2

)
, (9)

where λ is a tuning parameter that controls the joint shrinkage of α and β. When the data
model (1) is a Gaussian distribution, [α|σ 2

η ,φ] and [β|σ 2
β ] should also condition on the

variance of the data model to guarantee a unimodal full posterior (Park and Casella 2008;
Kyung et al. 2010). While the above specification of the group lasso implies two groups,
there may be some regression coefficients that we do not shrink and should be grouped
differently (e.g., the intercept and covariates without spatial indices and structure). In this
case, we write the linear predictor as

g(μ) = Wγ + Xβ + Z(φ)α (10)

where W is a n × q matrix of covariates and γ is a q × 1 vector of regression coefficients.

Throughout this paper,we assume the prior γ ∼ N
(
0, σ 2

γ I
)
with the knownhyperparameter

σ 2
γ .
The tuning parameter λ can be selected using out-of-sample data or by cross-validation.

Within the Bayesian context, λ can be estimated using marginal maximum likelihood or by
assigning a prior on λ (Mallick and Yi 2013). A common prior is

λ2 ∼ gamma (r, s) (11)

where r and s are known hyperparameters (Park andCasella 2008; Kyung et al. 2010).When
the data model (1) is a Gaussian distribution or a probit model, full-conditional distributions
for all quantities except parameters that enter into the correlation matrix nonlinearly are
available in closed form (Web Appendix A).

Although we have specified the linear predictor of the SGL using eigen basis vectors
in (4), alternative basis vectors could be used. For example, dimension reduction may be
needed to implement the SGLMM for large data sets. When dimension reduction is desired,
alternative basis functions or a subset of eigen basis vectors can be used in place of the full
eigen basis expansion (see data example 2; Higdon 2002; Banerjee et al. 2008;Wikle 2010).

3. SPATIAL CONFOUNDING

The term spatial confounding has been used to describe multicollinearity among covari-
ates in X and the spatial random effect η from (2). Using the eigen basis vector parame-
terization of the SGLMM (4), the potential for multicollinearity among the covariates in
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X and the matrix of basis vectors Z(φ) is clear. Restricted spatial regression (RSR) is one
approach that has been used to alleviate multicollinearity among covariates and the spatial
random effect (Reich et al. 2006; Hodges and Reich 2010). To demonstrate RSR, let P be
the orthogonal projection onto the column space of X

P ≡ X(X
′
X)−1X

′
. (12)

Hanks et al. (2015) specified the linear predictor as

g(μ) = Xβ + (I − P)η + Pη. (13)

The linear predictor in (13) decomposes the spatial random effect into the two components
that are orthogonal and the orthogonal complement to the covariates in X. To alleviate
multicollinearity, the RSR approach removes Pη from the model resulting in

g(μ) = Xδ + (I − P)η. (14)

By removing Pη in (13), all of the variability in the direction of X explained by η is now
absorbed by the linear function Xδ in (14), where

δ = β + (X
′
X)−1X

′
η . (15)

As a result, the regression coefficients estimated under the SGLMM with RSR are δ and
not β. Under RSR, all variability in the direction of X is explained by Xδ, whereas, under
the standard model, Xβ and η compete to explain variability. As a consequence, δ can be
interpreted as the unconditional relationship between the transformed mean of the response
and the linear predictor (Hanks et al. 2015). Several studies have shown that RSR provides
computational benefits, such as better mixing and increased effective sample size (ESS;
Givens and Hoeting 2012) for δ, when implementing the SGLMM using MCMC sampling
(Hughes and Haran 2013; Hanks et al. 2015). A possible alternative or addition to RSR
is to use regularization to improve computational efficiency. If regularization improves
computational efficiency, then the SGL can be applied toβ or δ, depending on the component
inference is desired for.

In practice, there is little guidance on which quantity, β or δ, is appropriate in applied
contexts (Hodges and Reich 2010; Hooten et al. 2013; Hanks et al. 2015; Schmidt et al.
2015). In some situations, the specifics of the study might dictate whether β or δ is most
appropriate; thus, we proceed assuming that studies may desire inference on the conditional
regression parameters β from the standard (potentially confounded) SGLMM.

Unlike multicollinearity among covariates, multicollinearity among covariates and the
continuous spatial random effect η cannot be assessed prior to fitting the model (unless φ

in (3) is known). When using MCMC to fit the SGLMM in the Bayesian context, we have
found it helpful to monitor the derived quantity
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r(x j , zk)(t) =
∑n

i=1

(
xi j − x̄ j

) (
z(t)ik − z̄(t)k

)
√∑n

i=1

(
xi j − x̄ j

)2√∑n
i=1

(
z(t)ik − z̄(t)k

)2 (16)

which is the correlation among the j th covariate of interest ( j = 1, . . . , p) and the kth eigen-
vector (k = 1, . . . , n) obtained from the spectral decomposition of the spatial covariance
matrix (3) at the t th MCMC iteration. Note that, if φ in (3) is known, the eigenvectors asso-
ciated with the spatial random effect are constant (for all MCMC samples t) and r(x j , zk)
can be calculated prior to fitting the model. Alternatively, when one wishes to assess and
compare the magnitude of confounding among eigenvectors, the coefficient of determina-
tion may also be useful (i.e., r(x j , zk)2 from (16)). Although any set of basis vectors could
be used, eigen basis vectors represent a naturally ordered orthogonal basis expansion. For
confounded data, previous studies have reported that confounding may occur at a single
spatial scale (e.g., |r(x j , zk)| � 0 for k = 1; Hodges and Reich 2010). As an alternative to
(16), one could monitor the correlation between x and η (i.e., a linear combination of the
columns of Z(φ)); however, as shown by Hodges and Reich (2010) and in our experience
(e.g., data examples), confounding is likely to occur at certain spatial scales and can be
better diagnosed and understood using eigen basis vectors. When dimension reduction is
needed and the basis vectors no longer capture distinct and orthogonal spatial scales, we
recommend using the left singular vectors obtained from a singular value decomposition of
Z(φ) in (16; see data example 2).

4. DATA EXAMPLES

We demonstrate the SGLMM and SGL for two binary data examples using the standard
(2) and RSR parameterizations (14) of the linear predictor. For both examples, we used
a portion of the data to fit the model and the remaining portion to evaluate the predictive
performance using the log score (Gelman et al. 2014; Hooten and Hobbs 2015). For each
example, we report the mean of the posterior distribution and the equal-tail 95% credible
intervals (CI) for regression coefficients and the out-of-sample log score. To assess the
computational efficiency of the models, we report the ESS from 10,000 samples obtained
from a single MCMC chain. For comparison purposes, we show predictive maps for the
study areas and compare all spatial models to a model that did not include the spatial random
effect (hereafter referred to as the NS model).

For both examples, we constructed an MCMC algorithm using the closed form full-
conditional distributions for all variables with the exception of the range parameter in the
covariance function (or basis function). For the range parameter, we used a random walk
Metropolis–Hastings algorithm with an acceptance ratio tuned to approximately 40%. For
both examples, we drew 10,000MCMC samples after a burn-in interval of 2000.We include
computational details for each example with amore detailed presentation of thematerial and
the necessary computer code to reproduce all results and figures in R (R Core Team 2015;
Web Appendix B, C, D, and E). All run times resulted from running the code contained in
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the Web Appendix B, C, and D on a laptop computer with a 2.8-GHz quad-core processor,
16GB of RAM, and optimized basic linear algebra subprograms.

4.1. EXAMPLE 1: PREDICTING THE DISTRIBUTION OF A SPECIES

Many ecological studies aim to understand howcovariates influence the presence or abun-
dance of a species at locations that were sampled as well as make predictions at locations
that were not sampled (Hefley and Hooten 2016). Spatial regression models are a popular
tool used to accomplish this goal. For example, Hooten et al. (2003) used a binary spatial
regression model to predict the probability that a plant, pointed-leaved tick trefoil (Desmod-
ium glutinosum), occurs in 10 × 10m plots across a 328-ha area from presence–absence
data collected at 216 plots (Fig. 1a). A common problem when predicting the occurrence
of a species is that data are sparse relative to the prediction domain. For this example, only
0.66% of the plots were sampled within the prediction domain (Fig. 1a). In this applica-
tion, Hooten et al. (2003) used a spatial random effect to increase the predictive ability of
a binary regression model and to account for spatial correlation. A suitable SGLMM for
presence–absence data is

y|γ0, β1, β2, η ∼ Bernoulli (�(γ0 + x1β1 + x2β2 + η))

η|σ 2
η , φ ∼ N

(
0, σ 2

ηC(φ)
)

, (17)

where y is an n × 1 vector with elements 1 if the species is present and 0 if the species
is absent at a sampled location, � is the standard normal cumulative distribution function
applied element-wise (i.e., probit link function), γ0 is the intercept, β1 and β2 are regression
coefficients, x1 and x2 are the centered and scaled covariates (aspect and relative elevation;
Fig. 1b;WebFigure 1), andη is the spatial randomeffect assuming an exponential correlation

function (i.e., ci j (φ) = e− di j
φ where ci j (φ) is the element in the i th row and j th column of

C(φ) in (17) and di j is the distance in kmbetween locations i and j). The correlation between
the two spatial covariates (x1 and x2) was −0.13. For the SGLMM and SGL, we used the
following priors: γ0 ∼ N (0, 10) and φ ∼ uniform(0, 2.86) (note, 2.86 km is the diagonal
distance across the study area). For the SGLMM, we used the priors: β ∼ N (0, 10I) and
1
σ 2

η
∼ gamma(2.1, 1.1) (note, E(σ 2

η ) = 1 and Var(σ 2
η ) = 10). Our motivation for the prior

on σ 2
η was to let the data determine the amount of regularization on η by using a diffuse prior.

For the SGL,we used the prior λ2 ∼ gamma (0.1, 0.1) (note, E(λ2) = 1 andVar(λ2) = 10).
For the NS model, we used the priors γ0 ∼ N (0, 10) and β ∼ N (0, 10I). We randomly
selected 75% (n = 162) of the data to fit all models and used the remaining 25% (n = 54)
of the data to evaluate the predictive performance.

The predicted probability of occurrence ranged from 0.04 to 0.84 using the SGLMM
and 0.09–0.65 using the SGL (Fig. 1c, d). The smaller range of predicted probabilities
of occurrence is a result of the regularization of β and η (cf., Fig. 2a, b, Web Figures 2
and 3). The mean and 95% CI from the posterior distributions of the aspect covariate (β1)
were similar for the SGLMM and SGLMM with RSR (Fig. 2a). The posterior means of β1

(aspect) obtained from the SGL and SGL with RSR were closer to zero, and the 95% CIs
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Figure 1. Prediction domain from theMissouri Ozark Forest Ecosystem Project presented in Hooten et al. (2003).
Red and white pixels in a represent the plot locations that were sampled and whether the plant, pointed-leaved tick
trefoil, was present (red) or absent (white). The map in b shows the relative elevation covariate. Maps in the lower
panels show the predicted probability of presence from a spatial probit model (c; SGLMM in Fig. 2) and a spatial
group lasso probit model (d; SGL in Fig. 2) (Color figure online).

were narrower when compared to the same quantities from the SGLMM and SGLMMwith
RSR (Fig. 2a). In contrast, the posterior mean and 95% CI for the elevation covariate (β2)
were substantially different under the SGLMMwhen compared to the SGLMMwith RSR. If
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Figure 2. Posterior expectation (open circles) and 95% equal-tail credible intervals for two covariates (a, b) and
the out-of-sample log score (d) estimated from a spatial probit model (SGLMM), a spatial group lasso probit model
(SGL), spatial models with random effects restricted to be orthogonal to the covariates (SGLMM RSR and SGL
RSR, respectively; note the estimated regression coefficient under RSR is δ j from (15)), and a model that did not
include a spatial random effect (NS). c The coefficient of determination between the elevation covariate and the
152 eigenvectors obtained from the spatial covariance matrix using the SGLMM (open circles) and SGL (asterisk).

researchers were to judge significance of the β2 (elevation) covariate based on a 95%CI that
did not contain zero, then choosing to use RSR would have altered the inference (Fig. 2b).
For both the SGLMM and SGL, the 95% CI for β2 (elevation) contained zero. In contrast,
the 95% CI for β2 (elevation) did not contain zero for both models when RSR was used
(Fig. 2b). The discrepancy between summaries of the posterior distributions ofβ2 (elevation)
is likely a result of correlation (16) between the first and second leading eigenvectors and
the elevation covariate; this demonstrates that confounding with the elevation covariate is
occurring at a broad spatial scale (Fig. 2c). The posterior mean of the log score based on
out-of-sample data was similar for the SGL and for the SGL with RSR when compared to
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the SGLMM, SGLMMwith RSR, and NS models (Fig. 2d). The 95% CI from the posterior
distributions for the log score from the SGL and SGL with RSR was narrower than the 95%
CIs obtained from the SGLMM and SGLMM with RSR (Fig. 2c). The ESS for β1 (aspect)
and β2 (elevation) were: 784 and 942 for the SGLMM; 916 and 1701 for the SGLMMwith
RSR; 2708 and 2925 for the SGL; 3001 and 3886 for the SGLwith RSR; and 2493 and 2684
for the NS model. The run time to obtain 12,000 MCMC samples for the ESS calculations
was 389, 378, 393, 393, and 4s for the SGLMM, SGL, SGLMMwith RSR, SGL with RSR,
and NS models, respectively.

4.2. EXAMPLE 2: DISEASE RISK FACTOR ANALYSIS

Chronic wasting disease (CWD) is a fatal transmissible spongiform encephalopathy
that occurs in ungulates. CWD was first discovered in Colorado, USA in 1967. Since
1967, CWD has been detected in numerous species and in other areas of North Amer-
ica (Williams et al. 2002). In the state of Wisconsin, USA, CWD was first detected in
white-tailed deer (Odocoileus virginianus) in 2001, as a result of theWisconsin Department
of Natural Resources (DNR) surveillance efforts. One of the goals of continued surveillance
of CWD by the DNR is to identify risk factors associated with the disease. Previous research
has identified sex and age as risk factors; however, wildlife biologists are also interested in
understanding how features of the landscape influence prevalence (e.g., Walter et al. 2011;
Evans et al. 2016).

Data collected by the Wisconsin DNR include information for deer that were sampled
using various methods (e.g., hunter-harvested deer, fatal vehicle collisions) and of various
locational accuracy. CWD was first detected in the southwestern portion of Wisconsin, and
the disease has increased in prevalence in this area, but has much lower prevalence in other
areas of the state. Because of the high and increasing prevalence in southwesternWisconsin,
we limit our analysis to hunter-harvested white-tailed deer collected in southwestern Wis-
consin in 2002 during the initial outbreak. Furthermore, because of location accuracy, we
focused our analysis on deer with location information that was collected at the section-level
(i.e., the location of the harvested deer was recorded as the center of a public land survey
system section of land). This resulted in a sample size of 10,263 tested deer (162 positive
deer; Fig. 3a). We used the 2011 National Land Cover Dataset to calculate nine landscape
covariates: the proportion of water, human development (open space, low intensity, medium
intensity, high intensity), deciduous forest, grassland, pasture, and cultivated crops (land
classes 11, 21, 22, 23, 24, 41, 71, 81, 82, respectively) within a 2.59 km2 grid cell (Fig. 3b
and Web Figure 6, Homer et al. 2015). A 2.59 km2 grid cell represents the location accu-
racy of a section of land (a 1mi2 square area), is roughly the size of the home range of a
white-tailed deer, and is likely representative of the habitat that the tested deer would have
spent a majority of its time within. We randomly selected 50% (n = 5132) of the data to fit
all models and used the remaining 50% of the data to evaluate the predictive performance.

Given the relatively large size of our training sample (n = 5132), the full-rank spatial
model would be computationally demanding. To facilitate computation, we used a process
convolution with an exponential kernel and m = 48 equally spaced knots (Web Figure 7).
Briefly, the process convolution constructs a continuous spatial model based on a Gaussian
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Figure 3. Prediction domain for 10,263 white-tailed deer tested for chronic wasting disease in southwest Wis-
consin, USA (a; 162 positive deer). The map in b shows the percent forest covariate. Maps in the lower panels
show the predicted probability of infection from a spatial probit model (c; SGLMM in Fig. 4) and a spatial group
lasso probit model (d; SGL in Fig. 4). Note the predicted prevalence is for male white-tail deer in age-class 4.

process by convolving independent and identically distributed Gaussian random variables
on a lattice with an arbitrary kernel (Higdon 2002; Hefley et al. 2016). Using process
convolution, the spatial binary model is

y|γ ,β,α, φ ∼ Bernoulli (�(Wγ + Xβ + Z(φ)α))

α ∼ N
(
0, σ 2

α I
)

, (18)

where y is an n × 1 vector with elements 1 if a tested deer is positive for CWD and 0
otherwise, � is the standard normal cumulative distribution function,W andX are matrices
of covariates, γ and β are the associated regression coefficients, Z(φ) is an n × m matrix

of exponential kernel basis vectors with range parameter φ (i.e., zi j (φ) = e− di j
φ where

zi j (φ) is the element in the i th row and j th column of Z(φ) in (18), di j is the distance
in km between locations i and j), and α is an m × 1 vector of basis coefficients. We
centered and scaled the landscape covariates and also included the sex and age of the
tested deer. The covariates sex and age were not spatially indexed or structured, whereas
the landscape covariates exhibited spatial structure (Fig. 3b; Web Figure 6). As a result,
there is potential for multicollinearity with the landscape covariates and the basis vectors
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in Z(φ). For this example, we placed all nine landscape covariates in X and applied the
group lasso prior, whereas the sex and age covariates are included in W. For the landscape
covariates, wemonitored the correlation among the landscape covariates and the left singular
vectors obtained from a singular value decomposition of Z(φ). For the SGLMM and SGL,
we used the following priors: γ ∼ N (0, 10I) and φ ∼ uniform(0, 200) (note, 200km is
approximately the diagonal distance across the study area). For the SGLMM, we used the
priors: β ∼ N (0, 10I) and 1

σ 2
η

∼ gamma(2.1, 1.1) (note, E(σ 2
η ) = 1 and Var(σ 2

η ) = 10).

As in the first example, our motivation for the prior on σ 2
η was to let data determine the

amount of regularization on η by using a diffuse prior. For the SGL, we used the prior
λ2 ∼ gamma (1, 1) (note, E(λ2) = 1 and Var(λ2) = 1). For the NS model, we used the
priors γ ∼ N (0, 10I) and β ∼ N (0, 10I).

The predicted prevalence was highest in the center of the study area and ranged from
0.00 to 0.23 when using the SGLMM and from 0.00 to 0.17 when using the SGL (Fig. 3c,
d). As in the first example, the smaller range of prevalence is a result of the regularization
of β and η (cf. Fig. 4a, b, Web Figures 8 and 9). The mean and 95% CIs from the posterior
distributions of the coefficients corresponding to the sex and age covariates were similar
for all models (Web Appendix D). For illustrative purposes, we present results for one of
the nine landscape covariates (forest). The 95% CI for the coefficient corresponding to the
forest covariate (β1) contained zero for all models, but the 95% CIs were much wider for
the SGLMM, SGLMMwith RSR, and NS models, which may be inflated due to correlation
(16) among the basis vectors and the forest covariate (Fig. 4). The posterior mean of the log
score based on out-of-sample data was highest for the SGL and SGL with RSR (Fig. 4c).
The ESS for β1 (forest) was 35 for the SGLMM, 41 for the SGLMM with RSR, 463 for
the SGL, 495 for the SGL with RSR, and 75 for the NS model. The required time to obtain
12,000 MCMC samples for the ESS calculations was 562, 617, 5703, 5759, and 56s for the
SGLMM, SGL, SGLMM with RSR, SGL with RSR, and NS models, respectively (Web
Appendix D).

5. SIMULATED DATA EXAMPLES

Based on the two examples above, we made three general observations: (1) confounding,
and the scale at which it occurs, can be detected bymonitoring the correlation between eigen
basis vectors and covariates as in (16); (2) in the presence of confounding, the SGL shrinks
regression coefficients, and in some cases, the posterior distribution of the log score; and (3)
the SGL increases the ESS of regression coefficients relative to the SGLMM and SGLMM
with RSR. To support these three findings, we simulated data that are representative of our
examples. We simulated data from the model:

y|γ0,β, η ∼ Bernoulli (�(γ0 + Xβ + η))

η ∼ N
(
0, σ 2

ηC(φ)
)

, (19)

where y is an n × 1 vector of binary observations, � is the standard normal cumulative
distribution function,X is an n×3 vector of covariates that is generated by adding Gaussian
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Figure 4. Posterior expectation (open circles) and 95% equal-tail credible intervals for the forest covariate (a)
estimated from a spatial probit model (SGLMM), spatial group lasso probit model (SGL), spatial models with
random effects restricted to be orthogonal to the covariates (SGLMM RSR and SGL RSR, respectively; note the
estimated regression coefficient under RSR is δ j from (15)), and a model that did not include a spatial random
effect (NS). b The coefficient of determination between the forest covariate and 48 basis vectors using the SGLMM
(open circles) and SGL (asterisk). c The out-of-sample log score for each method.

y x1 x2 x3

−1
0
1
2
3

η

Figure 5. Simulated binary response (y) that depends on three covariates (x1, x2, x3), and a spatial random effect
η at n = 1600 location on the unit square (note that β1 = 1, β2 = 0, and β3 = 0).

distributed errors to the “east–west” gradient (x1), “north–south” gradient (x2), and the
“northeast–southwest” gradient (x3). The vector η is the spatial random effect generated

from a Gaussian distribution with an exponential correlation function (i.e., ci j (φ) = e− di j
φ

where ci j (φ) is the element in the i th row and j th column of C(φ) in (19) and di j is the
Euclidean distance in between locations i and j). The covariates were designed to result in
confounding with the spatial random effect at a broad spatial scale; thus, we expect that the
leading eigen vector(s) will be correlated with x1, x2, and x3 (Fig. 5).We set γ0 = 0, β1 = 1,
β2 = 0, β3 = 0, σ 2

x = 0.25, σ 2
η = 1, and φ = 0.25 and generated data at 1600 equally

spaced locations on the unit square (Fig. 5). We randomly selected 500 observations that
were used to fit the models and the remaining 1100 observations to evaluate the predictive
ability of the models.

For the SGLMM and SGL, we used the following priors: γ0 ∼ N (0, 10) and
φ ∼ uniform(0, 1). For the SGLMM, we used the priors: β ∼ N (0, 10I) and 1

σ 2
η

∼
gamma(2.1, 1.1) (as in previous examples, E(σ 2

η ) = 1 and Var(σ 2
η ) = 10). For the SGL,

we used the prior λ2 ∼ gamma (0.1, 0.1) (note, E(λ2) = 1 and Var(λ2) = 10). For the NS
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model, we used the priors γ0 ∼ N (0, 10) and β ∼ N (0, 10I). For our simulation experi-
ment, we used a single data set to present detailed results and an additional 10 simulated data
sets to assess sampling variability. Using a single simulated data set, we fit the SGLMM,
the SGLMM with RSR, the SGL, the SGL with RSR, and the NS model. We report the
posterior mean and 95% CIs for β1, β2, β3 and the out-of-sample log score, the coefficient
of determination (16) between the spatial covariate and 20 eigenvectors with the largest
eigenvalues, and the ESS for β1. Using the 10 additional simulated data sets, we fit the
SGLMM and the SGL models. For the 10 simulated data sets, we report the percentage of
simulations for which the mean log score was greatest for each model, the average ESS for
β1, β2, and β3, and the average maximum coefficient of determination between the spatial
covariate and all eigenvectors. For all models, we obtained 12,000 MCMC samples and
discarded the first 2000. More details related to the simulated data and the code required to
reproduce our results can be found in Web Appendix E.

Our simulated data resulted in a spatial random effect that was smooth and had leading
eigenvectors that were correlated with all three covariates (Fig. 6a). For the single data
example, the posterior mean for β1 was larger than the true value (β1 = 1) and the 95% CI
contained the true value for the SGLMM and the NS model (Fig. 6a). The posterior mean
of β1 obtained from the SGL and SGL with RSR was always closer to zero, and the 95%
CIs were narrower when compared to the SGLMM and SGLMM with RSR (Fig. 6a). The
posterior means of β2 and β3 were close to zero for all methods, and the 95% CI contained
the true values (β2 = 0 and β3 = 0; Fig. 6c, e). The posterior mean of the out-of-sample
log score was higher and the 95% CI were narrower for the SGL and SGL with RSR, when
compared to the other methods. The ESS for β1 was highest for the SGL and SGLwith RSR
(Fig. 6d). For the 10 additional simulated data sets, the SGL had the highest mean log score
in 20% of the simulated data sets. The average ESS for β1, β2, and β3 was 450, 855, and
977 for the SGLMM and 2327, 3447, and 4003 for the SGL model. The average maximum
coefficient of determination between the spatial covariate and all eigenvectors was 0.39 for
both the SGLMM and SGL. In general, results from the simulation support our findings
from the two data examples.

6. DISCUSSION

Several studies have developed variants of the lasso for spatial and spatio-temporal data,
but these methods were implemented under a penalized likelihood paradigm for the linear
mixed model and focused on covariance estimation (Zhu and Liu 2009; Hsu et al. 2012)
or model selection (Huang et al. 2010; Zhu et al. 2010). We demonstrated that the group
lasso can be easily implemented for binary data within a Bayesian framework, but the group
lasso prior can be used with any SGLMM. Our results show that the group lasso prior can
be useful for regularizing spatial models when multicollinearity among spatially indexed
and structured covariates and random effects occurs. In many applications, the SGLMM
can be computationally expensive to implement when the sample size is large (Wikle 2010).
When implementing the SGLMM using MCMC methods, efficient sampling that results
in a large ESS can linearly decrease the computational burden of spatial models. Several



56 T. J. Hefley et al.

0.
4

0.
8

1.
2

1.
6

β 1

(a)

−
0.

4
−

0.
2

0.
0

0.
2

β 2

(c)

0.
0

0.
2

0.
4

β 3

(e)

−
64

0
−

60
0

−
56

0

lo
g[
y o

o
s|
y ]

S
G

LM
M

S
G

L

S
G

LM
M

 R
S

R

S
G

L 
R

S
R

N
S

(g)

5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

E
(R

2 |y
)

*

*

*

* * * * * * * * * * * * * * * * *

(b)

Eigen vector

5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

E
(R

2 |y
)

*

* *

* * * * * * * * * * * * * * * * *

(d)

Eigen vector

5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

E
(R

2 | y
)

*

*

*

*

* * * * * * * * * * * * * * * *

(f)

Eigen vector

50
0

10
00

20
00

E
ffe

ct
iv

e 
sa

m
pl

e 
si

ze
 (
β 1

)

S
G

LM
M

S
G

L

S
G

LM
M

 R
S

R

S
G

L 
R

S
R

N
S

(h)

Figure 6. Results from five models fit to simulated data. Shown are the posterior expectations (open circles)
and 95% equal-tail credible intervals for the three regression coefficient (a, c, e; the true value is represented by
the horizontal line) and the out-of-sample log score (g). Also shown is the posterior mean of the coefficient of
determination between the covariates (x1, x2, and x3) and the first 20 eigen basis vectors (b, d, e) for the spatial
probit model (SGLMM; open circles) and the spatial group lasso probit model (SGL; asterisk) and the effective
sample size for β1 from 10,000MCMC samples (h) estimated from the SGLMM, SGL, spatial models with random
effects restricted to be orthogonal to the covariates (SGLMM RSR and SGL RSR, respectively), and a model that
did not include a spatial random effect (NS). Note the estimated regression coefficient under RSR is δ j from (15).
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studies have demonstrated that RSR results in more efficient MCMC sampling and our
results corroborate this finding. In addition, our results show that regularization via the SGL
results in computational gains in terms of ESS for both the standard and RSR models. In
some situations, the SGL results in an ESS for regression coefficients that is as large as the
model that did not have a spatial random effect.

In general, the SGL shrinks the regression coefficients, the spatial random effects, and
predicted quantities (e.g., compare Fig. 1c, d). As a consequence, the SGL may result in
a less diffuse posterior distribution of the log score with higher posterior expectation (i.e.,
better predictive accuracy), when compared to the SGLMM (e.g., Fig. 4c). Although not
demonstrated in our examples, the parameter λ can be tuned to yield the optimal predictive
model,which could result in the SGLhaving a higher predictive abilitywhen compared to the
SGLMM (e.g., using n-fold cross-validation; Park and Casella 2008; Kyung et al. 2010). In
some situations, based solely on the predictive score, the SGLMM and SGL perform similar
to the model that did not have a spatial random effect (e.g., example 1 in Fig. 2d). When
collinearity among covariates and the spatial random effect occurs, the observed increase in
predictive ability by including a spatial random effect (or the converse, spatial covariates) is
attenuated; in extreme cases, the spatial covariate (or random effect) may explain most (or
all) of the variability in the response. Aswith extreme cases ofmulticollinearity in traditional
regression models, it is unlikely that regression coefficients are identifiable without prior
knowledge of which covariates or basis vectors to exclude from the SGLMM.

Our results show that confounding can be detected bymonitoring the correlation between
covariates and the basis vectors associated with the spatial effect as in (16) and can help
identify when the assumptions of the SGLMM are satisfied (i.e., |r(x j , zk)| ≈ 0, ∀ j, k in
(16)). Obtaining reliable inference from the SGLMM is challenging when the covariates
are correlated with the spatial random effect (Clayton et al. 1993; Reich et al. 2006; Hodges
and Reich 2010; Paciorek 2010; Hughes and Haran 2013; Hanks et al. 2015; Murakami and
Griffith 2015). In applied contexts, there is little guidance on when inference from the stan-
dard SGLMM and SGLMM with RSR is desirable (Hodges and Reich 2010; Hooten et al.
2013; Hanks et al. 2015; Schmidt et al. 2015). If researchers were to judge the significance
of regression coefficients based on 95% CIs that did not contain zero, then choosing to use
RSR could alter inference (Fig. 2b). We showed that monitoring the correlation between
covariates and basis vectors associated with the spatial random effect can help identify when
multicollinearitymay be a problem, but making reliable inference remains an open question.
Results from our simulated data set demonstrate the issue related to inference (Fig. 6b). In
a separate simulation study, we did not find generalizable advice for when one prior might
be preferred over others with respect to inference about regression coefficients. In future
work, an examination of the tuning parameter for the SGL may have desirable inferential
properties for regression coefficients, such as nominal coverage probability (e.g., Gunes and
Bondell 2012).
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