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Abstract

Inferring the factors responsible for declines in abundance is a prerequisite to preventing the
extinction of wild populations. Many of the policies and programmes intended to prevent extinc-
tions operate on the assumption that the factors driving the decline of a population can be deter-
mined. Exogenous factors that cause declines in abundance can be statistically confounded with
endogenous factors such as density dependence. To demonstrate the potential for confounding,
we used an experiment where replicated populations were driven to extinction by gradually
manipulating habitat quality. In many of the replicated populations, habitat quality and density
dependence were confounded, which obscured causal inference. Our results show that confound-
ing is likely to occur when the exogenous factors that are driving the decline change gradually
over time. Our study has direct implications for wild populations, because many factors that could
drive a population to extinction change gradually through time.
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INTRODUCTION

Determining the factors that cause a decline in abundance is
central to preventing extinction and protecting biodiversity
(Caughley 1994). In some populations, the factors driving the
decline in abundance might change gradually (smoothly) over
time and can be highly collinear with endogenous population
processes. When endogenous factors that influence future val-
ues of the observed response are highly correlated with exoge-
nous factors, the process is said to be temporally confounded.
When temporal confounding occurs, identifying causal relation-
ships can be challenging (Fieberg & Ditmer 2012). In this study,
we explore the challenges associated with determining the cause
of a decline in abundance from replicated populations that were
driven to extinction by gradually manipulating habitat quality.
In the experiment conducted by Drake & Griffen (2010), 60

populations of Daphnia magna were reared in microcosms. Of
the 60 populations, 30 were assigned to a control group and
30 were assigned to a deteriorating environment treatment by
gradually reducing the amount of food until each population
was driven extinct. For many natural populations, the factors
driving the decline are unknown and must be inferred using
models fit to a time series from a single population. The fol-
lowing example relies on a time series from a single popula-
tion (I10) to demonstrate that factors that are causally related
to the decline in abundance can be difficult to infer for a sin-
gle population (Fig. 1a).
A preliminary analysis might use linear regression to deter-

mine the relationship between the amount of food and the
log-transformed population abundance (Fig. 1b; Ives 2015).
Using linear regression, the estimated coefficient is 2.33

([1.73, 2.92]; 95% confidence interval (CI)). As expected, the
decline in abundance can be linked to the decreasing food
levels. But, due to the serial dependence of population dynam-
ics, there is correlation among the residuals obtained from the
regression model (Fig. 1c). To account for autocorrelation, we
fit a linear regression model that accommodates correlated
errors. The correlated errors regression model resulted in an
estimated effect of 0.36, which was no longer significantly dif-
ferent from zero ([�1.34, 2.05]; 95% CI). Evidently, the causal
effect of environmental deterioration cannot be separated
from the inevitable serial dependence in the population
dynamical process.
For many populations, the factors causing the decline in

abundance are unknown and inference might be based on the
correlated errors model. As this example shows, the observed
shift in coefficient estimates between the linear regression
model and the correlated errors regression model is a symp-
tom of confounding, which can mislead inference (e.g. K€uhn
2007; Bini et al. 2009; Hodges & Reich 2010; Fieberg & Dit-
mer 2012). In this paper, we present the experimental data in
detail and compare the inference obtained from several regres-
sion-based and population dynamics models. We then conduct
a simulation study and conclude with a discussion that sum-
marises important findings.

MATERIALS AND METHODS

Experimental data

The data used in our study were described by Drake & Grif-
fen (2010) and are available from the Dryad Digital
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Repository: http://datadryad.org/resource/doi:10.5061/dryad.
q3p64. The experiment consisted of 60 populations of D.
magna reared in microcosms and randomly assigned to deteri-
orating and constant treatment groups. Initially, populations
were fed 800 lL of the food resource each day (freeze-dried
blue green alga). On day 154, populations in the deteriorating
treatment were placed on a regimen of declining food (reduc-
tion of 25%), with changes on days 154, 182, 210, 238, 266,
294, 329, 357, 385 and 413. The experiment was ended when
the last population in the deteriorating treatment group went
extinct on day 416. Each population was exhaustively counted
in triplicate once per week. Observations before day 105 were
excluded from our analyses to reduce effects of transient fluc-
tuations (Drake & Griffen 2010). In this study, we used
counts that were greater than zero and we scaled the food
level so that a value of one represents no environmental dete-
rioration (a food level of 800 lL day�1) and a value of zero
represents an unsuitable environment (0 lL day�1).

Regression models

Here we explain the technical details of temporal confounding
and describe the two regression models that were referred in

the introduction and elsewhere in the paper. First, we used
the simple linear regression model

log(Ntþ1Þ ¼ b0 þ b1xt þ et; ð1Þ
where Ntþ1 is the population abundance on week t + 1
(t = 1, 2, . . ., T), xt is the amount of food on week t, and et is
the residual error (et � Nð0; r2

eÞ). To emulate the common
scenario where only data from a single population are avail-
able, we fit a simple linear regression model to the counts
from population I10 and obtained b̂1 ¼ 2:33 and a 95% CI
of (1.73, 2.91). To account for the autocorrelated residuals
(Table 1), let

e�N 0;r2e Cð/Þ
� �

; ð2Þ
where the vector e � ½e1; e2; . . .; eT�0 and C(/) is a correlation
matrix with the parameter /. Assuming a first-order autoregres-
sive (AR(1)) correlation matrix, we obtained b̂1 ¼ 0:36 and a
95% CI of [�1.34, 2.05] (Pinheiro & Bates 2000, p. 236).
To understand why the estimated coefficients are different

between the two regression models, we use a truncated Kar-
hunen-Lo�eve expansion (Cressie & Wikle 2011, pp. 266–269)
and write the linear regression model with correlated residual
errors as
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Figure 1 Example time series of the number of Daphnia magna (Nt; panel a; blue line) from the experiment conducted by Drake & Griffen (2010) which

subjected 30 populations to reduced food level to simulate environmental deterioration. The food level covariate (xt; subplot in panel a; red line) ranged

from 1 (full food level) to 0 (no food) and resulted in the decline and extinction of the population. Panel b shows a simple linear regression model (eqn 1;

black line) used to determine the relationship between the amount of food and the log-transformed population abundance (blue dots). Panel c shows

autocorrelation in the residuals (green dots) obtained from fitting eqn 1 to the data. Panel d shows a scree plot and panel e shows the coefficient of

determination (R2) for the food level covariate and eigenvectors obtained from a spectral decomposition of the correlation matrix (eqn 2). Panel f shows

the food level covariate (red line) and the second leading eigenvector (black line), which were highly correlated (R2 ¼ 0:95).
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log(Ntþ1Þ ¼ b0 þ b1xt þ z0tð/Þa ð3Þ
where z0tð/Þ is the tth row of the matrix of eigenvectors (Z(/))
obtained from a spectral decomposition of the correlation
matrix C(/) and a is a vector of basis coefficients (Hefley
et al. 2016). The eigenvectors in Z(/) are basis vectors that
model the temporal correlation at independent frequencies,
and the basis coefficients a are random effects
(a�Nð0;r2

eKð/ÞÞ, where Λ(/) is a diagonal matrix of corre-
sponding eigenvalues (Hodges & Reich 2010; Hefley et al.
2016). The numerical value of the basis coefficients (a) deter-
mines the contribution of each frequency of the temporal cor-
relation (column of Z(/)), similar to how regression
coefficients (e.g. b1) determine the influence of covariates. The
eigenvalues (diagonal elements of Λ(/)) determine the relative
amount of shrinkage (i.e. Regularization; Hooten & Hobbs
2015) of the basis coefficients (Fig. 1d; Hodges & Reich 2010;
Hefley et al. 2016).
For population I10, the coefficient of determination (R2)

between the food level covariate and the second leading eigen-
vector (i.e., second column of Z(/)) is R2 ¼ 0:95 (Fig. 1e, f;
Table 1). As with traditional regression models, severe multi-
collinearity can cause coefficient estimates to be unstable and
change when a correlated factor is added or removed from
the model (Table 1; Hodges & Reich 2010; Dormann et al.
2013).
The regression models are not explicitly based on any

underlying theory relating to population growth or decline
(e.g. Abrams 2002). One hypothesis is that temporal con-
founding is related to model misspecification and that the
impacts could be alleviated by fitting a model that explicitly
incorporates endogenous population dynamics.

Population dynamics models

A model that explicitly captures endogenous density-
dependent population dynamics is the Ricker model
(Ricker 1954)

Ntþ1 ¼ Nte
r 1�Nt

Kð Þþet ; ð4Þ
where Nt is the population abundance at time t
(t = 1, 2, . . ., T), r is the intrinsic growth rate, K is the equi-
librium population size, and et is a stochastic perturbation

(et � Nð0; r2
eÞ). Covariates are routinely included in popula-

tion models like eqn 4 to attribute variability in population
abundance to exogenous factors (e.g. Jacobson et al. 2004;
Knape & de Valpine 2011; Hefley et al. 2013b; Roy et al. in
press). We allow the growth rate (r) and equilibrium popula-
tion size (K) to depend on the food level covariate ðxtÞ

Ntþ1 ¼ Nte
rðxtÞ 1� Nt

KðxtÞ

� �
þet

; ð5Þ
where rðxtÞ and KðxtÞ are unknown functions of the covariate
xt.
The potential for confounding is not obvious for the Ricker

model in eqn 5. To make the potential for confounding obvi-
ous, let rðxtÞ ¼ a1xt, KðxtÞ ¼ c1xt, h � � a1

c1
, and write eqn 5

as

Ntþ1 ¼ Nte
a1xtþhNtþet : ð6Þ

For population I10, the coefficient of determination between
xt and Nt is R

2 ¼ 0:87, which is sufficiently high to raise con-
cern (Table 1; Dormann et al. 2013). We fit eqn 6 to popula-
tion I10 and obtained the estimates â1 ¼ 0:40 (�0.56, 1.37)
and ĉ1 ¼ 37:3 (15.2, 59.4), which suggests that effect of food
level on rðxtÞ is not significantly different from zero. For pop-
ulation I10, the inference obtained from eqn 6 suggests that
the population decline is driven by a decrease in the equilib-
rium population size (note that ĥ ¼ �0:01 ½�0:03; 0:01�).
The Ricker model in eqn 6 assumes that both rðxtÞ and

KðxtÞ are positive (or negative) for all food levels greater than
zero. A more realistic assumption would allow for the possi-
bility that rðxtÞ or KðxtÞ could be less than zero before com-
plete habitat destruction (i.e. xt ¼ 0), thus allowing for
dynamics such as a transcritical bifurcation (i.e. rðxtÞ\ 0
when KðxtÞ [ 0; Drake & Griffen 2010; Hefley et al. 2013b).
A simple specification of the Ricker model that allows for
such dynamics is

rðxtÞ ¼ a0 þ a1xt ð7Þ
KðxtÞ ¼ c0 þ c1xt ð8Þ

We fit the Ricker model (assuming eqns 7 and 8) and
obtained â1 ¼ 1:77 (0.46, 3.17) and ĉ1 ¼ 34:0 (�190.5, 65.7).
Thus, it would appear that the effect of environmental deteri-
oration influences only the growth rate rðxtÞ, but the 95% CI

Table 1 Issues, diagnostics, and effect of temporal confounding on models used to determine the cause of declines in abundance for our study

Model Issue Diagnostic Effect

Linear regression (eqn 1) Correlated residuals Residual plots Bias

Correlated errors (eqn 2) Covariates

correlated

with eigenvectors

Calculate correlation

between covariate

and eigenvectors

High variance, bias

for extreme cases

Ricker (eqns 5–8) Correlation

between density-dependent

effect and covariates

Calculate correlation High variance

Allee effect (eqn 9) Distinguishing decline due to

Allee effect from an

endogenous factor

Calculate model

selection statistic

Incorrect inference

Beverton–Holt (eqn S1) Correlation between

density-dependent effect

and covariates

Calculate correlation High variance
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for ĉ1 in eqn 8 is suspiciously wide; likely a result of the high
correlation between xt and Nt. Compared to the Ricker model
in eqn 6, the second-order Akaike information criterion
(AICc; Hurvich & Tsai 1989) score suggests that the relation-
ships in eqns 7 and 8 are preferred (AICc = 24.0 for eqn 6 vs.
AICc = 18.4 for eqns 7 and 8).
The Ricker model in eqn 5 lacks a mechanism for a purely

endogenous driver of population decline. To test if declines in
abundance caused solely by endogenous factors are distin-
guishable from exogenous factors, we use a Ricker model with
an Allee effect

Ntþ1 ¼ Nte
r 1�Nt

Kð Þ Nt�c
Kð Þþet ; ð9Þ

where c is the critical point (unstable equilibrium population
size). We fit eqn 9 and obtained an AICc score of 19.1. Thus,
it would appear that the effect of food levels are indistinguish-
able from a purely endogenous driver such as the Allee effect
(cf., AICc score from eqn 9 to AICc = 18.4 for 7 and 8; Burn-
ham & Anderson 2002).

State-space models

Each population in the experiment conducted by Drake & Grif-
fen (2010) was counted in triplicate weekly and all replicated
counts from the same population agreed, leading to the conclu-
sion that counts were without error. For many studies and
monitoring programmes, it is not feasible to count the number
of individuals within a population without error. Statistical
inference commonly uses state-space models for time series data
that includes measurement errors (e.g. de Valpine & Hastings
2002; Clark & Bjørnstad 2004; Dennis et al. 2006; Newman
et al. 2006; Dennis & Ponciano 2014).
The potential for temporal confounding can be obscured

because the observed population counts might be less corre-
lated with the covariate when compared to the true abun-
dance because the observational errors will introduce
additional random variation into the counts. To demonstrate,
we use the weekly counts from population I10 and simulate
detection error using

yitjNt � binomial Nt; pð Þ; ð10Þ
where yit is the ith imperfect count on week t, Nt is the true
population count, and p is the probability of detection. For
each weekly count, we simulated three imperfect counts (i.e.,
i = 1, 2, 3, ∀t) with p = 0.25 (Fig. S1). As mentioned, the
coefficient of determination for the covariate xt and Nt for
population I10 is R2 ¼ 0:87, but the R2 for the three imper-
fect counts and the covariate is 0.66, 0.69, and 0.66. For field
studies, the true abundance Nt is unknown and must be esti-
mated. One approach to estimate the true abundance and
unknown parameters in the Ricker model is to formulate a
Bayesian state-space model using the N-mixture framework
from Royle (2004) (Hefley et al. 2013a). For this example, we
assume that the underlying process model is the Ricker model
with linear changes in both rðxtÞ and KðxtÞ (eqns 7 and 8; see
Appendix S1 for full model specification). The posterior mean
of the coefficient of determination (R2) for the covariate xt
and the estimated abundance Nt was 0.90 [0.69, 0.96] (95%

credible intervals in brackets). The mean of the posterior dis-
tribution for a1 and c1 was �0.06 [�1.68, 1.42] and 47.0
[18.1, 79.8], respectively.

Full analysis of data from single populations

We analysed all 30 replicates from the deteriorating environ-
ment treatment group individually to assess the prevalence of
temporal confounding in data from single populations. To
estimate the effect of declining food levels, we fit the simple
linear regression model (eqn 1), the AR(1) correlated errors
model (eqn 2), and the Ricker model (eqn 5) assuming linear
declines in both rðxtÞ and KðxtÞ (eqns 7 and 8). We also fit a
Beverton–Holt model (eqn S1) with linear declines in the both
growth rate and equilibrium population size to determine if
the issues associated with temporal confounding occur in
another model of population dynamics (Beverton & Holt
1957). We report the coefficient estimates and 95% CIs for
b1, a1, and c1 as well as the mean, minimum, and maximum
R2 for population abundance (Nt) and food levels (xt).
To determine if the cause of population decline can be dis-

tinguished from an Allee effect, we fit the Ricker model with
an Allee effect (eqn 9) to each population and compared it to
the Ricker model with linear declines in both rðxtÞ and KðxtÞ
(eqns 7 and 8) using AICc. We report the number of popula-
tions for which: (1) the Ricker model with an Allee effect is
the best model; (2) the Ricker model with linear declines in
rðxtÞ and KðxtÞ is the best model; and (3) neither model is best
model. The two models differ by one parameter. Accordingly
we define a model as best if it has an AICc score that is at
least two units less than the model it is being compared to
(Burnham & Anderson 2002).

Combined analysis of all populations

To determine if replication can alleviate temporal confound-
ing, we conducted a combined analysis of all 60 replicates
from the control and deteriorating environment treatment
groups. We fit multivariate specifications of the simple linear
regression model (eqn S2), the AR(1) correlated errors model
(eqn S3), and the Ricker model (eqn S4; see Appendix S1 for
complete model descriptions). For the Ricker model, we
assumed linear declines in both rðxtÞ and KðxtÞ (eqns 7 and
8). We report the coefficient estimates and 95% CIs for b1,
a1, and c1. We also report the R2 for population abundance
(Nt) and food levels (xt) and the maximum R2 for the eigen-
vectors and xt. To determine if replication can help distin-
guish if the cause of decline is a result of purely endogenous
dynamics or exogenous factors, we fit a multivariate specifica-
tion of the Ricker model with an Allee effect (eqn S5) and
compared it to the Ricker model with linear declines in both
rðxtÞ and KðxtÞ (eqns 7 and 8) using AICc.

Simulation 1

We conducted a simulation study to better understand when
the cause of a population decline can be correctly inferred.
We simulated data from the Ricker model in eqn 5, but
assumed a Poisson distribution. We allowed rðxtÞ and KðxtÞ

© 2016 John Wiley & Sons Ltd/CNRS
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to decline linearly (as in eqns 7 and 8) and we used the values
a0 ¼ �0:03, a1 ¼ 0:3, c0 ¼ �4; and c1 ¼ 40. Each popula-
tion was started from a realisation drawn from a Poisson dis-
tribution with an expected value of 40 individuals and was
propagated until extinction (Fig. 3). We used four scenarios
where the covariate xt had a geometric decline with varying
levels of random variation added (inset plots in Fig. 3). A
geometric decline in the covariate was used because it mimics
the treatment applied in the D. magna experimental data.
Increasing levels of random variation in the covariate was
used to decrease the correlation between xt and Nt, which was
needed to determine the values of R2 for which reliable infer-
ence can be obtained. For each scenario, we simulated 1000
data sets and retained counts that were greater than zero for
model fitting.
To determine if the effect of a covariate can be inferred

from the simulated data, we used the two regression models
(eqns 1 and 2) and the Ricker model (eqn 5) with linear decli-
nes in rðxtÞ and KðxtÞ (eqns 7 and 8) and with an Allee effect
(eqn 9). We assessed relative bias, coverage probability, and
power for coefficient estimates as a function of R2 between xt
and Nt, after controlling for the length of each time series
(Appendix S1). We define relative bias as the difference
between the coefficient estimate and the true value divided by
the true value (e.g. â1 � a1

a1
; note that we assumed that the true

value was a1 ¼ 0:3 for b̂1 in eqns 1 and 2). We define cover-
age probability as the proportion of the simulated data sets
for which the 95% CI contained the true value and power as
the proportion of the simulated data sets for which the 95%
CI did not include a value less than zero (i.e. the probability
we would find a statistically significant positive effect of the
covariate xt). For each simulated data set, we calculated the
AICc scores to compare the Ricker model with an endoge-
nous driver (eqn 5) and the Ricker model with an Allee effect
(eqn 9). We report the percentage of simulations for which:
(1) the Ricker model with an Allee effect is the best model,
(2) the Ricker model with linear declines in rðxtÞ and KðxtÞ is
the best model, and (3) neither model is best model. For the
purposes of model comparisons, we define a model as best if
it has an AICc score that is at least two units less than the
model it is being compared to (Burnham & Anderson 2002).

Simulation 2

For the D. magna experimental data, the factor driving the
decline is known. In some studies, multiple factors will be
considered and model selection techniques might be used to
determine which factors should be included in the models. To
assess the impact of multiple drivers, we simulated data sets
from eqn 5, using the same values as in the first simulation,
but with the addition of an extra covariate zt. We simulated
4000 data sets such that zt had no influence on the population
(i.e. a2 ¼ 0 and c2 ¼ 0, where a2 and c2 are the coefficient
associated with the covariate zt similar to eqns 7 and 8;
Fig. S2) and 4000 data sets where both xt and zt drove the
population decline (a1 ¼ 0:15, a2 ¼ 0:15, c1 ¼ 20, and
c2 ¼ 20; Fig. S3). For each simulated data set, we calculated
the AICc scores for four variations of the Ricker model with:
(1) constant r and K; (2) linear declines in rðxtÞ and KðxtÞ that

depended on xt; (3) linear declines in rðztÞ and KðztÞ that
depended on zt; and (4) linear declines in rðxt; ztÞ and
Kðxt; ztÞ that depended on the covariates xt and zt. We report
the percentage of simulated data sets for which the true model
has the lowest AICc scores. For all simulated data sets, xt
and zt had a geometric decline with the highest level of ran-
dom variation added in simulation 1 (see Figs 3d, S2 and S3).

Simulation 3

In many studies, it is not known if the population will be dri-
ven to extinction by a covariate and type I error is a concern
(i.e. falsely inferring that a covariate or some other factor is
causing the decline). To address this concern, we simulated
data from eqn 5, but used values that resulted in a constant
growth rate and equilibrium population size (a0 ¼ 0:3,
a1 ¼ 0, c0 ¼ 40; and c1 ¼ 0) We propagated each simulated
population for 100 time steps assuming a geometric decline in
the covariate and simulated 4000 data sets (see Fig. S4 for
example of time series). We then fit the Ricker model that
allowed for linear declines in rðxtÞ and KðxtÞ (eqn 5 assuming
eqns 7 and 8). We report the percentage of simulations for
which the lower limit of the 95% CIs for a1 or c1 were greater
than zero (i.e. a statistically significant positive effect of the
covariate was detected) using the first 10, 20, 40, and all 100
observations from each simulated time series.

Simulation 4

To address the concern of model selection, we simulated data
from a Ricker model with an Allee effect (eqn 9, but with
Poisson stochasticity). We used the values r = 1, K = 45, and
c = 25, and propagated each simulated population until
extinction. For model fitting, we used the 40 counts that were
produced prior to extinction or the entire time series in the
event that the population went extinct before 40 time steps.
For each population, we assumed a geometric decline in the
covariate for the 40 time steps prior to extinction (see Fig. S5
for example of time series). We fit the Ricker model that
allowed for linear declines in rðxtÞ and KðxtÞ (eqn 5 assuming
eqn 7 and 8) and the Ricker model with an Allee effect to the
simulated data (eqn 9). We report the percentage of simula-
tions for which: (1) the Ricker model with an Allee effect is
the best model; (2) the Ricker model with linear declines in
rðxtÞ and KðxtÞ is the best model; and (3) neither model is the
best model.

RESULTS

Full analysis of data from single populations

Using the linear regression model, the estimated effect of food
level was positive for all 30 populations and the 95% CIs con-
tained zero for only one of the populations (Fig. 2a). Using
the correlated errors models, the estimated effect of food level
was positive for all 30 populations and the 95% CIs contained
zero for six of the populations (Fig. 2b). Using the Ricker
population model (eqn 5), the estimated effect of food level
on the growth rate (a1; eqn 7) was positive for 17 of the

© 2016 John Wiley & Sons Ltd/CNRS

Letter Population decline 1357



populations and the 95% CIs contained zero for 28 of the
populations (Fig. 2c) while the estimated effect of food level
on the equilibrium population size (c1; eqn 8) was positive for
all 30 populations and the 95% CIs contained zero for seven
of the populations (Fig. 2d). Similar results were obtained for
the Beverton–Holt model (Fig. 2e, f). The mean, minimum,
and maximum R2 for population abundance (Nt) and food
levels (xt) was 0.75, 0.12, and 0.92, respectively. Comparing
the Ricker model where food level controlled the growth rate
and equilibrium population size (eqn 5 with eqns eqn 7 and 8)
to a Ricker model where only an endogenous Allee effect
could cause extinction (eqn 9), we found that the model with

an Allee effect was selected as the best model for only a single
population. For 22 of the populations, the Ricker model
where food levels drove the extinction was selected as best.
For the remaining seven populations, the data were not suffi-
cient to determine which model was the best.

Combined analysis of all populations

Using all 60 replicates from the control and deteriorating
environment treatment groups, all models resulted in a posi-
tive and statistically significant effect of food level. Using the
simple linear regression model, the estimated effect of food
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Figure 2 Regression coefficients estimates (black dots) and 95% confidence intervals (vertical lines) for the effect of the food level covariate for all 30

populations in the environmental deterioration treatment group. Estimates and 95% confidence intervals were obtained from a simple linear regression

model (panel a; eqn 1), a correlated errors model (panel b; eqn 2), a Ricker model (eqn 5) with linear declines in the growth rate (rðxtÞ ¼ a0 þ a1xt; panel
c) and equilibrium population size (KðxtÞ ¼ c0 þ c1xt; panel d), and a Beverton–Holt model (eqn S1) with linear declines in the growth rate

(RðxtÞ ¼ a0 þ a1xt; panel e) and equilibrium population size (KðxtÞ ¼ c0 þ c1xt; panel f). Note that the Beverton–Holt model did not converge for

populations 15, 17 and 21.
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level was b̂1 ¼ 2:23 [2.14, 2.33]. Using the correlated errors
model, the estimated effect of food level was b̂1 ¼ 2:26
[2.02, 2.50] and the maximum R2 for the eigenvectors and the
food level covariate was 0.08. Using the Ricker population
model, the estimated effect of food level on the growth rate
(a1; eqn 7) was 0.45 [0.37, 0.53], the estimated effect on the
equilibrium population size (c1; eqn 8) was 64.1 [52.8, 75.5],
and the AICc score was 2652. The AICc score for the Ricker
model with an Allee effect (eqn 9) was 2765. The R2 for the
population abundance (Nt) and food levels (xt) was 0.35.

Simulation experiments

A high R2 between the covariate xt and the population size
Nt was produced in the first simulation. When no random
variation was added to the covariate, the average R2 from the
1000 simulated data sets was 0.88 (Fig. 3a). For the three sce-
narios with increasing levels of random variation added to the
covariate, the average R2 was 0.83, 0.76 and 0.61 (Fig. 3b, c,
d). The average length of the time series for all four scenarios
was 40.7 time steps. We obtained parameter estimates for
3919 of the 4000 simulated data sets (see Appendix S1 for
details on convergence). When a simple linear regression
model was fit to the simulated data, the estimated effect had a
positive bias when R2 was greater than zero and the relative
magnitude of the bias increased as R2 increased (Fig. 4a and
5a). The positive bias that occurred when using linear regres-
sion resulted in low coverage probabilities for the 95% CIs,

but a high power when R2 [ 0:2 (Fig. 4 b, c). When a corre-
lated errors regression model was fit to the simulated data,
the estimated effect was less than the true value when
R2 \ 0:6 and greater than the true value when R2 [ 0:6 (Figs
4a and 5b). When using the correlated errors model, the cov-
erage probability for the 95% CIs was close to 0.95 when
R2 \ 0:6 and decreased abruptly when R2 [ 0:6. When the
Ricker model was fit to the simulated data, there was minimal
bias and coverage probabilities were close to 0.95 regardless
of the value of R2 for the effect of the covariate on the equi-
librium population size (c1; eqn 8), however, there was bias
and a decline in coverage probability for the growth rate (a1;
eqn 7) as R2 increased (Fig. 4a, b). When using the Ricker
model, the width of the 95% CIs for the growth rate (a1)
increased dramatically as R2 increased (Fig. 5c), which
resulted in a decrease in power (Fig. 4c). In this simulation
experiment, the correct model (eqn 5) was selected in 50% of
the data sets. The Ricker model with an Allee effect (eqn 9)
was selected in 13% of the simulated data sets and neither
model was selected as best in 37% of the simulated data sets.
In our second simulation experiment, we obtained parame-

ter estimates for 3558 of the simulated data sets when the
population decline was driven by a single factor (xt) and 3618
of the 4000 when the population decline was driven by two
factors (xt and zt). When the population decline was driven
by a single factor (xt), the true model had the lowest AICc
score in 47% of the simulated data sets. When the population
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Figure 3 Time series of the number of individuals (Nt) in a population simulated from a Ricker model that allowed for linear declines in rðxtÞ and KðxtÞ
(eqn 5 assuming eqns 7 and 8). We simulated 1000 data sets from each scenario where the covariate xt (subplots) had a geometric trend with increasing

levels of random variation. The average coefficient of determination (R2) for population abundance Nt and the covariate xt from each scenario was 0.88

(panel a), 0.83 (panel b), 0.76 (panel c) and 0.61 (panel d).
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decline was driven by two factors (xt and zt), the true model
had the lowest AICc score in 18% of the simulated data sets.
In our third simulation experiment, we obtained parameter

estimates for 3836, 3963, 3979 and 3886 of the 4000 simulated
data sets (time series length 10, 20, 40 and 100 respectively).
The lower limit of the 95% CIs for a1 or c1 were greater than
zero (i.e., a statistically significant false-positive effect of the
covariate was detected) in 26, 26, 18 and 13% of the simu-
lated data sets (time series length 10, 20, 40 and 100 respec-
tively).
In our fourth simulation experiment, where a Ricker model

with an Allee effect was used to simulate the data, we
obtained parameter estimates for 3734 simulated data sets.
The correct model (eqn 9) was selected in 71% of the simu-
lated data sets. The Ricker model that allowed for linear
declines in rðxtÞ and KðxtÞ was selected in 12% of the simu-
lated data sets and neither model was selected as best in 17%
of the simulated data sets.

DISCUSSION

Temporal confounding can occur when the factors driving the
decline in abundance change gradually over time. For exam-
ple, in the populations of D. magna, the amount of food
slowly declined over time, while the populations simultane-
ously declined in abundance. This strong feedback generated
dynamics where the endogenous density-dependent factor was
highly correlated with the covariate. Similar to the effects of
multicollinearity, when the endogenous density-dependence
factor is highly correlated with the covariate, coefficient esti-
mates are unstable and confidence intervals are much wider
than what would be obtained under moderate levels of con-
founding (e.g. Fig. 5c; Dormann et al. 2013). In traditional
regression models, high levels of multicollinearity among
covariates can result in statistical inference that is sensitive to
model specification (Dormann et al. 2013). We tested several
different phenomenological regression-based and mechanistic
population dynamics models that could be used to determine
the cause of the decline and found that inference was sensitive
to model specification, even at relatively low levels of con-
founding.
Temporal confounding can be alleviated if replicate popula-

tions are available. Regardless of the method that was used,
we were able to detect a positive and statistically significant
effect of the food level treatment in the combined analysis of
all 60 time series. For the combined analysis, inference from
the Ricker model showed that declining food levels resulted in
both a decline in the equilibrium population size and intrinsic
growth rate. Our results corroborate the experiment of Grif-
fen & Drake (2008) which showed that habitat quantity (vol-
ume of the microcosm environment) and quality (amount of
food) influences the equilibrium population size and intrinsic
growth rate.
The implications of a declining intrinsic growth rate were

explored by Abrams (2002), who argued that small or declin-
ing population size may not warn of impending extinction
thresholds. Based on our results, we recommend that studies
consider explicit population growth models when linking
covariates to declines in abundance. Although phenomenolog-
ical regression-based models might be a reasonable approach
for making statistical inference in some cases, such models do
not capture important dynamics of declining populations (e.g.
Abrams 2002; Drake & Griffen 2010; Hefley et al. 2013b).
Obtaining data from replicate populations may not be feasi-

ble for some studies. In the remainder of this discussion, we
assume that a time series from a single population is all that
is available. In the analysis of the experimental data and the
simulation study, there is a high probability that the influence
of an endogenous covariate can be distinguished from an
Allee effect. For models that capture the dynamics of declin-
ing populations due to an endogenous factor such as declining
food levels, it is likely that both the intrinsic growth rate and
equilibrium population should be allowed to decline as the
population is driven to extinction (Abrams 2002; Drake &
Griffen 2010; Hefley et al. 2013b). From our results, it
appears that the effect of an endogenous factor on the equilib-
rium population size can be inferred with moderate confidence
when temporal confounding is an issue (e.g. Fig. 2d). The

−2

0

2

4

6

B
ia

s

(a) β1 (Eq. 1)
β1 (Eq. 2)
α1 (Eq. 7)
γ1 (Eq. 8)

0.0

0.2

0.4

0.6

0.8

1.0

C
ov

er
ag

e 
pr

ob
ab

ili
ty

(b)

0.0

0.2

0.4

0.6

0.8

1.0

Po
w

er

(c)

0.0 0.2 0.4 0.6 0.8 1.0

R2

Figure 4 The bias (panel b; grey line is at zero), coverage probability

(panel c), and power to detect a statistically significant effect of the

covariate obtained from fitting a linear regression model (eqn 1), a

correlated errors model (eqn 2), and a Ricker model (eqn 5 assuming eqns

7 and 8) depended on the the coefficient of determination (R2) for

population abundance Nt and the covariate xt obtained from 4000

simulated time series (see Fig. 3 for example of time series).

© 2016 John Wiley & Sons Ltd/CNRS

1360 T. J. Hefley et al. Letter



effect of an endogenous factor on the intrinsic growth rate is
difficult to obtain reliable inference for, even at moderate
levels of confounding (e.g. R2 ¼ 0:6, Fig. 5c). When temporal
confounding occurs and multiple factors are driving the popu-
lation decline, results from our second simulation experiment
suggest that it is difficult to obtain reliable inference regarding
which factors are responsible for the decline.
Our study was limited to a microcosm experiment, but the

mechanism generating temporal confounding is reasonable for
many species that are declining in abundance (e.g. Roseberry
et al. 1979; Veech 2006; Hefley et al. 2013b). For studies
focused on linking covariates to population declines, it is
important to recognise and detect when exogenous factors are
confounded with endogenous factors. For some studies, fac-
tors that cause a population decline maybe dynamic, such as
the influence of another species (e.g. Reilly & Zeringue 2005;
Cangelosi & Hooten 2009). In such cases, it is important to
determine how temporal confounding influences causal infer-
ence using methods that we have not considered in this study
(e.g. Sugihara et al. 2012; Clark et al. 2015; Ye et al. 2015).
Although the results from our study highlight a caveat in

commonly used methods to determine the cause of a decline
in abundance, it is encouraging that temporal confounding is
similar to multicollinearity, which has been successfully identi-
fied and addressed in many studies (Dormann et al. 2013).
One of the most successful methods that has been developed

to alleviate multicollinearity in regression models is regularisa-
tion (e.g. Hoerl & Kennard 1970). For Bayesian models, regu-
larisation is an automatic consequence of using informative
priors (Hooten & Hobbs 2015). We expect that the use of
informative priors will be an important component to statisti-
cal models that are used to determine the factors that are
causing population declines because for many population
there is some existing knowledge about growth rates and car-
rying capacity (Hobbs & Hooten 2015, pp. 91–106). For
example, using the process outlined in Delean et al. (2013)
informative priors could be developed for the maximum
growth rate and carrying capacity (e.g. the maximum attain-
able values of rðxtÞ and KðxtÞ in eqn 5). Future work that
outlines best practices for specifying informative priors on the
coefficients for covariates that influence the growth rate and
carrying capacity (e.g. a1 and c1 in eqns 7 and 8) will be criti-
cal to harnessing the full power of regularisation. We expect
that many studies will find it advantageous to explore the use
of informative priors with population growth models to deter-
mine the causes of population declines.
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