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Summary

1. Presence-only data can be used to determine resource selection and estimate a species’ distribution.Maximum

likelihood is a common parameter estimationmethod used for species distributionmodels. Maximum likelihood

estimates, however, do not always exist for a commonly used species distribution model – the Poisson point

process.

2. We demonstrate the issue with conventional maximum likelihood mathematically, using a data example, and

a simulation experiment and show alternative estimationmethods.

3. We found that when habitat preferences are strong or the number of presence-only locations is small, by

chance, maximum likelihood coefficient estimates for the Poisson point process model may not exist. We found

that several alternative estimation methods can produce reliable estimates, but results will depend on the chosen

method.

4. It is important to identify conditions for which maximum likelihood estimates are unlikely to be identifiable

from presence-only data. In data sets where the maximum likelihood estimates do not exist, penalized likelihood

and Bayesianmethods will produce coefficient estimates, but these are sensitive to the choice of estimation proce-

dure and prior or penalty term.When sample size is small or it is thought that habitat preferences are strong, we

propose a suite of estimation procedures researchers can consider using.

Key-words: Bayesian inference, Firth correction, Grus americana, inhomogeneous Poisson point

process, MAXENT, maximum likelihood, resource selection, species distribution model, use–
availability, whooping crane

Introduction

Management of fish, wildlife, and plants requires knowledge

of habitat characteristics that influence the distribution of

abundance. Locations where a species occurred are a particu-

larly common source of data. These types of data have been

termed use–availability or presence-only data (hereafter

referred to as presence-only data; McDonald 2013). Recently,

multiple researchers have unified methods for analysing pres-

ence-only data by showing that many previously employed

methods (e.g. logistic regression, MAXENT, resource selec-

tion functions) estimate parameters of an inhomogeneous

Poisson point process (IPP) model (Warton & Shepherd 2010;

Aarts, Fieberg & Matthiopoulos 2012; Dorazio 2012; Fithian

&Hastie 2013;McDonald et al. 2013; Renner &Warton 2013;

Warton &Aarts 2013). In addition, the IPPmodel has recently

been extended and used to estimate resource selection from

telemetry data (Johnson, Hooten & Kuhn 2013). Therefore, it

is crucial to understand the properties of the IPPmodel.

Maximum likelihood is a commonly used parameter estima-

tion method for the IPP model (Baddeley & Turner 2000;

Aarts, Fieberg &Matthiopoulos 2012; Fithian & Hastie 2013;

Johnson, Hooten & Kuhn 2013). Maximum likelihood has

enjoyed great popularity because, given a statistical model, the

estimation method is automatic to apply and produces nearly

optimal inference (Efron 1986; Cole, Chu & Greenland 2014).

However, for some models, maximum likelihood estimates

(MLEs) do not always exist. For example, MLEs of coeffi-

cients in logistic and Poisson regressionmodels do not exist for

certain data configurations (Albert & Anderson 1984; Heinze

& Schemper 2002; Owen 2007; Santos Silva & Tenreyro 2010).

For logistic regression, Reineking & Schr€oder (2006) noted: ‘[t]

his happens, for example, when all presence records occur at

values larger than a certain threshold for one of the explana-

tory variables, and all absences occur below that threshold.

Standard maximum likelihood estimation fails to converge in

these situations, and at least one parameter estimate diverges

to infinity’.

If a covariate predicts an outcome perfectly when using

logistic regression, then the MLE of the estimated coefficient

will be�∞ or∞ or depending on the data. Although having a*Correspondence author. E-mail: thefley@huskers.unl.edu
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covariate predict a Bernoulli event perfectly is a desirable prop-

erty, infinite coefficient estimates are difficult to explain. For

example, in the case of multiple covariates, comparison of the

marginal influence is a challenge when one or more coefficient

estimates are infinite. For logistic regression, the issue is known

as ‘complete separation’ and is common in many applications.

Because of the prevalence of complete separation, the literature

developing and evaluating remedial methods is vast and intro-

ductions are given in many textbooks (e.g. Hastie, Tibshirani

&Friedman 2009; Gelman et al. 2013).

A problem similar to complete separation occurs with the

IPP model. This issue could be considered a special case of the

results presented by Santos Silva & Tenreyro (2010) and may

be a well-understood problem for some regression models (e.g.

Poisson and logistic regression). To our knowledge, however,

this has not been previously documented and explained for the

IPP model and has gone unnoticed in the literature on species

distributionmodelling and resource selection.We demonstrate

some conditions where the MLEs for the IPP model do not

exist. We then explore possible solutions to the problem.

Finally, we present a simulation experiment and illustrative

analysis of location records from a critically endangered spe-

cies – the whooping crane (Grus americana) –which motivated

this study.

Materials andmethods

THE INHOMOGENIOUS POISSION POINT PROCESS

MODEL

The goal of the IPP model is to formulate a statistical link between a

species distribution and some number (q) of covariates. Let Y be the

matrix of n locations and yi be a 1 9 2 vector of the location of each

individual in the Euclidian space within region A where the species

occurred. Further, let x (yi)
0 = {1, x1 (yi),. . .,xq (yi)}0 be a vector of q co-

variates corresponding to ith location (yi). An IPPmodel links the pres-

ence-only locations to the covariates bymodelling the limiting expected

count (k (y)) per unit area; k (y) is also referred to as the ‘intensity’ func-
tion). The intensity function is typically, but not always, modelled as a

log-linear function of the q covariates:

logðkðyÞÞ ¼ xðyÞ0b;
where b is a vector of the q + 1 model parameters. The log-likelihood

of an IPPmodel is (Cressie 1993):

lðb;YÞ ¼
Xn

i¼1
log kðyiÞ �

Z
y2A

kðyÞdy� logðn!Þ: eqn 1

EXISTENCE OF MAXIMUM LIKEL IHOOD ESTIMATES

The existence of the MLE for the elements of b is dependent on the

data configuration (i.e. covariates at the presence-only locations and

within the study region). Here, we choose a specific example to show

that theMLE does not always exist. Let the intensity be a function of a

single binary covariate (i.e. log (k (y)) = b0 + b1x1 (y) where x1 (y) = 0

or 1). Assume that the binary covariate (x1) within the regionA follows

aBernoulli distribution. This assumption is equivalent to assuming that

the study area contains two different habitat types. The frequency of

the two habitat types within the study region depends on the parameter

p of the Bernoulli distribution. For this example, it is shown in Appen-

dix S1 that

b̂MLE
0 ¼ log

n�Pn
i¼1 x1ðyiÞ

ð1� pÞjAj
� �

eqn 2

and

b̂MLE
1 ¼ log

Pn
i¼1 x1ðyiÞ
pjAj

� �
� log

n�Pn
i¼1 x1ðyiÞ

ð1� pÞjAj
� �

eqn 3

where the superscript denotes maximum likelihood estimator. If by

chance x1 (yi) = 1 for all y 2 Y, then both b̂MLE
0 and b̂MLE

1 are unde-

fined; as
Pn

i¼1 x1ðyiÞ approaches n, b̂MLE
0 , diverges to �∞ and b̂MLE

1

to ∞. In contrast, if by chance x1 (yi) = 0 for all y 2 Y, then only

b̂MLE
1 is undefined and as

Pn
i¼1 x1ðyiÞ approaches zero, b̂MLE

1 diverges

to �∞.

We have shown theMLE does not exist for a specific case where the

covariate in the region A has a Bernoulli distribution. However, more

general results can be borrowed from Owen (2007) relying on the con-

nection of the IPP to infinitely imbalanced logistic regression (Fithian

& Hastie 2013). Two important results are the following: (i) the MLE

of a coefficient depends on the covariate through the sum of the covari-

ate or equivalently the average value and (ii) to obtain a finite MLE,

the average of the covariate must be surrounded by what is ‘available’

in the study region (Owen 2007). Using the example above to illustrate,

it is clear from eqn 3 that theMLEof b1 depends on x1(yi) at each pres-
ence location only through the sum ðPn

i¼1 x1ðyiÞÞ or equivalently the

average ð1=nPn
i¼1 x1ðyiÞ ¼ x1ðyÞÞ of the covariates. Secondly, for the

MLE to exist, the average must be bounded such that 0\x1ðyÞ\1.

Note that if x1ðyÞ occurs at either end of the support (e.g. 0 or 1 in the

example), the MLE of the coefficient will be infinite. This result is gen-

eral and holds for both continuous and discrete covariates (Owen

2007). Intuitively, this result makes sense because if at all species loca-

tions the covariate recorded was the minimum or maximum of what

was available, then it would be impossible to estimate how the species

distribution changes due to the covariate.

MAXIMUM PENALIZED LIKEL IHOOD ESTIMATION

Maximum penalized likelihood estimation (MPLE) has been used as a

remedy to complete separation in logistic regression (Reineking &

Schr€oder 2006; Hastie, Tibshirani & Friedman 2009). MPLE has also

been widely used for estimation of the parameters in the IPP model

(e.g. MAXENT; Phillips, Anderson & Schapire 2006; Renner & War-

ton 2013). MPLE penalizes the likelihood function for large values of

the parameters. For example, the log-likelihood for the IPPmodel with

a binary covariate (see Appendix S1) and aL2 or ridge penalty is

lpðb0;b1;c0;c1;YÞ¼
Xn

i¼1
b0þb1x1ðyiÞð Þ�eb0þb1pjAj

�eb0 ð1�pÞjAj� logðn!Þ�c0b
2
0�c1b

2
1:

eqn 4

The penalty terms c0b
2
0 and c1b

2
1 have been added to the log-likeli-

hood function. The magnitude of the penalty is determined by the tun-

ing parameter cj (0 ≤ cj < ∞) and the square of the coefficient bj.
When using MPLE, it is common to set the tuning parameter for the

intercept term to zero (i.e. c0 = 0) and standardize the covariates (Has-

tie, Tibshirani & Friedman 2009). Standardizing the covariates allows

for a common tuning parameter to be applied to all coefficients (see

BAYESIAN ESTIMATION for more information on covariate stan-

dardization).

Unlike with the standard MLE, we cannot derive closed form

solutions (e.g. eqns 2 and 3) for the MPLEs of the IPP model.
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In the absence of closed form solution, it is instructive to study the

score function for b1

spðb1;YÞ¼
o
ob1

lpðb0;b1;c0;c1;YÞ¼
Xn

i¼1
x1ðyiÞ� eb0þb1pjAj�2c1b1:

eqn 5

Setting spðb̂1;YÞ ¼ 0 and solving for b̂1 yields the MPLE of b1
(Cole, Chu&Greenland 2014).When c1 > 0, theMPLE is finite for all

y 2 Y. The value of b̂1 that solves spðb̂1;YÞ ¼ 0, however, is dependent

on c1; parameter estimation has been transferred from b1 to c1.

Estimating cj can be viewed as a continuous form of model selection

and requires out-of-sample data (Hooten & Hobbs 2015). In most

cases, a true out-of-sample data set is unavailable and procedures such

as cross-validation are used to estimate cj. Regardless of the procedure,
the goal is to determine the value of cj that maximizes the predictive

ability of themodel. There aremanyways tomeasure predictive ability,

but to our knowledge, no measure will produce satisfactory coefficient

estimates when the MLE is infinite. For example, the predictive log-

likelihood is a commonly used measure of predictive accuracy. This

involves calculating l(b0, b1;Y) of eqn 1 using out-of-sample data for a

path of values of c1. If the out-of-sample data suffers from the same

problems as the in-sample data – which it will unless a true replicate

out-of-sample data set is available – then the predictive accuracy of the

model will monotonically increase as c1 goes to zero; when c1 = 0,

MPLE are equivalent to theMLE (i.e. b̂1 ¼ �1).

If a true out-of-sample data set is unavailable, it may be impossible

to estimate c1 using data-driven techniques when the within-sample

MLE for b1 is infinite. Furthermore, it would be more useful to analyse

the out-of-sample data assuming theMLE is finite. An alternative solu-

tion is to simply choose a value for c1. For example, the species distribu-

tion modelling software MAXENT (Phillips, Anderson & Schapire

2006) uses an IPP model with a LASSO penalty (e.g. eqn 4 with only a

penalty of c1|b1|), with the tuning parameter being ‘chosen without any

consideration for predictive performance of the model at hand,

but rather based entirely on the number of presence cells’ (Renner &

Warton 2013). At present, there appears to be little guidance on

how to choose the regularizing tuning parameter when it cannot be

estimated from data.

BAYESIAN ESTIMATION

Even when the MLE does not exist, the data and the likelihood func-

tion are informative. Bayesian inference combines the information in

the likelihood function and prior information to estimate IPP model

parameters and can be used to estimate parameters when the MLE

does not exist or is unstable (i.e. sensitive to small changes in the data).

Bayesian inference has been applied to logistic regression to obtain

coefficient estimates when complete or partial separation occurs (Gel-

man et al. 2008, 2013). In this application, the goal of Bayesian infer-

ence is to obtain estimates of coefficients that are finite and stable.

A close connection exists between Bayesian and penalized likelihood

estimation methods (Hastie, Tibshirani & Friedman 2009; Cole, Chu &

Greenland 2014; Hooten & Hobbs 2015). For example, the posterior

mode assuming a normal prior with an expected value of zero

(bj �Nð0;r2
j ÞÞ is equivalent to the estimates obtained assuming a ridge

penalty when usingMPLE (i.e. cj ¼ 1=2r2
j in eqn 4); a similar relation-

ship exists for the LASSO penalty (Hastie, Tibshirani & Friedman

2009). As the connection between Bayesian and penalized likelihood

estimation methods alludes to, the priors and hyperparameters (r2
j )

heavily influence coefficient estimates for bj when theMLEs are infinite.

Although coefficient estimates are heavily influenced by the priors

when the MLEs are infinite, Bayesian inference differs from penalized

likelihood methods in two important ways: (i) guidance on how to

choose the hyperparameters for the prior, or equivalently the penalty cj
term, is available, and (ii) inference is based on Bayes theorem which

provides a formal probability-based tool for constraining models.

When using MPLE, the tuning parameter cj lacks interpretation as

prior information and if forced to choose a value of cj, it is not clear
when or how this should be done. In contrast, the Bayesian perspective

makes it clear that prior information is constraining themodel parame-

ters. Furthermore, to maintain acyclicity in the Bayesian ‘graph’, the

only rule in choosing priors is not to use in-sample data (Hooten &

Hobbs 2015); in the case that out-of-sample data are unavailable and

cross-validation is going to fail, priors should be chosen before analy-

sing the data.

Choosing priors before analysing the data may be difficult in prac-

tice. We suspect that most practitioners will estimate parameters using

maximum likelihood and decide to use Bayesian estimation only if they

encounter infinite estimates. An alternative to choosing a specific prior

before analysing the data is to use a so-called weakly informative

default prior (Gelman et al. 2008). In general, a weakly informative

prior will produce parameter estimates that are similar to MLEs when

theMLEs are finite and stable, but will result in sensible estimates when

the MLEs are infinite or unstable. Many default priors have been pro-

posed for logistic regression which could be applied to IPP model (e.g.

Gelman et al. 2008).

An important consideration when applying a weakly informative

default prior or penalized likelihood estimation is standardization of

the covariates.We refer the reader to Gelman et al. (2008) for an excel-

lent discussion on the topic for logistic regression which can be applied

to the IPPmodel.We note, however, that standardization of covariates

for the presence-only locations may present a problem when the MLE

is infinite.When theMLE is infinite, the standard deviation of the cova-

riates at the presence-only locations may be equal to zero. If standardi-

zation is required,we recommend that covariates be standardized to the

scale of the study area or scale of the presence-only location and the

study area (i.e. covariates obtained from the quadrature orMonte Car-

lo locations used to approximate the integral in eqn 1).

FIRTH BIAS CORRECTION

Firth (1993) proposed a method to remove the first-order term from

the asymptotic bias in MLEs; infinite coefficient estimates are an

extreme case of bias, and the Firth correction has been proposed as a

solution for complete separation in logistic regression (Heinze &

Schemper 2002). The Firth correction can be cast as aMPLE or from a

Bayesian perspective. The Firth correction involves adding the penalty

term 1/2log(|I(b)|) to the log-likelihood (eqn 1) where I(b) is the infor-
mationmatrix. Under a Bayesian paradigm, the penalty term is equiva-

lent to assigning a Jeffreys invariant prior to all model parameters

(Firth 1993; Gelman et al. 2013). For our example, we derived closed

form solutions and show (Appendix S1) that theMPLE or mode of the

posterior distribution is

b̂Firth0 ¼ log
n�Pn

i¼1 x1ðyiÞ þ 1
2

ð1� pÞjAj
� �

eqn 6

and

b̂Firth1 ¼ log

Pn
i¼1 x1ðyiÞ þ 1

2

p:jAj
� �

� log
n�Pn

i¼1 x1ðyiÞ þ 1
2

ð1� pÞjAj
� �

eqn 7

where the superscript denotes that estimator is the Firth type. Clearly,

b̂Firth0 and b̂Firth1 exist and are finite for all values of the covariate x1(yi)
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for all y 2 Y. Unlike the penalty term for MPLE or equivalent priors

for Bayesian inference, the Firth bias correction (or Jefferys invariant

prior) has no tuning parameter (or hyperparameter) that must be cho-

sen. In addition, the Firth bias correction for the logistic regression

model is invariant to linear transformations in the covariates (Chen,

Ibrahim & Kim 2009). As a result, linear transformations, such as

standardization of the covariates, will not influence inference about the

coefficients.

WHOOPING CRANE DATA

Whooping cranes are an endangeredmigratory avian species occurring

in captivity and a single self-sustaining wild population that currently

totals 250–300 individuals. This population overwinters in and around

Aransas National Wildlife Refuge in southern Texas, USA, and nests

during the summer in and around Wood Buffalo National Park of

Canada. Each fall and spring, whooping cranes migrate approximately

4000 km as individuals or in small groups. These migrations include

several stopovers that may last from a few hours for several weeks.

Such stopovers during migration providemuch needed energy recuper-

ation and are critical to the survival of whooping cranes. Management

of migratory habitat is a focus of a multistate–federal cooperative

agreement focused on the Central Platte River Valley in Nebraska,

USA (Freeman 2010). A basic question that must be answered to facili-

tate management is to determine whether whooping cranes avoid areas

where human disturbances occur, and if so, at what scale. Also of inter-

est is the influence of habitat covariates.

The data used in this analysis were described in more detail by

Hefley et al. (2014) and are available on Dryad Digital Repository

(Hefley et al. 2013). The data consist of 32 whooping crane group

locations recorded in the state of Nebraska, USA, from 2000 to

2012. At each location, the proportion of aquatic habitat and devel-

opment within a 100-m-radius buffer was calculated (hereafter

referred to as the aquatic and development covariates). For the 32

crane group locations, the development covariate consisted of 31 zer-

oes and a single value of 0�086 which resulted in an average propor-

tion of development of 0�0027 (SD = 0�0151). For comparison, the

average proportion of development at 10 000 random locations

within the state of Nebraska was 0�035 (SD = 0�112; range = [0,1]).

The aquatic covariate averaged 0�396 (SD = 0�432; range = [0,1]). At

10 000 random locations within the state of Nebraska, the average

proportion of aquatic habitat was 0�025 (SD = 0�117; range = [0,1]).

The correlation between the two covariates at the 32 presence loca-

tions was �0�06, and the correlation at the 10 000 random locations

was �0�03.

WHOOPING CRANE DATA ANALYSIS

We used the IPP model to analyze the 32 whooping crane presence-

only locations with intensity function

log kðyÞð Þ ¼ b0 þ b1aquaticþ b2development eqn 8

where aquatic and development are the proportion of aquatic

habitat and development within a 100-m buffer, respectively. We esti-

mated the bj using maximum likelihood, maximum penalized likeli-

hood, Bayesian, and Firth-type estimation. For Bayesian estimation,

we used the weakly informative default prior proposed by Gelman

et al. (2008), whichwas aCauchy distributionwith centre of 0 and scale

of 10 and 2�5 for the intercept and covariates, respectively (with scaling

as described inGelman et al. (2008)).

Bayesian estimation with a Cauchy prior is equivalent to MPLE

using a penalty proportional to the Cauchy likelihood and appropriate

tuning parameters (i.e. cj = 1/rj, where rj is the scale parameter of the

Cauchy distribution;Gelman et al. 2013); hereafter, we refer to the pos-

terior mode of bj assuming a Cauchy prior or the equivalent MPLE as

b̂Bayes=MPLE
j .

Several authors have demonstrated that modified generalized linear

models can be used to obtain IPP model coefficient estimates (Berman

&Turner 1992; Baddeley & Turner 2000; Aarts, Fieberg &Matthiopo-

ulos 2012; Fithian &Hastie 2013; McDonald 2013). The modifications

involve the so-called infinite weights, or alternativelyMcDonald (2013)

shows that logistic regression is just a trick to maximize the IPP likeli-

hood under certain assumptions. We rely on the results of Fithian &

Hastie (2013) and use infinitely weighted logistic regression to obtain

coefficient estimates and 95% asymptotic confidence or credible inter-

vals (CIs). Using infinitely weighted logistic regression, b̂MLE
j ,

b̂Bayes=MPLE
j , and b̂Firthj can be estimated using the glm(. . .),

bayesglm(. . .), andlogistf(. . .)functions, respectively, in
R (R Core Team 2014). A tutorial with R code implementing the

whooping crane data analysis and reproducing Table 1 and Figs 1 and

S1 appears inAppendix S2.

As in Hefley et al. (2014), we approximated the integral in the likeli-

hood (eqn 1) using theMonte Carlo method with values of the aquatic

and development covariates from 10 000 random locations within the

state of Nebraska. The number of random locations used to approxi-

mate the integral was determined to be adequate by observing the

MLE for the aquatic (b̂MLE
1 ) and development (b̂MLE

2 ) coefficient using

100 random locations and increasing the number of random locations

in step sizes of 10 (Northrup et al. 2013). Both b̂MLE
1 and b̂MLE

2 stabi-

lized when at least 6000 random locations were used. We used 10 000

random locations in all analyses to be conservative (Fig. S1).

According to the results of Owen (2007) and theory presented in this

study, we should expect that b̂MLE
2 would be infinite if the data analysed

were the 31 whooping crane locations where the development covariate

was zero. An infinite estimate of b̂MLE
2 should occur because the

Table 1. Coefficient estimates and 95%asymptotic confidence or cred-

ible interval (CI) for the aquatic (b1) and development (b2) covariate of
an inhomogeneous Poisson point process model used to analyse pres-

ence-only whooping crane location records. Point estimates were

obtained using maximum likelihood (b̂MLE
j ), Bayesian/maximum

penalized likelihood (b̂Bayes=MPLE
j ), and Firth-type (b̂Firthj ) estimation.

The coefficients were estimated using the full data set (n = 32) in which

the development covariate was a collation of 31 zeroes and a single

value of 0�086 and a reduced data set (n = 31) where the development

covariate was a collation of 31 zeroes

Parameter n Point estimate Lower CI Upper CI

b̂MLE
1 32 4�36 3�57 5�15

b̂Bayes=MPLE
1 32 4�36 3�57 5�15

b̂Firth1 32 4�38 3�60 5�15
b̂MLE
1 31 4�32 3�52 5�12

b̂Bayes=MPLE
1 31 4�33 3�53 5�13

b̂Firth1 31 4�33 3�55 5�12
b̂MLE
2 32 �11�98 �30�41 6�44

b̂Bayes=MPLE
2 32 �7�87 �19�03 3�30

b̂Firth2 32 �6�73 �18�18 4�73
b̂MLE
2 31 �∞ �∞ ∞

b̂Bayes=MPLE
2 31 �11�13 �24�72 2�46

b̂Firth2 31 �12�45 �31�35 6�45
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Maximum likelihood for presence-only data 651



average proportion of development for these 31 locations is exactly

zero and lies on the boundary of what is available (i.e. the development

covariate must be ≥0). To test this theory for a continuous covariate

and to explore how the other estimation methods preformed, we

analyzed the 31 whooping crane locations where the development

covariate was zero using the samemethods as the full (n = 32) data set.

To examine the sensitivity of coefficient estimates to small changes in

the covariates, we estimated the aquatic and development coefficients

and 95% CIs using all methods for the full (n = 32) data set; however,

we incrementally varied the value of the single nonzero development

covariate from its measured value of 0�086 to zero so that when plotted

against the average value of the development covariate the relationship

appeared continuous (Fig. 1).

SIMULATION STUDY

We conducted a simulation experiment to better understand the prop-

erties of the maximum likelihood, maximum penalized likelihood,

Bayesian, and Firth-type estimators for the IPP model. We simulated

presence-only locations (Y) from an IPP distribution. The intensity

function (k (y)) depended on a single discrete covariate x1 (y). The envi-
ronment in which the species could have occurred in (x1) was generated

from a Bernoulli distribution with p = 0�5. When p = 0�5, habitat type
‘1’ is expected to be equally common withinA as habitat type ‘0’ (here

jAj = 1). We conducted the simulation study using the following three

scenarios: 1). b0 = 4 and b1 = �4; 2). b0 = 8 and b1 = �8; and 3).

b0 = 8 and b1 = �4. The first scenario was designed to test the proper-

ties of the estimatorwhen sample size was small and habitat preferences

were (relatively) weak resulting inMLEs that are infinite for most data

sets. The second scenario was designed to test the properties of the

estimators when sample size was large and habitat preferences were

strong. Similar to the first scenario, this should result inMLEs that are

infinite for most data sets. The third scenario was designed to test the

properties of the estimators when sample size was large and habitat

preferences were relatively weak and should result in MLEs that are

finite for nearly all data sets. We generated 1000 simulated data sets for

each scenario.

We used the same estimation procedures to obtain point estimates

and 95% CIs as was used for the whooping crane data analysis. We

expect researchers to be concerned about the uncertainty of the coeffi-

cient estimates and would expect that the coverage probabilities of the

CIs are close to the nominal level. To test this, we reported the coverage

probability and averaged CI length of b1 for each scenario. Annotated

R code implementing the simulation study and capable of reproducing

all simulation results andFig. 2 is inAppendix S3.

Results

WHOOPING CRANE DATA ANALYSIS

The estimated coefficient for the aquatic covariates and associ-

ated 95% CIs were nearly equal for all estimation methods

using the full (n = 32) and reduced (n = 31) data sets (Table 1).

For the full data set, the estimated coefficient and 95%CIs for

the development covariates were about 40% less in magnitude

and shorter in length using Bayesian, maximum penalized like-

lihood, and Firth-type estimation when compared to theMLE

and CIs. When the reduced data set was analysed, the MLE

for the development coefficient was �∞ and the Bayesian,

MPLE, and Firth-type estimates were finite and close to the

MLE obtained from the full data set (Table 1).

Varying the development covariate had minimal effect on

b̂MLE
1 , b̂Bayes=MPLE

1 , b̂Firth1 , and associated 95% CIs (Fig. 1a).

When the single nonzero value of the development covariate
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Fig. 1. Maximum likelihood estimates (black

lines), Bayesian/maximum penalized likeli-

hood estimates (red lines), and Firth-type esti-

mates (gold lines) and 95% confidence

intervals (dashed lines) for the aquatic (b̂1)
and development (b̂2) coefficients obtained

from the full (n = 32) presence-only location

records of whooping cranes. The single non-

zero value of the development covariate was

decreased from the measured value of 0�086 to
zero; therefore, the average of the develop-

ment covariate decreased from 0�0027 to zero.

The black dots show the maximum likelihood

estimates obtained from the unaltered data

set. Note, lines were shifted slightly to not

overlap.
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was decreased from its measured value of 0�086 to zero, b̂MLE
2

and the lower 95% CI limit diverged nonlinearly to �∞ and

the upper CI limit diverged to ∞ (Fig. 1b). The b̂Bayes=MPLE
2

and b̂Firth2 always existed, but decreased and 95% CIs widened

as the development covariate decreased. The magnitude of the

decrease in b̂Bayes=MPLE
2 , b̂Firth2 , and widening of the CIs was

small in comparisonwith that of b̂MLE
2 (Fig. 1b).

SIMULATION STUDY

The average number of presence-only locations in each data

set was 28, 1491, and 1517 for scenarios 1, 2, and 3, respec-

tively. The b̂MLE
1 ¼ �1 in >60% of the simulation data sets

under the first (b0 = 4 and b1 = �4) and second (b0 = 8 and

b1 = �8) scenarios. In the first and second scenarios, when the

b̂MLE
1 was finite, the estimates were always greater than the true

value (Fig. 2a, d). The b̂Bayes=MPLE
1 and b̂Firth1 were always finite

and reasonably close to the true value (Fig. 2b,c,e,f). The

b̂MLE
1 , b̂Bayes=MPLE

1 , and b̂Firth1 , in the third scenario (b0 = 8 and

b1 = �4), were always finite and nearly identical (Fig. 2g–i).
Coverage probabilities of the 95% CIs for all three estimators

were similar and between 0�91 and 0�96 for all three scenarios,
except for the second scenario where the CI for b̂Bayes=MPLE

1

had a coverage probability of 0�61 (see Appendix S3 for

detailed results). The average length of the 95% CIs varied

greatly for the first and second scenarios. The first scenario had
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Fig. 2. Results from 1000 simulated presence-only data sets under three different scenarios. Panels show the maximum likelihood estimates (b̂MLE
1 ),

Bayesian/maximumpenalized likelihood estimates (b̂Bayes=MPLE
1 ), andFirth-type estimates (b̂Firth1 ) for the regression coefficient of the inhomogeneous

Poisson point process model. Scenario 1 (a,b,c) and scenario 2 (d,e,f) were designed to test the estimation procedures when theMLEwas infinite for

most simulated data sets. The third scenario (g,h,i) was designed to test the estimation procedures when the MLE was finite for all simulated data

sets. The average number of presence-only locations in each data set was 28, 1491, and 1517 for scenarios 1, 2, and 3, respectively. The vertical gold

line shows the true value of the coefficients, and the red line shows the average of the 1000 estimates shown in each histogram. Note, the lower mode

in b, c, e, and f coincides with simulations for which theMLEwas undefined.
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an average 95%CI length of∞ for b̂MLE
1 , 3�85 for b̂Bayes=MPLE

1 ,

and 4�65 for b̂Firth1 . The second scenario had an average 95%

CI length of ∞ for b̂MLE
1 , 3�06 for b̂Bayes=MPLE

1 , and 4�55 for

b̂Firth1 . For the third scenario, all three estimation procedures

had an average 95%CI length between 0�75 and 0�77.

Discussion

MAXIMUM LIKEL IHOOD ESTIMATION

We demonstrated the nonexistence of the MLE for special

cases of the IPP model mathematically and by analyzing real

and simulated data. We found that MLEs were infinite when

the average value of the covariates for all locations occurs at

either end of the range of what is available – regardless of the

number of presence-only locations. This result agrees with that

of Owen (2007), who proved the result for infinitely imbal-

anced logistic regression, which can be used to obtainMLEs of

coefficients for the IPPmodel (Fithian&Hastie 2013).

In practice, we expect a species will not absolutely avoid a

particular value of a covariate within the study area. If this is

true, the data configurations that result in infinite MLEs are

most likely to occur when sample size is small; by chance, a

data set with only a small number of locations has a higher

probability of containing only locations that occur at the

extreme value of the covariate. Another situation where this

problem is likely to occur is when the effect of the covariate is

large. For example, if the ‘true’ value of the coefficient is large,

it is more likely that all of the locations will occur in areas that

contain extreme values of the covariate.

We are aware of another setting where theMLEwill be non-

identifiable for the IPP model. This occurs when two or more

covariates (or some linear combination) obtained at the pres-

ence-only locations are perfectly correlated (Santos Silva &

Tenreyro 2010). The issue of collinearity is well known, and

remedial measures are equally well described (Dormann et al.

2013). For presence-only data, it is important to examine cor-

relation in the covariates obtained at the presence-only loca-

tions separate from the ‘background’ or ‘available’ locations

(i.e. the quadrature or Monte Carlo locations) to determine

whether collinearity will be an issue.

ALTERNATIVE ESTIMATION METHODS

We considered maximum penalized likelihood, Bayesian,

and Firth-type estimation as alternative methods that can

be used when the MLE is infinite (or nearly so). The

weakly informative default prior proposed by Gelman et al.

(2008) and the bias correction proposed by Firth (1993),

provided nearly identical results when applied to our

whooping crane example (Table 1) and scenarios 1 and 3 of

the simulation (Fig. 2). It could be argued that the Firth-

type estimator outperformed the maximum likelihood and

Bayesian estimators in scenario 2 (Fig. 2d,e,f and in-text

results). Although this is the case, we argue that it is diffi-

cult to make general recommendations as to when one esti-

mation method is preferable; it will depend on the specific

problem (e.g. are finite coefficients desired?); what type of

prior information is available (e.g. is expert elicitation feasi-

ble?); how this information is transformed into a penalty or

prior that can be used to constrain the coefficient estimates;

and finally, what the ‘true’ values of the coefficients are and

how well this is reflected by the choice of priors or penalties.

The variety of potential remedies for presence-only data and

the IPP model echoes the lack of consensus for how to handle

the problem inmore general settings (e.g. Firth 1993; Heinze &

Schemper 2002; Gelman et al. 2008; Hastie, Tibshirani &

Friedman 2009). Methods, such as those presented by Firth

(1993), certainly have more justification when little or no prior

information is available. Regardless of the method employed,

the coefficient estimate will be sensitive to the choice of prior or

penalty when the MLE is infinite. Although this may be trou-

blesome, it is encouraging to note that the issue, in general, has

been successfully addressed in many applied studies that

employed logistic or Poisson regression. It is straightforward

to check for similar issues in ecological studies that rely on

point process data. Armed with the set of tools we described

herein, ecologists can then ameliorate the problem of infinite

MLEs in a way that is best matched with the goals of their

study.
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