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Abstract

Landscape genetics is the study of the effects of landscape on genetic diversity, but current land-
scape genetic studies often link inference made on spatial genetic boundaries to landscape features
in a post-hoc way. We present a general approach that formalizes links between genetic boundaries
and landscape features of interest. This approach builds on existing statistical models for land-
scape genetics and lends itself to optimal sampling methods. We illustrate the approach through a
landscape genetic study of mule deer in Utah and Colorado.
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1. Introduction

Landscape genetics is the study of the effects of landscape on genetic diversity (Manel
2003, Gaggiotti 2010), but linking genetic information (e.g., microsatellite data) to the
landscape in a rigorous way is challenging. Current landscape genetics studies often em-
ploy well-developed statistical models for identifying genetic boundaries that are based on
the assumption of a homogeneous underlying landscape. Software exists to easily imple-
ment many of these models, including Geneland (Guillot et al. 2005a; Guillot et al. 2005b)
and TESS (Chen et al. 2007; Durand et al. 2009). These methods allow for rigorous in-
ference about the location of genetic populations and boundaries under both the Bayesian
and classical statistical paradigms. However, boundaries resulting from such an analysis
are often linked in a post-hoc way to landscape features, such as through comparing the
locations of potential barriers (e.g., roads or rivers) to the mode of the posterior distribution
through a geographic information system (GIS) overlay (e.g., Sahlsten et al. 2008; Wheeler
et al. 2010).

We present a general approach that formalizes such links between posterior predictions
of genetic boundary locations and landscape features of interest. This approach builds
on existing statistical models for landscape genetics and lends itself to optimal sampling
methods.

We first provide a brief introduction to Geneland (Guillot et al. 2005b), an existing
model used to make inference about landscape genetic boundaries. We then present our
approach for linking the distribution of genetic boundaries resulting from this Bayesian hi-
erarchical model (BHM) to landscape features of interest, and set forth a method of optimal
sampling in which we maximize the information we can obtain about the relationship be-
tween landscape features and genetic boundaries using limited resources. We then illustrate
this approach to make inference on the effects of various landscape features on the genetic
differentiation of mule deer (Odocoileus hemionus) in Utah and Colorado, USA.
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2. Methods

2.1 Identifying Genetic Boundaries Using Geneland

The Geneland statistical model (Guillot et al. 2005a) is a BHM for making inference about
population boundaries given spatially-referenced genetic data, A. This spatial clustering
model is based on a Voronoi tesselation of the study area, and results in the distribution
of predicted piece-wise linear boundaries between distinct genetic populations. If 6 are
the parameters in this model describing the spatial locations of these genetic boundaries,
then we will denote their posterior distribution as [@|A]. The Geneland model assumes a
homogeneous landscape, and we seek a method for making posterior inference about the
relationship of hypothesized landscape features to genetic boundaries.

As mentioned previously, there are other statistical models in the literature that also
provide inference about spatial genetic boundaries that are based on similar assumptions
(e.g., homogeneous landscape). For a discussion of the relative strengths and weaknesses
of some of these models, see Francois and Durand (2010) and Manlove et al. (2010). We
have chosen to use Geneland to identify spatial genetic boundaries, but the approach we
present could utilize any of the existing models.

2.2 Linking Genetic Boundaries to Landscape Features

We are interested in investigating the correlation between landscape features and gene flow
in a manner that is statistically rigorous and allows for optimal sampling. Our approach is
to model the relationship between landscape features and genetic boundaries, incorporating
spatial structure in the data using geostatistical methods. Let x; ,,, be the shortest euclidean
distance from the i-th sample location to the m-th landscape feature of interest, and let y;
be the euclidean distance from the i-th sample location to the nearest genetic boundary,
or a monotonic transformation of the same as is common in regression modeling (e.g.,
Fox 1997). Then, a model for the relationship between the distance to the nearest genetic
boundary and the distance to landscape features is:

y=XB+e, e~N(0,%). ey

That is, we assume a linear relationship between some monotonic transformation of the
distance to a genetic boundary (y) and the distance to the landscape feature of interest (X),
with possible spatial correlation between locations (expressed in ). In this way, a statis-
tically significant linear relationship between X and y, as indicated by inference about 3,
would indicate that the landscape features are significantly related to genetic boundaries in
mule deer populations. The transformation of the response variable could be chosen based
on the data in an attempt to satisfy model assumptions of normality and homoscedasticity
(e.g., Fox 1997).

Given y, we can use standard geostatistical techniques to make inference about the dis-
tributions of B and 3. For example, an iterative technique could be used by first specifying
an initial 3, employing generalized least squares (GLS) to estimate the distribution of B:

Bly, X~ N((X'2'X) ' x'u ly, (X'RIX) 7,

then estimating a parameterized version of 3 (e.g., exponential spatial correlation) through
maximum-likelihood fitting of the semi-variogram of the residuals, e = y — X B, and
repeating the process until convergence. This would allow inference on the parameters in
(1) given y.

Note, however, that we do not have a fixed value for y, but rather a posterior predictive
distribution [y|A] that incorporates our uncertainty about the location of landscape genetic
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boundaries. In a sense, we are using the Geneland model as a stochastic transformation
of the genetic allele data A to the distance from the spatial locations of these data to the
nearest landscape genetic boundary.

We are interested in inference on [B §|A] the distribution of the parameters in (1)
conditioned on the genetic allele data, A. We note that

/w Ally|Aldy

If we make the assumption that the influence of landscape covariates on genetic differenti-
ation (3) in model (1) depends on the observed allele data (A) only conditionally through
y, the distance to the nearest genetic boundary, then the first term in the integral could be
simplified:

3, 51A] = / B, Slylly|Aldy. @)
Yy

We can approximate this integral using composition sampling, which in this case is a form
of multiple imputation (e.g., Rubin 1987). It proceeds by iteratively sampling from [y|A]
and [3, 32| A] to obtain samples from 3, 3| A. Sampling from [y|A] is straightforward, as y
is a simple transformation of any realization from [@| A], the posterior distribution of spatial
genetic boundaries using the Geneland model. For [,3, ﬁ)\y} the geostatistical methods
described above allow us to find the distribution of the estimators [ﬁ ) f]| y], which we can
then sample from. In this way, we can make inference about the effects of hypothesized
landscape genetic boundaries, conditioned solely on the microsatellite allele data.

Simulation studies (not included here) indicate that this approach can distinguish be-
tween true and extraneous hypothesized boundaries in the case where there are two genetic
populations separated by a single boundary. Thus, if a hypothesized boundary’s regression
coefficient is significantly different from zero we can conclude that it is significantly related
to spatial genetic boundaries.

2.2.1 Model Selection

We are interested in making inference about which landscape features are significantly re-
lated to genetic population boundaries. Typically we have many hypothesized boundaries,
and desire to compare models with different combinations of these proposed landscape ge-
netic boundaries. Model selection in regression models is commonly accomplished through
methods that seek to balance model parsimony and goodness-of-fit (see e.g., Burnham and
Anderson 2002). Our approach (2) for making inference about model parameters ,6' 3 con-
ditioned on the allele data A makes standard measures of goodness-of-fit, such as R? or
the likelihood of the data, given a specific model, difficult to obtain. We propose an ap-
proach for obtaining a measure of the goodness-of-fit of a model based on a mixture model
interpretation of (2).

Consider three potential models: the first underfits the allele data by not including land-
scape features that are important for spatial gene flow, the second overfits by including all
landscape features that are important for spatial gene flow, plus some extraneous landscape
features, and the third includes only landscape features that are important to spatial gene
flow. If the underfitting model is missing a covariate that represents a different spatial
scale (coarser or finer) of genetic differentiation, then it is reasonable to assume that the
distribution of landscape genetic boundaries (e.g., the Geneland posterior [#]|A]) would be
bi-modal (or multi-modal) as the model attempts to account for multiple scales of differen-
tiation. In the case of Geneland, this would manifest itself in realizations from the posterior
showing varying degrees of coarseness in the tesselation of the study area. Thus, we might
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expect bimodal behavior in [,é\A] with one mode centered at O representing the lack of
model fit at realizations where the model lacks covariates at the correct spatial scale or lo-
cation. The second mode would represent the distribution of B\A at realizations where the
model is adequate.

Thus, as a meta-analysis, assume a Gaussian mixture-model approximation to [,C:I|A]

. N(0,3g) , with probability p
Bla ~ { 0%

3
N(p,>) , with probability 1 — p ©

where p is the probability that the specified model does not adequately explain the spatial
genetic boundaries manifested in the data. Thus, large values of p (e.g., greater than 0.05)
would indicate an inadequate model.

Similarly, we would expect a model that contains all landscape features that are impor-
tant to spatial gene flow to have low values of p. Models that are overfit would also have
small values of p, but we would expect that removing unnecessary terms from the model
would have little effect on p.

To balance parsimony with goodness-of-fit, we could select the most parsimonious
model for which p < 0.05. In this way we can distinguish hypothesized landscape features
that are important for spatial genetic flow from those that are not.

2.3 Optimal Sampling

Having specified an approach for making inference about 3, the effect of landscape features
on spatial gene flow, we now present an approach for sampling that allows us to maximize
the information we obtain about hypothesized genetic barriers, while minimizing the cost
of obtaining and analyzing new genetic samples. We assume that we have potential genetic
allele data (A) at a large number M of spatial locations, yet are only able to obtain and
analyze a small subset of this potential data. Optimal sampling methods for spatially-
referenced data are well-developed (see e.g., Diggle and Lophaven 2006; Lark 2001; Martin
2001; Muller 2007), and include methods for optimal dynamic sampling (e.g., Hooten
et al. 2009) in ecological and environmental studies. The general approach to optimal
sampling of spatial data is as follows. A prospective sample is chosen in such a way that
the process of interest can be studied at various spatial scales. This prospective sample is
used to fit the a model that includes spatial structure, such as (1) and (2), and predictions
based on this model fit inform the choice of the next set of locations to sample, the first
retrospective sample. Successive retrospective samples are chosen using updated model
predictions using all samples analyzed to that point.

2.3.1 Prospective Sampling

The main objective of the prospective sample is to obtain a set of genetic samples that cover
the spatial range of the data and allow us to estimate the structure of the spatial autocorrela-
tion between samples. Accurately estimating the spatial structure (X) is essential to making
inference about 3.

We advocate a “lattice and close pairs” approach (Diggle and Lophaven 2006; Lark
2001; Martin 2001; Muller 2007), common in the literature, for a prospective sample of
spatial genetic data. Half of the samples in the prospective design are selected in a way
that maximizes spatial coverage (the “lattice” samples), and one “close pair” is selected
randomly for each lattice sample in such a way that results in a range of spatial scales
between sample locations. In this way, the lattice and close pairs approach strikes a balance
between the spatial coverage necessary to learn about large-scale trends in the data and the
clustering needed to learn about spatial structure at multiple scales.
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Figure 1: The locations of the 90 samples in the prospective design are shown with the
hypothesized boundaries and a representation of the Geneland posterior distribution of ge-
netic boundary locations. Dark cells indicate locations where there is a high probability of
a genetic boundary, while lighter cells indicate locations with a low probability.

2.3.2  Retrospective Sampling

Once spatially-referenced genetic allele data have been obtained, we wish to use existing
data to pick new locations to sample in a way that maximizes the information gained about
,3, and thus the relationship between landscape features and spatial genetic flow. Predictive
inference about the parameters in (1), based on existing data from a prospective sample,
can be used to predict the influence that adding new spatially-referenced data will have on
inference about the parameters of interest.

Let [y*|A] be the distribution of the distance to the nearest genetic boundary for all spa-
tial locations where we have potential genetic allele data, and let X* be a matrix containing
the distance from the same locations to the landscape features of interest. Note that we have
only observed A at a subset of the full set of locations represented by y*. The n observed
locations in y C y™* are those in the prospective sample. We seek to choose a retrospective
sample: a set of m new locations to obtain and analyze genetic data that would result in
Ynew C ¥*. Thus we could write our combined prospective and retrospective sample as:

~ Ynew
Y [ y ] |
We could then think about a sampling or design matrix, K, that selects the prospective and
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retrospective samples from y*:
y =Ky =K(X*8+¢€").
Then equation (1) would become:
y ~ N(KX*B8,K'¥*K). (4)

We seek to find a set of new samples, and the corresponding K, that maximizes our
learning about the relationship of the landscape features to genetic boundaries. Minimizing
the design criterion:

Qx = tr(Var[B|A,K]) = tr (((KX*)T(KTi*K)—lKX*)1> (5)

minimizes the predicted variance of [3 and thus seeks to maximize the information gained
about the relationship between landscape features and spatial gene flow.

We seek a quasi-optimal solution through an iterative process in which we change K
slightly at each iteration, and then accept the change if it improves ) i, or reject the change
if it does not. Calculation of this design criterion as written in (5) involves a matrix inver-
sion with each change in K, and for each realization of y|A and thus can be quite computa-
tionally demanding. Appendix A describes an alternate formulation of this design criterion
that is equivalent, but is significantly more computationally efficient, allowing us to obtain
quasi-optimal designs through iterative switching algorithms.

3. Application: Mule Deer

We apply our approach to a landscape genetic study of mule deer in Utah and Colorado.
Mule deer are one of the primary hosts for chronic wasting disease (CWD) in the region
(Miller et al., 2006). CWD is caused by a contagious prion-based pathogen that is capable
of persistence in the environment (e.g., Miller et al., 2006). Understanding causes of barri-
ers to mule deer movement, and thus gene flow, may be helpful in understanding the spread
of this disease. In this study, we chose to investigate the effects of three hypothesized ge-
netic boundaries, the Colorado river, a major highway (Interstate-70), and boundaries of
the wildlife management units (WMUSs) in Utah and the deer animal units (DAUs) in Col-
orado. We will refer to the WMU and DAU boundaries collectively as management unit
boundaries.

In 1999-2004, spatially-referenced genetic samples were collected from 2,046 mule
deer in Utah and Colorado. With resources available to obtain microsatellite allele data
from only a fraction of these genetic samples, we applied the optimal sampling methods
described above to best learn about the effects of the landscape features described above.

For our prospective sample, we selected 45 “lattice” samples in such a way that the
minimum distance between any of these samples was maximized, thus ensuring regular
coverage of the geographic extent of the deer in the survey. For each lattice sample, the
unexamined samples that were closer to that lattice sample than to any other lattice sample
were identified, and a “close pair” was chosen randomly from these unobserved samples.
Microsatellite allele data was obtained for 17 loci for each of the animals in the prospective
sample.

We utilized the Geneland R-package (Guillot et. al., 2005b) to generate 1,100,000 itera-
tions of the Geneland MCMC algorithm, using the allele data from the prospective sample.
We discarded the first 100,000 as burn-in, and thinned 1/1000 of the remaining realizations,
resulting in 1000 posterior realizations of the distribution of genetic population boundaries.
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Figure 2: The prospective design, retrospective design, and hypothesized boundaries with
a representation of the Geneland posterior distribution of genetic boundary locations. Dark
cells indicate locations where there is a high probability of a genetic boundary, while lighter
cells indicate locations with a low probability.

These realizations were used in the approach we have described to make inference about
[B , f]|A] When applied to the mule deer microsatellite data, the Geneland posterior sug-
gests two main genetic populations in the spatial domain (Figure 1). As the Colorado river
and the interstate 1-70 are co-incident for a good portion of the study area (Figure 1), ad-
hoc methods such as a GIS overlay would have a difficult time making inference about
which of these landscape features are significantly related to gene flow, if any. Using the
untransformed distance to closest genetic boundary, results for the prospective sample are
shown in Table 1.

We applied the optimal sampling approach described above to select 90 retrospective
samples, based on a full model with all three landscape features included. We thus are se-
lecting samples which allow us to maximize our learning about the effect, or lack thereof, of
these landscape features on spatial gene flow. The retrospective samples, and the resulting
posterior distribution of spatial genetic boundaries, are shown in Figure 2.

The addition of the retrospective sample has allowed us to see genetic boundaries at a
finer spatial scale than was previously possible. The posterior distribution of spatial genetic
boundaries appears to coincide with the Colorado river through the middle of the study re-
gion, though there is significant structure in the posterior that does not visibly coincide with
any of our hypothesized boundaries. With this additional data, a log-transform of the dis-
tance to nearest genetic boundary variable resulted in better model fits. Log-transforming
the response in this way reflects an exponential relationship between the distance to hy-
pothesized landscape features and spatial genetic boundaries.
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Table 1: Inference on B|A for the prospective sample. In this case the response variable in
the regression model is untransformed.

95% Equal-Tailed CI

Mean 2.5% 97.5%

Prospective Sample: all hypothesized boundaries
Intercept 6.7613E+03  -1.7725E+04 4.9031E+04
Colorado river  6.8052E-01  -4.6307E-01  1.4228E+00
Management unit boundaries  3.7566E-02  -2.5188E-01  6.1877E-01
Interstate-70  2.3046E-01  -3.8445E-01  1.0888E+00

Prospective Sample: only Colorado river

Intercept  1.5506E+04 -1.3163E+04 6.4713E+04
Colorado river  8.2166E-01  6.4144E-02 1.1533E+00

We apply the model selection approach, as described previously, and show estimates
of p for models with various combinations of covariates in Table 2. The best model with
one covariate is model 2, with just the Colorado river. The best model with two covariates
is model 5, with the intercept and the Colorado river. These models have estimates of p
greater than 0.05, indicating that it is still inadequate at characterizing the distribution of
spatial genetic boundaries. The best model with three covariates is model 9, which includes
the intercept, the river, and the management unit boundaries. The 95% credible intervals
for the parameters of models 5, 9, and 12 are shown in Table 3, and histograms of these
parameters are shown in Figure 3.

From these results, we can draw some conclusions about the importance of each of the
hypothesized landscape boundaries. The Colorado river is significantly linked to spatial
genetic boundaries. The best model of every size, as measured by p, contains the Col-
orado river, and removing this covariate results in a significant increase in p. No model
without the Colorado river adequately accounts for the posterior distribution of spatial ge-
netic boundaries. In contrast, there are models that do not include the management unit
boundaries (model 8) and the Interstate (model 9), but have p-values that provide no evi-
dence of lack-of-fit. Model 9, which includes the management unit boundaries, better fits
the data (as measured by p) than does model 8, which includes the Interstate. Figure 2
shows little correspondence between the posterior distribution of genetic boundaries and
the actual management unit boundaries, but the fine spatial scale of the management unit
boundaries, relative to the Colorado river and the Interstate, allows this covariate to account
for finer-scale genetic differentiation than is accounted for by the Colorado river.

In summary, we might conclude the following about the effects of our hypothesized
landscape boundaries. The Colorado river is significantly related to large-scale gene flow
in the study region. There is some gene flow not accounted for by the Colorado river,
possibly at a finer spatial scale, as evidenced by the significance of the management unit
boundaries or Interstate-70 when paired with the Colorado river. This is likely to be at a
finer spatial scale, as evidenced by the better model fit obtained when the management unit
boundaries are paired with the Colorado river than when the Interstate is paired with the
Colorado river. Further work will investigate additional potential barriers to spatial gene
flow within this framework.
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Table 2: We compare multiple models by contrasting the probability p that the model does
not adequately characterize the posterior distribution of spatial genetic boundaries.

Model Terms
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1 X 0.986
2 X 0.209
3 X 0.392
4 X 0.402
5 X X 0.209
6 X X 0.400
7 X X 0.346
8 X X X 0.008
9 X X X <1073
10 X X X 0.276
11 X X X <1073
12 X X X X <1073

4. Discussion

We have presented an approach for linking genetic allele data to hypothesized landscape
boundaries to spatial gene flow, and illustrated how this approach lends itself to optimal
sampling methods. While this approach can identify landscape features that are not signifi-
cantly linked to gene flow, care must be taken in interpreting the results. The interpretation
of B]A, for example, is unclear. Further work will address interpretability of the model,
as well as alternative approaches for model-based characterization of environmental effects
on spatial gene flow.

Optimal sampling methods can significantly improve the utility of genetic data, espe-
cially in data that are spatially clustered, as were the mule deer samples in our application.
Simulation studies (not shown here) show that, in the case where there are two genetic pop-
ulations separated by one boundary, a set of optimal retrospective samples can result in at
least an order of magnitude reduction in the design criterion (trace of the variance matrix)
when compared to random samples. This can amount to significant savings in both cost
and time as less data, and thus less laboratory work and analysis, can lead to comparable
information about spatial gene flow.

Our retrospective optimal design criterion is based on minimizing the predicted trace of
the variance matrix of the coefficients. This will maximize the predicted information gained
through adding retrospective samples. However, there is an inherent trade-off between
reducing the bias and variance of our predicted distribution. The minimization is based on
samples already analyzed, and, in an extreme example, samples could be selected at the
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Figure 3: Histograms of B |A for the best models with two, three, and four componants.
Bi-modality, with one mode centered at 0, indicates a model that does not fully account for
the posterior distribution of spatial genetic boundaries at all scales.

exact locations where we already have genetic data. The spatial structure in the data would
lead us to predict that the new data are similar to existing data, which would lead to reduced
variance but very little change in the predicted mean values of the coefficients. Thus, the
existing data could bias the optimal sampling procedure, if there is a large discrepancy
between the sizes of the prospective and retrospective samples.

Our approach to model selection is based on a two-componant multivariate Gaussian
mixture model, and assumes that spatial genetic differentiation is occuring on two different
spatial scales. This could be extended to cover the case where genetic differentiation is
occuring at 3 or more scales by increasing the number of mixture components. Inference
could be made on the number of mixture components under a Bayesian heirarchical mod-
eling framework using reversible-jump or birth-death Markov chain Monte Carlo methods
(Green 1995; Stephens 2000).
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Table 3: Inference on B|A for three models in the mule deer study.

95% Equal-Tailed CI

Mean 2.5% 97.5%

Model 5
Intercept 2.1636E-10 -2.6663E-15 3.2125E-10
Colorado River 4.2002E-05 -1.0401E-07 5.8859E-05

Model 9
Intercept 5.8274E-10  4.6719E-10 6.9000E-10
Colorado River 3.4558E-05 2.8181E-05 4.0146E-05
WMU and DAU Borders 6.6617E-05  5.0692E-05 8.1096E-05

Model 12
Intercept 8.7248E-09  6.6738E-09 1.0967E-08
Colorado River 2.7606E-05  2.1944E-05 3.3259E-05
WMU and DAU Borders 2.8177E-04  2.0777E-04 3.5354E-04
Interstate-70  4.5832E-05  3.2496E-05 5.9516E-05
ment 1434-06HQRU1555.
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Appendix A: A Computationally-Efficent Design Criterion For Optimal
Retrospective Sampling

We derive a computationally efficient form for our retrospective design criterion, Qx =

tr(Var(B|A, K)), utilizing the following properties (e.g., Harville 2008) of the trace of a
matrix:

tr(yA+6B) = ~tr(A) + dtr(B) , +,0 constant (6)

tr(ABC) = tr(CAB) = tr(BCA). (7)

We also make extensive of Moore-Penrose generalized inverses for non-square matrices in
intermediate steps of our derivation.

Qx =tr [Var(B\A,K)}
= tr [y (Var(Bly", A, K)) + Vary (E(Bly", A.K))]

Implicit in our statistical model (1) and (2) is the assumption that [3|y*, A, K] = [B]y*, K].
That is, the influence of landscape covariates on genetic differentiation (,@) depends on the
observed allele data (A) only conditionally through y, the distance to the nearest genetic
boundary. Thus,

= tr {Ey* (VGT(B’y*vK)) + Vary- ( E(Bly* ))]
=tr [Ey* (Var(B]y*,K))} +tr {VCW’ < (Bly*, K ﬂ
= By [tr (Var(B]y*,K))} +tr [Var ( )}

where B,y = [(KX)'(KX,-K') ™ (KX)]- < X)T Ky’
= By |tr (Var(Bly". K. 4)) | + tr | By (BB ) = By (Byx) By (Byxc)|
= Ey- [tr (Var(B|y*,K))] (8)
+tr | By (BB )| ©)
— tr [y (B) By (B (10)

We consider each of the terms (8)-(10) in turn. First, using generalized inverses, (8)
becomes:

Ey- [tr (Var(B]y*, K))}

By [tr (KXY (K3y-K') " (KX)] )]
By« [tr (KX) ' K3y-K'(KX)' )] .
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If we have J realiztions of y*| A, we could use Monte Carlo integration to approximate (8):

Ey- [tr (Var(my*,K))] ~ ;itr (KX)'KSy-K'(KX)™Y). (1)
j=1
Expression (9) can be written:
tr [Ey* (5@(52,1{)} = By [“’ (ﬁyxﬁ;K)}
= By [tr( [(KSy-K')(KX)) (KX)'S, Ky
(

x([ KX) (KSy-K')~ (KX)]*l(KX)’Z;*le*y)].

Utilizing generalized inverses and cancelling terms yields:
= Ey- [tr (KX) ™ (Ky")(Ky")' (KX)™')]

which can be approximated by
J
o1 1Ry D) (Ky* )Y -1
~J§tr(<KX> Ky D) (Ky DY (KX)™),  (2)

where y*() is the j-th realization from [y*|A].
The third term (10) can be approximated by:
- /
~ ~/ 1 *(7 1 *
P By (B0 By (B0 | =t | | 53 Gy | | 53 Gy
j=1 j=1

where GjK = (XY (K3 UK (KX)] (KXY K

=tr J2 Z Z Gme ()

m=1n=1

which yields the following, after expanding and cancelling terms:

[ = lel (KX)~ >><Ky*‘"))’(KX)/‘1] . (13)

Thus, combining (11), (12), and (13) yields an approximation for Qxk.

Qk = tr(Var[B|A,K])

J
~ tr [(KX)_l G ; KUK’ +

J
Z Ky*W)(Ky* )Y

*7
1 J J
- 2 20 Ly )y Y )0
— tr [(KX)*lKZK’(KX)’*l] ,
1 J . . ,, 1 J I ,
where Z = 5 z; (20 4 y*Dy*0)) — = z:l z:ly*(m)y*(n) ‘
J= m=1n=
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This has a distinct advantage in that Z can be calculated once, and then used at each iteration
of the optimal sampling switching algorithm. In practice, we have found that stability is
vastly improved by removing the need to calculate the generalized inverses of the rank-
deficient matrices (KX ) and (KX )', leading to an equivalent and more stable formulation:

Qx = tr[((KX)’(KZK')*l(KX))‘l}. (14)

This final formulation is a highly efficient and stable design criterion that facilitates ob-
taining quasi-optimal samples of genetic data that maximize the information gained about
the relationship between spatial gene flow and hypothesized landscape genetic boundaries.
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