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Movement for many animal species is constrained in space by barriers such as rivers,
shorelines, or impassable cliffs.We develop an approach for modeling animal movement
constrained in space by considering a class of constrained stochastic processes, reflected
stochastic differential equations. Our approach generalizes existing methods for model-
ing unconstrained animal movement. We present methods for simulation and inference
based on augmenting the constrained movement path with a latent unconstrained path
and illustrate this augmentation with a simulation example and an analysis of telemetry
data from a Steller sea lion (Eumatopias jubatus) in southeast Alaska.
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1. INTRODUCTION

The movement of animals and humans is a fundamental process that drives gene flow,
infectious disease spread, and the flow of information and resources through a population
(Hanks and Hooten 2013; Coulon et al. 2006; Hooten et al. 2007; Scharf et al. 2015). Move-
ment behavior is complex, often exhibiting directional persistence, response to local envi-
ronmental conditions, dependence between conspecifics, and changing behavior in time and
space.While technological advances have allowedmovement (telemetry) data to be collected
at high resolution in time and space, mostmovement data still exhibit nonnegligible observa-
tion error, requiring latent variable approaches, such as hidden Markov models (HMMs) or
Bayesian hierarchical models (BHMs) to provide inference for movement parameters. The
field of movement ecology is broad and growing; many different modeling approaches have
been proposed for different species exhibiting different behaviors (e.g., Hooten et al. 2017).
A majority of attempts to model movement stochastically rely on unconstrained stochastic
processes, with positive probability of movement to any region in space (typicallyR2). This
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Figure 1. Sea lion telemetry data. Telemetry data from 30days of observation of a sea lion (Eumatopias jubatus)
in southeast Alaska, obtained using the ARGOS system.

continuous-space assumption is realistic for many species, but is clearly violated for others,
such as marine animals swimming near shorelines (Bjørge et al. 2002; Johnson et al. 2008;
Small et al. 2005) or ants constrained to walk inside the confines of a nest (Mersch et al.
2013; Quevillon et al. 2015). In addition, measurement error on telemetry data often results
in biologically impossible recorded animal locations, such as a seal being located miles
inland, or two successive ant locations being separated by an impassible wall.

We consider spatially constrained animalmovement, where an animal can only be present
within a known subsetD of R2. To illustrate the need for movement models constrained by
space, we consider movement of a Stellar sea lion (Eumatopias jubatus), a marine mammal
that stays entirely in the water or hauled-out on the shoreline. Figure 1 shows telemetry
data obtained using the ARGOS system (ARGOS 2015) from one sea lion over a 30-day
observation period from December 6, 2010, to January 5, 2011. Stellar sea lions have expe-
rienced recent fluctuations in population size and could be threatened by disease, increased
fishing in Northern waters, and other factors (Dalton 2005). Understanding where sea lions
spend time can inform species management decisions and fishing regulations off the coast
of Alaska. Telemetry data provide a natural approach to studying Stellar sea lion space use.
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Remote tracking of marine mammals is challenging, because common tracking systems
(such asGPS) are impededbywater.While the sea lion is always either in thewater or hauled-
out meters from the water’s edge, many of the telemetry locations are kilometers inland
(Fig. 1). If amovementmodelwerefit to the datawithout accounting for the constraint that the
sea lion remain within water at all times, the posterior distribution of paths the animal could
have taken would overlap land. This may lead to biased inference for space use or resource
selection of pinnipeds (Brost et al. 2015), which could, in turn, lead to inefficient species
management decisions. Additionally, inference without considering the spatial constraint
(for example, the need to go around an island between telemetry observations) could lead
to biased estimates for parameters governing animal movement.

Statistical inference for constrained movement is computationally challenging, because
the spatial constraintD oftenmakes the evaluation of density functions only possible numeri-
cally.We present an approach formodeling constrained animalmovement based on reflected
stochastic differential equations (RSDEs), which have been used to model constrained pro-
cesses in many fields. To implement our approach, we present a Markov chain Monte Carlo
(MCMC) algorithm for sampling from the posterior distribution ofmodel parameters by aug-
menting the constrained process with an unconstrained process. We illustrate our approach
through a simulation example and an application to telemetry data from the sea lion shown
in Fig. 1.

2. MODELING CONSTRAINED MOVEMENTWITH
REFLECTED STOCHASTIC DIFFERENTIAL EQUATIONS

Stochastic differential equation (SDE) models are popular stochastic process models for
animal movement (Brillinger et al. 2002; Brillinger 2003; Johnson et al. 2008; Preisler et al.
2013; Russell et al. 2017). Brillinger (2003) considered simulation of animal movement
under a constrained RSDE model, but did not consider inference under such a model. We
develop a class of SDE models that can capture a wide range of movement behavior and
then propose approaches for simulation and inference under this class of models.

2.1. MODELING OBSERVATIONAL ERROR

In general, we assume that we observe animal locations st , t ∈ {τ1, τ2, . . . , τT } at T
distinct points in time {τt , t = 1, . . . , T }. We assume that the locations are in R

2, with
st ≡ (s(1)

t , s(2)
t )′ representing the observed location at time τt . The extension to higher

dimensions (e.g., three-dimensional space) is straightforward. The observations are assumed
to be noisy versions of the true animal location xt ≡ (x (1)

t , x (2)
t )′ at time τt , with observation

error distribution
st ∼ �(xt ; θ) (1)

where θ contains parameters controlling the distribution of observations centered at the
true location. We begin by leaving this observation error distribution unspecified, develop
a general framework for inference, and then apply a specific class of models to the sea lion
telemetry data.
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To allow for switching between notation for discrete and continuous-time processes, we
adopt the following convention for subscripts. A Greek letter in the subscript implies an
observation in continuous time, with xτ being the location of the animal at time τ . We use
a standard Latin letter in the subscript to index a set of locations at a discrete set of times;
thus, xt = xτt represents the individual’s location at time τt . We also adopt the notation that
xs:t ≡ {xs, xs+1, . . . , xt−1, xt } represents the set of (t − s +1) observations in discrete time
between the sth and t th observations (inclusive) in the sequence.

In the next section, we will develop a model for movement based on an approximate
solution to an SDE. As this approximation operates in discrete time, with a temporal step
size of h, the approximation yields latent animal locations xτ : τ ∈ {0, h, 2h, . . . , T h} at
discrete times.

2.2. A GENERAL SDE MODEL FOR ANIMAL MOVEMENT

We first consider the unconstrained case (D ≡ R
2) and then consider constrained pro-

cesses. A class of SDE models that can capture a wide range of movement behavior are
expressed as follows. Let the individual’s position at time τ be xτ and define vτ to be the
individual’s true velocity at time τ

dxτ = vτdτ. (2)

This differential equation may be equivalently written as an integral equation (e.g., Hooten
and Johnson 2017)

xτ = x0 +
∫ τ

0
vγ dγ ;

however, we adopt the differential equation form throughout this section.
By modeling the time derivative of an individual’s velocity, we focus on modeling accel-

eration, or, equivalently, the force applied to an individual animal over time. This provides
a natural framework for modeling intrinsic and extrinsic forces applied to a moving animal.
Consider the following SDE model for the time derivative of velocity

dvτ = −β(vτ − μ(xτ , τ ))dτ + c(xτ , τ )Idwτ . (3)

In (3), β is an autocorrelation parameter,μ(xτ , τ ) is a function specifying the vector-valued
mean direction of movement (drift), perhaps as a function of time τ or current location xτ ,
wτ = (w

(1)
τ , w

(2)
τ )′ is a vector of two independent standard Brownian motion processes, I

is the 2 × 2 identity matrix, and c(xτ , τ ) is a scalar function controlling the magnitude of
the stochastic component of (3).

Several existing models for animal movement fit into the general framework defined
by (2)–(3). For example, the continuous-time correlated random walk model developed by
Johnson et al. (2008), with a constant drift μ, is obtained by setting μ(xτ , τ ) = μ and
assuming constant stochastic variance across time c(xτ , τ ) = σ . Johnson et al. (2008)
also consider a time-varying drift parameter by modeling dvτ as the sum of two stochastic
processes similar to those in (3), operating on different timescales.
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As a second example, the potential function approach to modeling animal movement
(Brillinger et al. 2001, 2002; Preisler et al. 2004, 2013) results from specifying the drift
function as μ(xτ , t) = −∇H(xτ ), the negative gradient of a potential surface H(x), which
is a scalar function defined in R

2. In the overdamped case where β → ∞, and when the
stochastic variance is constant over time and space (c(xτ , τ ) = σ ), the SDE (3) reduces to

dxτ = −∇H(xτ )dτ + σ IdWτ . (4)

See Brillinger et al. (2001) for details. The velocity-based movement model of Hanks et al.
(2011) results from taking a discrete (Euler) approximation to the SDE in (4).

As a third example, the spatially varying SDE approach of Russell et al. (2017) for
modeling spatial variation in motility (overall rate of speed) and directional bias could

be approximated by setting c(xτ , τ ) = σm(xτ ) and μ(xτ , τ ) = m(xτ )
(
− d
dx

H(xτ )
)
,

where H(x) is a potential function as in Brillinger et al. (2001), and m(xτ ) is a spatially
varying motility surface that acts by dilating or compressing time, as is done by Hooten
and Johnson (2017) using a time warping function. While Russell et al. (2017) allow this
motility or time-dilation surface to vary across space, Hooten and Johnson (2017) allowed
their warping function to vary across time to capture time-varying movement behavior in
which individuals exhibit periods of little or no movement interspersed with periods of
higher activity.

2.3. NUMERICALLY APPROXIMATING CONSTRAINED SDES

We consider simulation of a constrained SDE and describe a related approach for infer-
ence. The model in (2)–(3) is a semi-linear Ito SDE (e.g., Allen 2007), and in some cases,
such as theCTCRWof Johnson et al. (2008) and the potential function approach of Brillinger
et al. (2001), closed-form solutions are available for the transient distribution without spatial
constraints. However, when movement is constrained to occur within a fixed spatial domain
D, no closed form for the general transient distribution exists. Thus, we consider numerical
approximations to the solution of the SDE, both without the spatial constraint and using
modified approximations that account for the spatial constraint D.

The simplest andmost commonnumerical approximation to the solution to SDE (2)–(3) is
the Euler–Maruyama scheme, which results from a first-order Taylor series approximation
(e.g., Kloeden and Platen 1992). Given a temporal step size of h, the Euler–Maruyama
iterations are

xτ+h = xτ + vτ h (5)

vτ+h = vτ − β(vτ − μ(xτ , τ ))h + c(xτ , τ )Iwτ , (6)

where wτ
i id∼ N (0, hI). The numerical approximation in (5)–(6) is known to be of strong

order 1/2 (Kloeden and Platen 1992). Russell et al. (2017) use this Euler–Maruyama numer-
ical procedure to specify an approximate statistical model for spatially varying movement
behavior of ants.
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2.3.1. A Two-Step Higher-Order Procedure

Brillinger (2003) notes that, for constrained SDEs, the Euler–Maruyama scheme may
require a very fine temporal discretization to result in realistic paths, and recommends
higher-order numerical schemes be used. One modification of the above Euler–Maruyama
procedure involves replacing the velocity vτ with a first difference approximation. This is
similar to the approach taken in Runge–Kutta procedures for solving partial differential
equations (e.g., Cangelosi and Hooten 2009; Wikle and Hooten 2010; Cressie and Wikle
2011). From (5), note that vτ = (xτ+h − xτ )/h. Substituting this expression for vτ into (6)
gives

xτ+2h = xτ+h(2 − βh) + xτ (βh − 1) + βh2μ(xτ , τ ) + wτ , (7)

where wτ
i id∼ N (0, h3c2(xτ , t)I). This numerical procedure has three main benefits relative

to the Euler–Maruyama approach. First, the resulting solution to the unconstrained SDE is an
approximationof strongorder 1 (Kloeden andPlaten1992) and thus provides amore accurate
approximation to the continuous-time solution than does the Euler–Maruyama procedure.
Second, this procedure removes the latent velocity vτ from the probability distribution,
which simplifies the transition densities to only rely on animal locations at the two previous
time points. Russell et al. (2017) used the Euler–Maruyama approach tomotivate a statistical
model and treated vτ as latent variables to be estimated. The two-step procedure in (7)
removes the need to make inference on the latent v. Third, removing the latent velocity
from the approximation simplifies the solution in the presence of a spatial constraint D,
because the velocity is not constrained, but the animal’s position is constrained to occur
within D.

2.3.2. Reflected Stochastic Differential Equations for Animal Movement

The SDE in (2)–(3), whose solution is approximated by (7), is not constrained to occur
within D. One theoretical approach to constructing a constrained process is to consider a
process kτ that is defined as the minimal process required to keep xτ within D. Thus, we
modify (2)–(3) to obtain the constrained stochastic process

dxτ = vτdt + kτdt (8)

dvτ = −β(vτ − μ(xτ , t))dt + c(xτ , t)Idwτ . (9)

This approach is a so-called “reflected” stochastic differential equation (RSDE, e.g., Lépin-
gle 1995; Grebenkov 2007; Dangerfield et al. 2012), a generalization of reflected Brownian
motion. In reflected Brownian motion, a Brownian trajectory is reflected when it encounters
the boundary ∂D of the domain D. While there are many theoretical results for reflected
Brownian motion, we note that the SDE in (2)–(3) is a variation on integrated Brownian
motion, and therefore results for reflected Brownian motion are not directly applicable here.

The process kτ is defined as the minimal process required to restrict xτ to be within D
and can be described by considering a unit vector n(x) that points toward the interior of D
orthogonal to ∂D at x. Then this minimal process is defined as
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kτ =
{
0 if xτ ∈ D
−n(xτ )

n(xτ )′vτ

n(xτ )′n(xτ )
if xτ ∈ ∂D

. (10)

Under this specification, when an individual encounters the boundary ∂D, the process kτ

nullifies the component of the individual’s velocity that would carry it out of D, and the
individual’s velocity becomes parallel to the boundary ∂D until acted upon by other forces
(such aswτ ). kτ is defined when ∂D admits an orthogonal vector n, which is true for smooth
boundaries ∂D. A natural way to define ∂D is as a polygon, which is piece-wise continuous.
In this setting, n would be undefined at polygon vertices, but for a fine temporal resolution,
the latent process x will rarely or never directly encounter the vertices.

The numerical solution (approximation) to such a constrained SDE (8)–(9) can be
obtained in multiple ways. The most common approach (e.g., Lépingle 1995; Grebenkov
2007; Dangerfield et al. 2012) is to consider a projected version of a numerical solution to
the unconstrained SDE. This corresponds to the projection approach proposed by Brillinger
(2003) for a simpler SDE, who also proposes two other schemes for constraining xτ to
remain within D. We do not consider these other schemes here, but make note of them in
Discussion.

In a projected approach to solving the RSDE, the two-time-step numerical procedure in
(7) is modified by augmenting the solution xτ to the constrained SDEwith an unconstrained
process x̃τ that may occur outsideD, as follows. Conditioned on the constrained process at
previous times x1:(τ+h), the distribution of the unconstrained process x̃τ+2h is given by (7),
with

x̃τ+2h |x1:(τ+h) ∼ N
(
(2 − βh)xτ+h + (βh − 1)xτ + βh2μ(xτ , τ ), σ 2h3I

)
,

r = 3, 4, . . . , T . (11)

Any simulated animal location x̃τ+2h /∈ D that falls outside of the spatial region D is
projected onto the nearest location xτ+2h ∈ ∂D on the spatial boundary

xτ+2h = argmin
u∈D

{||u − x̃τ+2h ||}. (12)

This results in a computationally efficient approach to simulating sample paths from the
constrained SDE in (8)–(9), as the boundary ∂D can be approximated as a polygon, and
fast algorithms can be specified for projection of a point outside of D onto the polygonal
boundary ∂D. Pseudo-code for simulation of the RSDE in (8)–(9) for a given temporal step
size h is given in “Appendix A,” and R code to implement this approach is available upon
request.

3. INFERENCE ON RSDE MODEL PARAMETERS

We now consider inference on the movement parameters θ ≡ (β, σ 2)′ from observed
telemetry data {si , i = 1, 2, . . . , n}. To maintain generality in our description, we consider
a general observation error model (1), with
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st ∼ �(xt ; θ)

and with the latent movement path x1:T defined by (11)–(12). We treat our discrete-time
approximation (11)–(12) as the statistical model for the latent movement process, rather
than the RSDE in (8)–(9). This requires a sufficiently fine temporal resolution h to maintain
fidelity to RSDE (8)–(9). Our goal is inference on the latent discrete-time representation of
the animal’s movement path {xr , r = 1, 2, . . . , T } together with the movement parameters
θ ≡ (β, σ 2)′.

The main difficulty in such inference is the latent unknown movement path x1:T , because
if we were able to condition on x1:T , inference on θ would be straightforward. If the latent
movement path is unconstrained, then model (1), (11)–(12) is a hidden Markov model
(HMM), and inference can be made using recursive algorithms such as the Kalman filter
(Cappé 2005; Zucchini and MacDonald 2009; Cressie and Wikle 2011).

The projection in (12) is nonlinear; thus, we need to make inference on the states and
parameters in a nonlinear (constrained) state space model. Many methods for such infer-
ence have been proposed, including the ensemble Kalman filter (Katzfuss et al. 2016),
MCMC (Cangelosi and Hooten 2009) and particle filtering (Andrieu et al. 2010; Cappé
et al. 2007; Del Moral et al. 2006; Kantas et al. 2009). In particle filtering, the filtering
densities f (xt |s1:t ; θ) are recursively approximated using particles that are propagated at
each time point using transition density (11)–(12) and then reweighted based on observation
likelihood � (1). Particle filtering approaches to inference, like particle MCMC (Andrieu
et al. 2010), are appealing for constrained processes because they do not require the evalu-
ation of transition densities (11)–(12), which are intractable due to the projection, but only
require that they be simulated from.

3.1. INFERENCE ON RSDES THROUGH MARKOV CHAIN MONTE CARLO

To make inference on model parameters θ ≡ (β, σ )′ and the individual’s latent path
x1:T , we constructed an MCMC algorithm to sample from the posterior distribution of
x1:T , θ |s1:n . In doing so, we make explicit use of the simulation procedure in (11)–(12),
which is a discretized, constrained movement model. It would be difficult to directly obtain
the transition density function, because this would require marginalizing over the auxiliary
x̃r

qr (xr |xr−1, xr−2) =
∫
x̃r

[x̃r |xr−1, xr−2]1{argminu∈D ||x̃r −u||=xr }dx̃r ,

where [x̃r |xr−1, xr−2] is given by (11).
However, because we have a tractable conditional density for [x̃r |xr−1, xr−2], and xr

is a deterministic function of x̃r (xr is the projection of x̃r onto D), we constructed an
MCMCalgorithm that jointly updates (x̃r , xr ), as follows. At themth iteration of theMCMC
algorithm, let the current state of the latent constrained process be x(m)

1:T , augmented by

the unconstrained x̃(m)
1:T . To update (x̃r , xr ) at one time point r , we propose a new location

x̃∗
r ∼ N (x̃(m)

r , γ 2
r I) as a randomwalk centered on x̃(m)

r , with proposal variance γ 2
r . Projecting

this proposed location ontoD (if x̃∗
r 
∈ D) as in (12) gives x∗

r , the proposed individual location
at time τr . The proposed pair (x̃∗

r , x∗
r ) can then be accepted with probability
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pr = min

{
1,

[s1:n |x(m)
1:(r−1), x

∗
r , x(m)

(r+1):T ][x̃(m)
r+2|x(m)

r+1, x
∗
r ][x̃(m)

r+1|x∗
r , x(m)

r−1][x̃∗
r |x(m)

r−1, x
(m)
r−2]

[s1:n |x(m)
1:T ][x̃(m)

r+2|x(m)
r+1, x

(m)
r ][x̃(m)

r+1|x(m)
r , x(m)

r−1][x̃(m)
r |x(m)

r−1, x
(m)
r−2]

}
.

(13)

The likelihood of the data [s1:n|x(m)
1:(r−1), x

∗
r , x(m)

(r+1):T ] is the likelihood (1) of all observed
telemetry locations, conditioned on the latent path and the proposed location x∗

r (e.g., Gaus-
sian error for GPS data). Each of the transition densities (e.g., [x̃∗

r |x(m)
r−1, x

(m)
r−2]) are multi-

variate normal densities given by (11).
This approach allows for Metropolis–Hastings updates for the latent locations xr one

at a time. Block updates based on the simulation procedure could also be constructed. We
found that updating each location at a time, using adaptive tuning (e.g., Craiu and Rosenthal
2014) for each proposal variance γ 2

r resulted in acceptable mixing, both in simulation (see
Appendix B), and for the sea lion analysis in Sect. 4.

To complete the MCMC algorithm, we update the movement parameters θ ≡ (β, σ )′,
conditioned on x̃1:T . One could specify conjugate priors (e.g., a Gaussian prior for β and an
inverse gamma prior for σ 2), or one could use block Metropolis–Hastings updates to jointly
update the movement parameters β and σ at each iteration of the MCMC algorithm. We
favor this approach because it allows for more flexible prior specification. Similar update
schemes could be used for parameters in observation error model (1).

In “Appendix B,” we show a simulation example where we simulate movement con-
strained to lie within a polygon D, and make inference on model parameters. Code to
replicate this simulation study is available upon request.

4. MODELING CONSTRAINED SEA LION MOVEMENT

Having specified anRSDE-based approach for simulating animal trajectories constrained
to lie within a domainD, and for making inference on model parameters, we now apply this
approach to the sea lion telemetry data.

4.1. TELEMETRY DATA

As described in the Introduction, we consider the telemetry observations obtained from
a sea lion off the coast of Alaska from December 6, 2010, to January 5, 2011. In this 30-day
period of observation, n = 211 telemetry observations were obtained using the ARGOS
system (ARGOS 2015). The ARGOS system is unable to obtain a location fix when the
sea lion is under water; thus, the telemetry observations s1:n were obtained at n irregular
times τi , i ∈ {1, 2, . . . , n}. Each ARGOS telemetry location is also accompanied by a code
ci ∈ {3, 2, 1, 0, A, B} specifying the precision of the location fix at each time point, where
ci = 3 corresponds to observations with the highest precision and ci = B corresponds to
observations with the lowest precision. Multiple studies have shown that ARGOS error has
a distinctive X-shaped pattern (Costa et al. 2010; Brost et al. 2015), and that each error class
exhibits increasing error variance.
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4.2. MODEL AND INFERENCE

To model the X-shaped error distribution, we follow Brost et al. (2015) and Buderman
et al. (2016) and model observation error using a mixture of two multivariate t-distributed
random variables, centered at the individual’s true location xτi

si ∼
{
MVT(xτi ,�ci , νci ) w.p. 0.5

MVT(xτi ,�
∗
ci
, νci ) w.p. 0.5

. (14)

In (14), νci is the degrees of freedom parameter for ARGOS error class ci , and �ci and �∗
ci

capture the X-shaped ARGOS error pattern

�c = κ2
c

[
1 ρc

√
ac

ρc
√

ac a

]
, �∗

c = κ2
c

[
1 −ρc

√
ac

−ρc
√

ac a

]

and θc ≡ (κc, ρc, ac, νc)
′ areARGOS class-specific error parameters. SeeBrost et al. (2015)

for additional details, and Costa et al. (2010) for an empirical analysis of ARGOS error
patterns. As the distribution of ARGOS error has been studied extensively, we consider the
ARGOS error parameters θc to be fixed and known. For this study, we set these parameters
equal to the posterior means reported in Appendix D of Brost et al. (2015).

To model sea lion movement, which is constrained to be in water (xτ ∈ D), we consider
a continuous-time model defined as a linear interpolation of the numerical approximation
(11)–(12) of RSDE (8)–(9). For a given temporal step size h, taken to be h = 5 min
for this analysis, we consider an approximation to the RSDE at times tr ≡ τ1 + rh, r ∈
{0, 1, . . . , T, T ≡ 30 × 24 × 12 = 8640}. At any observation time τi , the individual’s
position is given by a linear interpolation of the discrete approximation to the RSDE at the
two nearest time points tr(i), tr(i)+1, where τi ∈ (tr(i), tr(i)+1) and

xτi = xr(i)
τi − tr(i)

h
+ xr(i)

tr(i)+1 − τi

h
. (15)

The RSDE model for movement is approximated at discrete times tr ≡ τ1 + rh, r ∈
{0, 1, . . . , T } according to (11)–(12). An alternative to this linear interpolation is to augment
the approximation times (tr ≡ τ1 + rh, r ∈ {0, 1, . . . , T }) with the observation times
(τi , i = 1, . . . , n). This results in a nonuniform step size between time points at which the
RSDE is approximated. The computational complexity of simulating the RSDE is linear in
the number of time points, so the addition of the n additional time points is computationally
feasible in many situations. The error in numerical approximation (7) to the SDE scales
with the largest time h between approximation times (Kloeden and Platen 1992), so it is
not clear that adding these n additional time points would result in an increase in numerical
efficiency. We thus retain our regular temporal resolution, with a step size of h.

For this study of sea lion movement, we characterize space use over time. While it would
be possible in some situations to model sea lion movement as being attracted to a haul-out or
other central point (Hanks et al. 2011; Brost et al. 2015), we do not consider this here because
our goal is only to characterize space use. Thus, we set μ(xτ , τ ) = 0. We also assume a
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Figure 2. Modeling movement using projected processes. A time-discretized solution to the reflected SDE is
obtained by first forward simulating from the transition density to obtain x̃t |xt−1, xt−2, and then projecting x̃t
onto D to obtain xt .

constant variance in the velocity process over time and space, with σ 2 ≡ c2(xτ , τ ). The
resulting model for the discretized movement process constrained to be within water is

xr |x̃r = argmin
u∈D

{||u − x̃r ||}, r = 1, 2, . . . , T (16)

x̃r |xr−1, xr−2 ∼ N
(
(2 − βh)xr−1 + (βh − 1)xr−2, σ

2h3I
)

, r = 3, 4, . . . , T . (17)

This model is illustrated conceptually in Fig. 2.
We complete the hierarchical state space model by specifying prior distributions for all

parameters. For the initial two time points, we specify independent uniform priors

x1 ∼ Unif(D), x2 ∼ Unif(D) (18)

and we specify independent half-normal priors for the autocorrelation parameter β and the
Brownian motion standard deviation σ

[β] ∝ exp
{
−β2/(2γ 2

β )
}
1{β>0} , [σ ] ∝ exp

{
−σ 2/(2γ 2

σ )
}
1{σ>0} (19)

with γσ = γβ = 100 as hyperparameters.
Our goal is inference on all parameters in the hierarchical Bayesian model for animal

movement in (14)–(19). We constructed an MCMC algorithm to draw samples from the
posterior distribution of model parameters, conditioned on the observed telemetry data,
using methods described in Sect. 3.1. We used variable at a time Metropolis–Hastings
updates (13) for the latent locations (x̃r , xr ) and used blockMetropolis–Hastings updates to
jointly update the movement parameters β and σ at each iteration of the MCMC algorithm.
Random walk proposal distributions were specified for all parameters, and the variance of
each proposal distribution was tuned adaptively using the log-adaptive procedure of Shaby
and Wells (2010).

To initialize the MCMC algorithm for the sea lion analysis, we first chose starting values
for movement parameters (β0 = .001, σ0 = 1km) and used a particle filtering algorithm
(Cappé et al. 2007; Kantas et al. 2009) to provide a starting movement path x1:T constrained
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(a) Posterior Path Distributiona (b) Observations and Path

Figure 3. Ten sample paths from the posterior distribution of sea lion paths are shown in a, with each path plotted
in a different color. These paths show a propensity of the sea lion to stay close to coastlines. A single path is shown
in blue in b, with the telemetry observations shown as red points, with lines connecting the telemetry observation
to the estimated location xτr . The imputed path between observed telemetry locations skirts islands and other
barriers, as the movement model constrains the sea lion to be in the water or on the shoreline at all times (Color
figure online).

to be in water. We initialized x̃r = xr for each time point and then ran the MCMC algorithm
for 200,000 iterations. Convergence was assessed visually, with chains for β, σ , and each
xr showing good mixing. The entire procedure required 14 h on a single core of a 2.7 GHz
Intel Xeon processor. Code to replicate this analysis is available upon request.

4.3. RESULTS

The posterior mean for log(σ ), which controls the variance of the Brownian motion
process on velocity, was log(σ̂ ) = 11.8, with an equal-tailed 95% credible interval of
(11.2, 12.4). The posterior mean for log(β), which controls autocorrelation beyond that
implied by IBM, was log(β̂) = −7.1, with an equal-tailed 95% credible interval of
(−7.6,−6.2). The small estimated value for β implies that this term may not be needed in
the model, and that IBM could be an appropriate model for this sea lion’s movement.

Figure 3a shows 10 realizations of paths x1:T from the posterior distribution, and Fig. 3b
shows one path realization together with the observed ARGOS telemetry locations s1:n , with
lines drawn from the telemetry locations to the realization of the individual’s location at the
time of observation. Figure 4a shows 10 realizations from the posterior path distribution
of the animal on December 11, 2010, as it navigated a narrow passage. Figure 4b–j shows
the posterior distribution of the sea lion’s location xt at 15-min intervals. Our temporal
discretization had a step size of h = 5 min. Thus, there are two time points in our latent
representation of the movement process between each shown time point in 4b–j. Using a
coarser time discretization would speed up computation at the expense of realism, as linear
interpolation (15) would result in paths that cross larger portions of land.

The spatial constraint is clear in both Figs. 3 and 4 and shows that our RSDE approach
was successful in modeling realistic animal movement that is spatially constrained to occur
within water (D). The posterior distribution of x1:T |s1:n (Fig. 3a) estimates sea lion space
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(a) Ten TT Posterior Paths on 2010−12−11 (b)  19:45

(c) 20:00

(d) 20:15

(e) 20:30

(f) 20:45

(g) 21:00

(h) 21:15

(i) 21:30

(j) 21:45

Figure 4. a Ten paths from the posterior distribution of sea lion locations as it navigates a narrow passage. b–
j In total, 5000 samples from the posterior distribution of sea lion locations at 15-min intervals. The posterior
distribution shows that the individual is constrained to be within water (shown in white) or on the shoreline.

use over the 30days of observation and indicates that the individual spends a majority of its
time near land, as expected for this species of pinniped.

5. DISCUSSION

We developed an approach for modeling spatially constrained animal movement based
on a numerical approximation to a stochastic differential equation. The base SDE is gen-
eral enough to capture a range of realistic animal movement, and the two-step procedure in
Sect. 2.2.1 leads to a computationally tractable transition density. Our approach to constrain-
ing movement is based on the reflected SDE literature and consists of projecting numerical
approximations to the solution of the SDE onto the domain D.

Our approach for inference is computationally challenging, and future workwill consider
approaches that make inference more computationally efficient. The main computational
burden for each iteration of the MCMC algorithm is projecting each latent x̃1:T ontoD. We
codedAlgorithm1 usingC++, but there is still significant room for improving computational
efficiency. Algorithm 1 assumes that ∂D is given as a polygon or set of polygons, and checks
each side of each polygon. When D is large relative to the distance an animal can move
between telemetry observations, Algorithm 1 could potentially be made more efficient by
only considering a subset of polygon edges for each time point. An additional computational
difficulty comes from the lack of conjugacy for the long latent time series x1:T . Our approach
is to use adaptively tunedMetropolis–Hastings steps for each time point. One possible future
approach is to construct a joint proposal for all x̃1:T through a forward filtering, backward
sampling algorithm (e.g., Cressie andWikle 2011) ignoring constraints. This would provide
an approach for block updates of (x1:T , x̃1:T ), which may improve mixing of the MCMC
algorithm.

We note that there are other possible approaches to simulating RSDEs. One alternative,
less common, approach for approximating the constrained SDE in (8)–(9) is to change the
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distribution of increments (7) of the unconstrained numerical approximation to be distributed
as truncated normal distributions with spatial constraint D instead of the unconstrained
Gaussian increments in (7). Cangelosi and Hooten (2009) used this approach and included
a correction term in the mean of the truncated bivariate normal distribution to better capture
the dynamics implied by the unconstrained SDE. Brillinger (2003) considered additional
approaches to simulation, including specifying a mean functionμ(x) that repels trajectories
near the boundary ∂D. Russell et al. (2017) use a similar approach to constrain antmovement
to lie within a nest.

Another approach to modeling movement constrained to lie within D is to consider
discrete space (gridded) approximations to the movement process (Hooten et al. 2010;
Hanks et al. 2015; Avgar et al. 2016; Brost et al. 2015). A discrete support allows the
spatial constraint on movement to be easily captured, but discrete space approaches can
be computationally challenging to implement when the evaluation of the transition density
requires the computation of all pairwise transitions from any grid cell to any other grid cell
(e.g., Brost et al. 2015).

We assumed that animal locations are observed with error, which is the case for most
telemetry data. If it can safely be assumed that observation locations have negligible error,
then all observations will be within D. In this setting, the projection-based approach to
inference developed in Sect. 3 could still be applied. This is true for SDE models that only
model change in location, like potential function models (4), as well as SDE models that
model change in velocity, like (2)–(3). An appealing alternative to the projection-based
approach is to consider a truncated normal (TN) transition density with suitable location
parameter μt , covariance �t , and support D

xt |x1:(t−1) ∼ TN(μt ,�t ,D). (20)

For example, the location and covariance parameters could be those defined by approxima-
tion (11) to SDE (8)–(9). The density function of the truncated normal distribution in (20)
is

qt
(
xt |x1:(t−1); θ

) =
exp

(
− 1

2 (xt − μt )
′�−1

t (xt − μt )
)

∫
D exp(− 1

2

(
v − μt

)′
�−1

t
(
v − μt

)
dv

, (21)

and fast approaches exist (Abramowitz and Stegun 2012; Genz and Bretz 2009) with acces-
sible software (Meyer et al. 2016) for computing the normalizing constant when D can be
approximated as a polygon in R2.

We have focused on SDE models for the time derivative of velocity. In some situations
it is reasonable to model movement based solely on an SDE model for the time derivative
of position (Brillinger et al. 2002; Preisler et al. 2013). The RSDE approach developed here
could also be applied in this case, though there would be no need to do two-step numerical
approximation (7). Instead, an Euler approximation or other numerical approximation to
the SDE could be used (Kloeden and Platen 1992).

Modeling movement without accounting for spatial constraints can lead to bias in move-
ment parameter estimates and resulting inference. Our work and the work of others who
have also considered constrained movement (Brillinger 2003; Cangelosi and Hooten 2009;
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Brost et al. 2015) provide approaches that formally account for constraints and lead to more
realistic animal movement and space use.
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APPENDIX A: ALGORITHM FOR SIMULATING RSDES

We here describe an algorithm for simulating from RSDEs constrained to lie within a
domain D.
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APPENDIX B: SIMULATION EXAMPLE

In this Appendix, we consider a simple simulation example that illustrates the possible
bias incurred by not accounting for constraints in movement. We consider a simple version
of the reflected SDE in (8)–(9) in which β = 0 and c(x, τ ) = σ

dxτ = vτdτ + kτdτ (22)

dvτ = σ Idwτ (23)

and where kτ is as given in (10). We refer to this constrained process as reflected integrated
Brownian motion (RIBM) because the unconstrained version of this process (when kτ = 0)
is two-dimensional integrated Brownian motion (IBM). Figure 5a shows a path simulated
from RIBM for a given polygonal constraint D. When the path is far from the boundary
∂D, the path behaves identically to IBM. When the path is near the border ∂D, it often ends
up identically on the boundary for short periods of time, because the minimal k process
keeps xt from leaving D. We also simulated noisy telemetry observations (Fig. 5b) under
Gaussian observation error at 300 regularly spaced time points

st ∼ N(xt , κ
2I), t = 1, 2, . . . , 300. (24)

We considered estimation of model parameters θ = (σ, κ)′ by specifying diffuse half-
normal priors (with variance=100) for σ and κ , and sampling from the posterior distribution
[θ |s1:300] using PMMH algorithms (Andrieu et al. 2010). Code to replicate this simulation
study is available upon request. We considered estimation from the true model, RIBM, by
constructing a particle filter using the projected simulation approach in Algorithm 1. We
estimated model parameters using an unconstrained IBM model for xτ by constructing a
particle filter without any projection or constraint. We note that it is possible to estimate
θ under IBM by marginalizing over x1:300 using the convolution approach of Hooten and
Johnson (2017), but we instead used PMMH to allow a more direct comparison between the
estimates of θ under constrained (RIBM) and unconstrained (IBM) models. Each PMMH
sampler was run for 10,000 iterations, with convergence ofMarkov chains assessed visually.

In general, the PMMH algorithm is less computationally efficient for our system than the
MCMC algorithm that we develop in Sect. 3.1. The PMMH algorithm essentially attempts a
block update of the entire latent path x1:300 at eachMCMC algorithm, while the approach in
Sect. 3.1 considers updating each xt one at a time. Code to compare both of these approaches
is available upon request.

Figure 5c shows the estimated posterior distributions for the observation error standard
deviation κ under IBMandRIBM, andFig. 5d shows the posterior distributions for theBrow-
nian motion standard deviation σ . There is little difference between constrained (RIBM)
and unconstrained (IBM) models in the posterior distribution of the observation error κ

(Fig. 5c), but the IBM model overestimates the Brownian motion standard deviation σ

(Fig. 5d). Figure A.1e shows 10 sample paths from the posterior distribution of x1:300 under
RIBM, and Fig. 1f shows 10 sample paths from the posterior distribution under IBM. From
this simulation example, it is clear that parameter estimates obtained without accounting for
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constraints in movement can show bias under model misspecification, though even under
misspecification the 95% equal-tailed credible intervals of all model parameters under IBM
include the true values simulated under RIBM. This may indicate that estimates obtained by
fitting unconstrained movement models may be useful, even when we know the underlying
movement process is constrained.
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