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We propose a spatially-explicit approach for modeling genetic variation
across space and illustrate how this approach can be used to optimize spa-
tial prediction and sampling design for landscape genetic data. We propose a
multinomial data model for categorical microsatellite allele data commonly
used in landscape genetic studies, and introduce a latent spatial random ef-
fect to allow for spatial correlation between genetic observations. We illus-
trate how modern dimension reduction approaches to spatial statistics can
allow for efficient computation in landscape genetic statistical models cover-
ing large spatial domains. We apply our approach to propose a retrospective
spatial sampling design for greater sage-grouse (Centrocercus urophasianus)
population genetics in the western United States.

1. Introduction. Landscape connectivity is “the degree to which the land-
scape facilitates or impedes movement among resource patches” [Taylor et al.
(1993)]. Connectivity among subpopulations or habitat patches is an important fac-
tor in maintaining biodiversity, understanding the spread of infectious diseases and
allocating resources for conservation. Many management efforts devote consider-
able resources to maintaining or restoring landscape connectivity [e.g., Crooks
and Sanjayan (2006)]. Natural and anthropogenic disturbance can alter the land-
scape, affecting connectivity and increasing uncertainty about the functioning of
current ecosystems. Data driven decision-making can lead to effective manage-
ment of species and ecosystems.

Spatially-referenced genetic data are commonly used to study functional con-
nectivity [e.g., Cushman et al. (2006), Durand et al. (2009), Guillot et al. (2005),
McRae (2006), Slatkin (1987)]. Genetic variation in a metapopulation is a func-
tion of gene flow and mutation, and the spatial distribution of genetic variation is
a function of migration within the metapopulation and the mating process which
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mixes genes at a fine temporal scale. Genetic data consist of a snapshot in time of
this spatio-temporal process, and are thus spatially-correlated observations. Spatial
statistical models have been used in many forms in the field of landscape genetics
[e.g., Guillot et al. (2009), Hanks and Hooten (2013), Selander (1970), Smouse
and Peakall (1999), Sokal, Oden and Wilson (1991)]. Here we introduce a spatial
statistical model with the specific aim to use the model to identify optimal spatial
sampling designs for landscape genetic data.

In Section 2, we introduce our motivating landscape genetic study, which in-
volves optimal retrospective sampling design for landscape genetics. In Section 3,
we propose a hierarchical multinomial model with latent spatial autocorrelation
for spatially-referenced genetic data. In Section 4, we describe a spatial covari-
ance function that takes into account the lekking behavior of sage-grouse, and fit
the hierarchical model from Section 3 to the sage-grouse genetic data. In Section 5,
we describe approaches for retrospective spatial sampling design based on the hi-
erarchical model from Section 3, and make recommendations on the allocation of
the retrospective sampling effort for sage-grouse genetic data in the western United
States. In Section 6, we discuss possible extensions to our latent variable approach
to modeling landscape genetic data.

2. Greater sage-grouse in the western United States. The greater sage-
grouse (Centrocercus urophasianus) is the largest species of grouse found in North
America. This species depends on sagebrush (Artemisia spp.) for both food and
cover, and the health of the sage-grouse population is a strong indicator of the
health of sagebrush in the western U.S. [Connelly et al. (2000), Patterson (1952)].
Sage-grouse are a lekking species with leks often found in natural openings in
sagebrush communities, surrounded by potential nesting habitat [e.g., Connelly,
Hagen and Schroeder (2011)]. Leks are spatial locations where, during breeding
seasons, male sage-grouse engage in competitive mating displays. Leks can be re-
markably persistent in space and time, with some leks remaining active for up to
90 years [Dalke et al. (1963), Smith et al. (2005), Wiley (1973)].

Greater sage-grouse were historically widely distributed across 12 western
states in the U.S. and three Canadian provinces, but have undergone both a pop-
ulation decline [Garton et al. (2011)] and a range contraction [Schroeder et al.
(2004)]. Quantifying the distribution of sage-grouse genetic variability across the
range of the species could be used to identify population structure and characteris-
tics of gene flow that provide insight into regions where management actions could
have the greatest impact.

2.1. Sample collection. From 2009 to 2012, sage-grouse feathers were col-
lected from sage-grouse leks during the spring breeding season. An opportunistic
sample of all the feathers observed on the lek was collected by collecting feathers
observed while traversing the lek. Feathers were placed in paper envelopes with
the spatial coordinates for the lek. Following collection, envelopes were stored in
cool, dry facilities out of direct sunlight. All envelopes and feathers collected from
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any given lek were pooled by lek, as it was impossible to determine before a lab
analysis which feathers could have come from the same sage-grouse.

2.2. Sample extraction and genotyping. DNA was extracted from feathers us-
ing QIAGEN’s DNeasy Blood and Tissue Kit and a user-developed protocol for
purification of total DNA from nails, hair or feathers. Each sample was genotyped
across a panel of 14 variable microsatellite loci, all of which have been redesigned
specifically to optimize efficacy with low quality and quantity DNA acquired from
noninvasively collected feather samples.

Each sample was amplified multiple times at each microsatellite locus to screen
for genotyping error (e.g., allelic drop out, false alleles, scoring error, etc.). If there
were any variation between the genotypes generated for each sample, samples
were genotyped another two to six times to confirm genotype accuracy. As ge-
netic material was coming from feathers, many of which were significantly weath-
ered, some samples failed at some loci. We removed from the analysis any indi-
vidual where samples failed at more than 1/3 of the loci. The program DROPOUT
[McKelvey and Schwartz (2005)] was used to identify duplicate sample genotypes
and screen for genotyping error.

By December 2012, genotype data had been obtained for 830 unique individuals
at 243 distinct leks clustered in the southwestern half of the sage-grouse range
(Figure 1). While feathers had been collected across the entire range, genetic data
were not yet available for samples from many leks by December 2012.

FIG. 1. Sage-grouse lek locations in the western United States. Feather samples were collected
from 1177 sage-grouse leks between 2009 and 2012. Microsatellite allele data from 243 of these leks
were available for analysis in March, 2013.
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3. Latent spatial models for landscape genetics. A microsatellite is a por-
tion of repetitive DNA in which certain short DNA sequences are repeated multiple
times. In transcription, it is possible for the number of repeats of the DNA segment
at a microsatellite to be either increased or decreased, as repeats are either tran-
scribed multiple times or skipped. This leads microsatellites to often exhibit high
mutation rates and corresponding high diversity in a population. An individual
strand of DNA’s microsatellite allele is characterized by the number of repeats of
the short DNA sequence. Microsatellite alleles are inherited bi-parentally, and so
are codominant, such that common alleles between two individuals shows shared
ancestry, and a greater proportion of shared alleles indicates greater relatedness.
While multiple feathers were collected at each lek, individual sage-grouse at each
lek were identified by their unique genotype.

We propose a latent spatial model for spatially referenced microsatellite allele
data where genetic relatedness is modeled using spatial correlation. In our spec-
ification, the categorical allele data are modeled using a multinomial probit data
model with latent Gaussian spatial random effects.

Consider microsatellite allele data observed at L distinct loci for each spa-
tially referenced individual in the study. At the �th locus, for � = 1,2, . . . ,L,
we denote the list of all distinct observed alleles from all individuals in the
study as {a�1, a�2, . . . , a�K�

}. The actual numeric repeat length of the allele is
not typically correlated with any important feature (e.g., fitness); rather, com-
mon alleles can indicate genetic relatedness. We will thus specify a model in
which the alleles are considered as categorical observations. In particular, we
model the two observed alleles for each (diploid) individual at each locus as
arising from a multinomial distribution with spatially varying allele probabilities
ps� ≡ (ps�1, ps�2, · · · , ps�K�

)′, where s ∈ {1,2, . . . , S} indexes the spatial lo-
cation.

Let ysip� be a vector coded such that the kth entry ysip�k = 1 if the pth (indexing
ploidy) observed allele at the �th locus is a�k for the ith individual sage-grouse at
the sth spatial lek location, and ysip�k = 0 otherwise. Then the multinomial probit
model [e.g., Albert and Chib (1993)] for categorical data is specified in terms of
latent variables, z, as follows. Let

(1) ysip�k =
{

1, zsip�k = max{zsip�a, a = 1, . . . ,K�},
0, otherwise,

where

(2) zsip�k
i.i.d.∼ N(μ�k + ηs�k,1).

The allele a�k makes up a fraction ps�k of the genetic makeup of the sage-grouse
at location s, where ps�k = P(zsip�k = max{zsip�a, a = 1, . . . ,K�}).

The mean of the latent variable zsip�k in (2) consists of the sum of two effects.
The first is μ�k , an allele specific intercept which determines the relative frequency
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of the kth allele at the �th locus across the entire population being studied. Large
values of μ�k , relative to μ�k′ , make it more likely that zsip�k will be larger than
zsip�k′ , and so the kth allele will be more prevalent than the (k′)th allele. We note
that the model (1)–(2) is invariant to a shift in all μ�k , as the likelihood is a func-
tion of the contrasts zsip�k − zsip�k′ , and not the actual values of zsip�k . Thus, if
μ�k were replaced by μ�k + c for k = 1,2, . . . ,K� and some constant c, then the
likelihood of the observed allele data would remain unchanged. To maintain model
identifiability, we fix μ�1 = 0 for � = 1,2, . . . ,L because only the relative differ-
ences (contrasts) in μ�k are identifiable.

The second term in the mean of (2) is ηs�k , which is a spatially varying random
effect that allows the allele frequencies ps� to vary over the spatial range of the
species. Consider

(3) η�k = [
η1�k η2�k · · · ηn�k

]′ ∼ N
(
0,�(θ)

)
,

where �(θ) is the spatial covariance matrix of the spatially referenced locations
for which we have observations, parameterized by θ .

We adopt a Bayesian approach to modeling, and specify prior distributions for
all parameters in (1)–(3):

μ�k ∼ N
(
0, σ 2

μ

)
, � = 1,2, . . . ,L, k = 2,3, . . . ,K�,(4)

θ ∼ [θ ],(5)

where the bracket notation “[·]” indicates a probability distribution. The prior on θ
will depend on the covariance model used, and we thus leave the prior specification
(5) in a general form for now. We note that for � = 1,2, . . . ,L, each μ�1 is fixed
at 0, and thus in (4) we do not specify prior distributions for these fixed baseline
allele intercepts.

Implicit in the multinomial model for observed alleles is the assumption that we
have observed all possible alleles at each locus. This is not likely to be the case in
most natural populations. Under the assumption that the latent allelic processes are
independent (zsip�k is independent of zsip�k′ , k �= k′), the latent model (2) is unaf-
fected by not observing some alleles, but the interpretation of ps�k changes to be
the relative probability of observing the kth allele at the �th locus of an individual
at the sth spatial location, given that one of {a�1, a�2, . . . , a�K�

} is observed.

4. Sage-grouse landscape genetic analysis.

4.1. Lek network connectivity model. In the previous section we specified a
multinomial model for spatially referenced microsatellite allele data with latent
spatial autocorrelation. Critical to our approach is the choice of covariance matrix
�(θ) for the latent spatial random effects in (3). Leks are persistent centers of sage-
grouse breeding activity, and are thus essential to gene flow and spatial genetic
variation.
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We will consider a covariance that is based on the isolation by resistance (IBR)
approach of McRae (2006) and takes into account the importance of leks in sage-
grouse gene flow, similar in spirit to the model of Knick and Hanser (2011). The
IBR approach envisions space as a graph: a set of spatial nodes (leks in our case)
connected by edges, where the edges are resistors in an electric circuit. McRae
(2006) showed that if the resistance (edge weights) of the resistors was inversely
proportional to migration rates between nodes, and migration could be modeled
as a random walk on the graph of nodes, then the resistance distance of the graph
[Klein and Randić (1993)] is proportional to linearized Fst .

Consider a spatial network with nodes at known sage-grouse leks across the
western U.S. and edge weights (conductances in the IBR framework) being a func-
tion of the Euclidean distance between leks. For the sth lek, consider the set of
“neighboring” leks indexed by t ∈ N (s), where N (s) is the set of leks that are
directly connected (neighbors) to the sth lek. We consider lek s and lek t to be
neighbors if a sage-grouse could plausibly migrate from lek s to lek t directly,
without an intermediate stop at any other lek. This is based on the migration model
for movement central to the IBR approach as described by McRae (2006).

Define the edge weight between the sth and t th leks as αst/σ
2, where αst is a

decreasing function of the Euclidean distance between the leks and σ 2 is a scal-
ing factor. Under the random walk model for migration in the IBR framework,
αst/σ

2 is proportional to the migration rate of sage-grouse between the two leks.
We consider edge weights that are decreasing functions f (dst ) of the Euclidean
distance dst between leks, and that are set to 0 for all leks that are more distant
than a maximum distance dMAX:

(6) αst =
{
f (dst ), dst ≤ dMAX,

0, dst > dMAX.

We will consider multiple functional forms for f (d) and multiple maximum dis-
tances dMAX in Section 4.3, and use information criteria to choose the functional
form and maximum distance most appropriate for the sage-grouse genetic data.
Setting edge weights equal to zero for leks that are more distant than dMAX indi-
cates that migration (and the resulting flow of genetic information) is only possible
between distant leks through the use of intermediate leks in the lek network. This
is a Markov assumption, and our resulting random effects {η�k} in (3) are Gaussian
Markov random fields.

Hanks and Hooten (2013) showed that the spatial connectivity implied by such
a random walk migration model (or an equivalent electric circuit) can be mod-
eled as an intrinsic conditional autoregressive (ICAR) Gaussian Markov random
field [Besag (1974), Besag and Kooperberg (1995)]. The spatial precision matrix
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(inverse covariance matrix) for an ICAR on the entire lek network is given by

(7)
1

σ 2 Q = 1

σ 2

⎡
⎢⎢⎢⎢⎣

∑
j �=1 α1j −α12 −α13 · · ·
−α21

∑
j �=2 α2j −α23 · · ·

−α31 −α32
∑

j �=3 α3j · · ·
...

...
...

. . .

⎤
⎥⎥⎥⎥⎦ .

We do not have observed genetic data for all known lek locations. If we divide
the leks into sampled (or observed o) and unobserved (u) leks, the spatial random
effects η (suppressing the locus � and allele k subscripts) and precision matrix Q
can be partitioned accordingly:

η =
[
ηo

ηu

]
, Q = 1

σ 2

[
Qoo Qou

Quo Quu

]

and the covariance matrix �(σ 2) of the observed leks is given by the Schur com-
plement

(8) �
(
σ 2) = σ 2[

Qoo − Qou(Quu)
−1Quo

]−1
.

We assign a conjugate inverse gamma prior distribution to σ 2:

(9) σ 2 ∼ IG(r, q),

with r and q chosen so that the prior has mean of 10 and variance of 100. We
also fixed the hyperparameter σ 2

μ = 100. Inference on the parameters ({μ�k} and
σ 2) in the full model, given by equations (1)–(4) and (6)–(9), can then be made
using a Markov chain Monte Carlo (MCMC) algorithm under a Bayesian statistical
paradigm.

4.2. Reduced-rank spatial model. Approximately 6000 known sage-grouse
leks reside across the western United States, resulting in a large (≈ 6000 × 6000)
spatial precision matrix Q representing pairwise connections between leks. The
magnitude of this spatial precision matrix will make model fitting and the compar-
ison of potential retrospective sampling designs very computationally intensive.
We thus propose a reduced-rank model for the spatial random effect η�k in (3).
Our reduced-rank approach utilizes a spectral decomposition of the spatial preci-
sion matrix Q and is similar to that of Wikle and Cressie (1999), Berliner, Wikle
and Cressie (2000) and others.

For a fully observed lek network, η�k ∼ N(0, σ 2Q−), where Q/σ 2 is an ns ×ns

precision matrix. The spectral decomposition of Q yields

Q = MD−M′,
where the columns of M are the eigenvectors of Q and D is a diagonal matrix
containing the respective eigenvalues {λ1, λ2, . . . , λns } of Q−. Then the spatial
random effect can be expressed as

η�k = Mδ�k,
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where

δ�k ∼ N
(
0, σ 2D

)
.

Then a reduced-rank version of the spatial random effect is given by taking only the
first ne eigenvectors of Q− and setting λm = 0 for all m > ne. This approximates
the random effect η�k with a random effect η̃�k that captures a portion of the spatial
structure in Q−. In practice, ne can be chosen so that η̃�k ≈ η�k but ne is still much
smaller than ns , the number of leks in the network. This leads to a computationally
efficient representation of the spatial random effect, with (3) becoming

η̃s�k = m̃′
s δ̃�k,(10)

δ̃�k ∼ N
(
0, σ 2D̃

)
,(11)

where m̃′
s is the sth row of M̃, the ns × ne matrix of the first ne eigenvectors of

Q−, and D̃ is the ne × ne diagonal matrix of the first ne eigenvalues of Q−.
The complete hierarchical statistical model we have described for the multino-

mial allele model with latent reduced-rank spatial random effects is

ysip�k =
{

1, zsip�k = max{zsip�a, a = 1, . . . ,K�},
0, otherwise,

zsip�k ∼ N(μ�k + η̃s�k,1),

η̃s�k = m̃′
s δ̃�k,

δ̃�k ∼ N
(
0, σ 2D̃

)
,

μ�k ∼ N
(
0, τ 2)

,

σ 2 ∼ IG(r, q).

Full-conditional distributions are available for all parameters in this hierarchical
model, and are given in the supplemental article [Hanks et al. (2016)].

4.3. Model fitting. For our analysis of sage-grouse genetic data, two functional
forms for f (d) in (6) were specified, inverse distance [f1(d) = 1/d], and inverse
squared distance [f2(d) = 1/d2]. For each of these functional forms, three differ-
ent models with dMAX being specified as 18 km, 25 km and 50 km were specified.
The six resulting spatial models were each fit to the observed allele data from 830
feather samples collected at 243 distinct leks (Figure 1) across the western U.S.
Under a Bayesian statistical paradigm, an MCMC algorithm was used to obtain
samples from the posterior distribution of parameters in each network model, con-
ditioned on the observed sage-grouse genotype data. Convergence was assessed
visually, with chains showing good mixing.

The models were compared using the deviance information criterion (DIC) of
Spiegelhalter et al. (2002) (Table 1). The best model (DIC = 661,844) was the
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TABLE 1
Comparison of spatial lek-network models based on DIC

Model f (d) dMAX DIC

1 1/d2 25,000.00 661,844
2 1/d 50,000.00 662,409
3 1/d 25,000.00 664,848
4 1/d2 50,000.00 670,883
5 1/d 18,000.00 671,375
6 1/d2 18,000.00 674,832

network model with edge weight between leks inversely proportional to the square
of the distance between leks [f1(d) = 1/d2] and dMAX = 25 km. We note that
dMAX gives the distance at which pairwise edges between leks and corresponding
entries of Q are set to zero, implying conditional independence between two leks
further apart than 25 km, conditional on the random effects ηs�k at all other leks.

For the following analysis, we focus only on the model with the best (low-
est) DIC. This corresponds to an empirical Bayesian approach to model fitting.
An alternative approach would be to assign a prior distribution to the exponent
(ξ ) in f (d) = d−ξ in (6) and jointly estimate the posterior distribution of ξ with
the posteriors for other model parameters. A similar approach could be taken for
the cutoff parameter dMAX. However, this approach would be computationally de-
manding, and in testing leads to poor mixing of MCMC chains. Our empirical
Bayes approach is similar in spirit to assigning a discrete uniform prior on the
range parameter in a geostatistical spatial model [e.g., Diggle and Ribeiro (2007)].

The posterior distribution for σ 2 in the best model has mean of 0.169 and vari-
ance of 0.015. The MCMC standard error based on the consistent batch means
estimator [Flegal, Haran and Jones (2008)] for σ 2 is 0.0011. This provides some
confidence that our MCMC algorithm has converged to the stationary posterior
distribution.

The quantity σ 2 is not easily interpreted directly, but the latent representation of
zsip�k lends an interpretation to the latent spatial covariance matrix �̃(σ 2). From
(2),

zsip�k = μ�k + η̃s�k + εsip�k, εsip�k ∼ N(0,1),

where η̃�k ∼ N(0, �̃(σ 2)). The spatial covariance matrix �̃(σ 2) is nonstation-
ary, and the average of the posterior mean diagonal elements of �̃(σ 2) is 8.43,
which is much greater than the unit variance of the nonspatial noise (nugget) con-
tained in εsip�k of (2), leading us to conclude that spatial variability in the ge-
netic data accounts for a much larger proportion of the variability than does non-
spatial (within lek) variability. Summaries of posterior distributions for {μ�k, � =
1,2, . . . ,14, k = 1,2, . . . ,K�} are not shown, but correlate well with empirical al-
lele frequencies taken over all 1136 genetic samples.
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5. Optimal retrospective sampling for sage-grouse in the western United
States. Having fit the model to microsatellite allele data from sage-grouse feather
samples collected in 2009–2012, we now consider a retrospective sampling design
for this system. Our goal is to recommend optimal regions for sampling previously
unsampled sage-grouse leks, given what is known from the spatially referenced
genetic data already collected. This requires the definition of a criterion φ(dj ) by
which we can compare J potential sampling designs (dj , j = 1, . . . , J ).

5.1. Latent Gaussian design. A common criterion to minimize for optimal
sampling of Gaussian random variables is the mean squared prediction error
(MSPE) at unobserved locations [e.g., Zimmerman (2006)]. The observations
{ysip�k} in our model are not Gaussian, rather they are categorical alleles which
we model as arising from a multinomial distribution. However, each zsip�k is a la-
tent representation of the true observation ysip�k , and zsip�k is normally distributed
such that

zsip�k = μ�k + ηs�k + εsip�k, εsip�k ∼ N(0,1).

This leads us to consider the MSPE of the latent z variables as a design crite-
rion. Full posterior predictive inference on this MSPE would be computationally
prohibitive, as it would require integrating over the entire posterior distribution.
Instead, in what follows, we will consider the parameters {μ�k} and σ 2 to be fixed
and known, and we will focus on finding optimal designs conditional on the poste-
rior mean values of model parameters. Our development of a design criterion first
focuses on the design for the latent Gaussian z, and is reminiscent of Kriging [e.g.,
Cressie (1993)]. We will then consider a design criterion that takes into account
the categorical nature of the data by integrating over the latent Gaussian z.

For the kth allele at the �th locus, we can divide the spatial locations, and their
corresponding z variables, into observed (z(o)

�k = {zsip�k : s is observed}) and un-

observed (z(u)
�k = {zsip�k : s is unobserved}) categories. The “observed” set corre-

sponds to the genetic samples obtained from the sage-grouse leks, while the “un-
observed” set will be a single unsampled sage-grouse at each unsampled lek. The
joint distribution of z�k at all leks is Gaussian:

(12) z�k =
(

z(o)
�k

z(u)
�k

)
∼ N

(
μ�k1,

(
�oo �ou

�uo �uu

))
,

where the covariance matrix of z�k is � = σ 2� + I and has been partitioned ac-
cording to observed and unobserved locations.

If z(o) are known (observed), then the mean of the distribution of z(u)
�k (condi-

tional on z(o)) is given by

(13) ẑ(u)
�k = μ�k1 + �uo�

−1
oo

(
z(o)
�k − μ�k1

)
,
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and the corresponding conditional Gaussian covariance matrix is given by

(14) � = E
[
(zu − ẑu)(zu − ẑu)

′] = �uu − �uo�
−1
oo �ou.

Each diagonal entry of � contains the MSPE for z at an unobserved location, and
we choose the sum of these entries [“A-optimality” in Harville (2008)] for our
latent Gaussian design criterion:

(15) φLG(d) = tr(�) = sum
(
diag(�)

)
.

Other possible alternatives include “D-optimality,” in which the design criterion
consists of the product of the diagonal elements of �. While D-optimality has
some desirable properties when considering optimal covariate designs, we focus
on A-optimality, which is the prevailing approach in spatial sampling [e.g., Hooten
et al. (2009), Wikle and Royle (2005), Zimmerman (2006)] and is interpretable
with the design criterion being the mean square prediction error averaged over all
unobserved spatial locations.

It is notable that neither the covariance matrix � nor the design criterion φLG(d)

depend on z(o)
�k . Additionally, this design criterion would be identical for any locus

� and allele k, as we assume in (3) that the spatial correlation is shared by all latent
allelic processes {z�k}. As the design criterion φLG depends only on the covariance
matrix �, computation of this design criterion is very efficient, as changing a de-
sign (e.g., adding a new lek to the set of previously sampled leks) only involves
evaluating (14) and (15) for a different partition of locations into “observed” and
“unobserved” in (12).

5.2. Design for categorical observations. The genetic observations are not
Gaussian, and it is not clear whether the latent Gaussian design criterion (15) is
appropriate for categorical data. We thus consider a categorical design criterion.
Consider predicting the first (of ploidy 2) observed allele at locus � for an indi-
vidual sage-grouse at an unsampled spatial location u, that is, we want to predict
yu� = (yu11�1, . . . , yu11�K)′, which will be a vector with one entry equal to 1 (indi-
cating the observed allele) and all other entries equal to zero. Note that, due to our
latent Gaussian model (1)–(3), predictions on yu� can be obtained by integrating
over predictions on (zu11�1, . . . , zu11�K�

). As we did in Section 5.1, we will con-
sider prediction and sampling design conditioned on the posterior mean values of
{μ�k}, σ 2 and the latent {z(o)

�k }. Our approach could be extended to full posterior
predictive inference by integrating over the posterior distribution of these parame-
ters, but this is computationally prohibitive in the case of the sage-grouse study.

If we condition on {z(o)
�1 , . . . , z(o)

�K�
}, then the mean of the latent Gaussian

(zu11�1, . . . , zu11�K�
) is (ẑu11�1, . . . , ẑu11�K�

), with each entry obtained using (13).
Our prediction of yu�|{z(o)

�1 , . . . , z(o)
�K�

} is then y
u11�k̂u�

= 1, where ẑ
u11�k̂u�

> ẑu11�a ,

a �= k̂u�, with all other entries in yu� equal to zero.
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To obtain a design criterion, we note that the MSPE of yu�|{z(o)
�1 , . . . , z(o)

�K�
} is

equal to the probability that the index ku� of the maximum entry of (zu11�1, . . . ,

zu11�K�
) is different from the index k̂u� of the maximum entry of (ẑu11�1, . . . ,

ẑu11�K�
).

Each zu11�a is marginally distributed as

zu11�a|{z(o)
�a

} ∼ N
(
ẑu11�a,ψ

2
u

)
,

where ẑu11�a is given by (13) and ψ2
u is the uth diagonal element of � in (14).

While the latent z random variables are correlated in space, they are uncorrelated
between alleles; that is, zu11�a is independent of zu11�a′ for a �= a′, and zu� =
(zu11�1, zu11�2, . . . , zu11�K�

)′ is distributed

(16) zu�|{z(o)
�a , a = 1, . . . ,K�

} ∼ N
(
ẑu�,ψ

2
uI

)
.

Without loss of generality, suppose that the index k̂u11� of the maximum ẑu11�a

is k̂u11� = K�; that is, the observed allele is the last allele in the list. Then the
probability of an incorrect categorical allele prediction is

θu� = P
(
ku11� �= k̂u11�|{z(o)

�a , a = 1, . . . ,K�

})
= 1 − P

(
ku11� = k̂u11�|{z(o)

�a , a = 1, . . . ,K�

})
= 1 − P

(
zu11�1 − zu11�K�

< 0, zu11�2 − zu11�K�
< 0, . . . ,

zu11�K�−1 − zu11�K�
< 0|{z(o)

�a , a = 1, . . . ,K�

})
,

which is an orthant probability of the multivariate normal wu� ∼ N(Lẑu�,ψ
2
uLL′),

defined as

(17) wu� =

⎡
⎢⎢⎢⎣

wu11�1
wu11�2

...

wu11�K�−1

⎤
⎥⎥⎥⎦ = Lzu� =

⎡
⎢⎢⎢⎣

1 0 0 · · · −1
0 1 0 · · · −1
...

. . .
...

0 0 · · · 1 −1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

zu11�1
zu11�2

...

zu11�K�

⎤
⎥⎥⎥⎦ ,

with L a contrast matrix of dimension (K� −1)×K�. Our proposed categorical de-
sign criterion is then the sum of this probability for each locus at each unobserved
location:

φcat(d) = ∑
u

∑
�

θu�

= ∑
u

∑
�

(
1 − P(wu11�1 < 0,wu11�2 < 0, . . . ,wu11�K�−1 < 0)

)
.

(18)

Note that this design criterion considers prediction error at each locus for one
individual at each unobserved sample location.

The calculation of each of the multivariate normal orthant probabilities {θu�} is
simplified, as the correlation matrix can be written as LL′ = I+11′. In this special
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case, each multivariate orthant probability can be expressed as a one-dimensional
integral on [0,1] [Genz and Bretz (2009), pages 3, 16–17, Marsaglia (1963)]:

θu� = 1 −
∫ 1

0

K�−1∏
k=1

(
1 − F

(
ẑu�K�

− ẑu�k√
ψ2

u

− F−1(t)

))
dt,

where F is the CDF of a standard normal random variable. We approximated this
one-dimensional integral using numerical quadrature. This provides an efficient
approach to calculating the categorical design criterion φcat (18).

5.3. Optimal sampling for reduced-rank spatial models. Computing the de-
sign criteria (15) and (18) requires calculation of the inverse �−1

oo which has
computational cost of O(n3

d), where nd is the number of locations in the pro-
posed design. In the sage-grouse study, nd = 1177 leks were sampled during
the years of 2009–2012. For our retrospective design, we consider adding leks
to the sampling design, which will increase this number. Inverting a matrix of
this size is computationally demanding, especially if we wish to compare a large
number of potential sampling designs. However, we can take advantage of the
reduced-rank spatial model presented in Section 4.2 to significantly reduce the
computational cost of computing the design criterion by replacing the covari-
ance matrix � = �uu − �uo�

−1
oo �ou (14) with a reduced-rank approximation

�̃ = �̃uu − �̃uo�̃
−1
oo �̃ou.

Note that the reduced-rank covariance matrix �̃ of all observed and unobserved
nodes can be decomposed and written in block form:

�̃ = σ 2M̃D̃M̃′ + I

= σ 2 ·
[

M̃o

M̃u

]
D̃

[
M̃′

o M̃′
u

] +
[
Io 0
0 Iu

]
,

which leads to a reduced-rank version of the Kriging covariance matrix:

�̃ = �̃uu − �̃uo�̃
−1
oo �̃ou(19)

= σ 2M̃uD̃M̃′
u + Iu

(20)
− (

σ 2M̃uD̃M̃′
o

)(
σ 2M̃oD̃M̃′

o + Io

)−1(
σ 2M̃oD̃M̃′

u

)
.

This decomposition requires the inverse of an nd ×nd matrix, but the inverse in
question can be expressed using the Sherman–Morrison–Woodbury identity [e.g.,
Gentle (2007), page 221]

(21)
(
M̃o

(
σ 2D̃

)
M̃′

o + Io

)−1 = Io − M̃o

(
1

σ 2 D̃−1 + M̃′
oIoM̃o

)−1
M̃′

o.
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The resulting expression requires only the inverse of a matrix of dimension-
ality ne × ne, where ne is equal to the number of eigenvectors retained in the
reduced-rank version of Q and typically ne � nd . This formulation allows us to
take advantage of the reduced-rank approximation to the spatial covariance in the
computation of the sampling criteria φLG(d) and φcat(d). Similar reduced-rank ap-
proximations have been used for prediction [e.g., Wikle and Cressie (1999)], but
not, to our knowledge, in optimal sampling design.

5.4. Recommendations for retrospective sage-grouse sampling effort. To
make recommendations for the retrospective sampling effort of sage-grouse leks,
we identify optimal retrospective designs under both the latent Gaussian MSPE
sampling criterion (15) and the categorical sampling criterion (18). As described in
Section 4.3, genetic data from 830 individuals at 243 distinct leks (Figure 1) were
used to fit the statistical model proposed in Section 4.2. Each of these leks were
considered to be observed for our purpose of identifying an optimal retrospec-
tive design. We also included 934 additional leks where feather samples had been
collected during 2009–2012 at these additional leks, but had not been genotyped
before the resumption of sampling. The genetic information from these samples
could thus not be used to estimate the spatial covariance parameters in our statis-
tical model, but knowing that samples have been obtained from these additional
sampling locations can aid in identifying regions of high sampling importance for
the retrospective sampling effort. This results in a total of 243 + 934 = 1177 leks
which we consider to be observed, or sampled, in the existing design.

Given this set of observed leks, we consider adding R additional leks to the
existing design. The motivation behind this type of design is that resources may
exist to collect genetic information (e.g., sage-grouse feathers) at only a subset of
the known leks across the western United States. Under such a constraint, we chose
this retrospective design of R additional leks so that the sampling design criterion
is optimized. For illustrative purposes, we consider R = 10.

A complete search of the space of retrospective designs would be computa-
tionally prohibitive, thus we constructed an iterative search algorithm to identify
a pseudo-optimal retrospective design. We first considered 10,000 random retro-
spective designs of ten additional leks randomly chosen from all leks where feath-
ers had not been collected (unsampled leks), and computed the latent Gaussian
sampling criterion (15) and categorical criterion (18) for each. We also considered
multiple manually specified initial designs chosen so that the ten new leks were
regularly spaced in geographic space. The best six designs from this initial search
were used as initial designs in an iterative exchange algorithm [Royle (1998)]. The
switching algorithm is detailed in Algorithm 1.

We ran the iterative algorithm for Nswitch = 1000 iterations for each initial de-
sign. A local minimum was found for each initial design; the resulting designs
were then compared, and the design with the smallest design criterion was chosen.
This process was repeated once for the latent Gaussian criterion (15) and once for
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Algorithm 1 Sampling design switching algorithm
1: Set the initial design d = (s1, s2, . . . , sR) � R = the size of the design
2: Compute the initial design criterion φ(d)

3: Set Nswitch = the number of iterations
4: Set dMAX
5: for iter in 1:Nswitch do
6: for v in 1:R do
7: Draw s∗

v uniformly from {s : ‖s − sv‖ < dMAX}
8: Compute the design criterion φ(d∗) for d∗ = (s1, . . . , sv−1, s

∗
v ,

sv+1, . . . , sR)

9: if φ(d∗) < φ(d) then
10: d ← d∗
11: return d � d is a locally-optimal design

the categorical criterion (18). The resulting optimal designs for the two criteria
are shown in Figure 2. This retrospective design is based on the estimated spa-
tial covariance for a network model of lek connectivity and provides guidance on
how states can prioritize future sage-grouse lek sampling efforts by identifying 10
leks of high sampling importance in a study designed to characterize sage-grouse
genetic diversity.

5.5. Simulation study. We conducted a simulation study to compare how ef-
fective the latent Gaussian design criterion φLG and the categorical design crite-
rion φ∗

cat are at identifying important sampling locations. Using posterior mean
parameters from our results in Section 4, we simulated spatially correlated cate-
gorical data on the entire sage-grouse lek network using the model described in
(1)–(3). We considered simulating one locus with 10 alleles for one individual at
each lek in the spatial network. We considered predicting the simulated categori-
cal observation conditional on a fixed, true value of σ 2 and the fixed, true latent
Gaussian zsip�k at each lek in the optimal design. The latent zsip�k at leks not in
the optimal design (where predictions are required) were treated as unknown. This
mimics the case in which a researcher has estimated σ 2 and zsip�k at the locations
in the optimal design from existing data, such as through the posterior mean after
model fitting as described in Section 4. In practice, there will be uncertainty about
these parameter estimates; fixing them at their true values for this simulation study
allows us to study the relative merits of the latent Gaussian and full categorical
design criteria in a “best case” scenario. As always, poor estimation of model pa-
rameters resulting from biased samples or poor choices of prior distributions could
negatively affect predictive error. For optimal designs, we used the optimal retro-
spective designs from Section 5.4, which are shown in Figure 2. This will allow us
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FIG. 2. Sage-grouse lek sampling recommendations based on latent Gaussian MSPE. Leks shown
as grey circles indicate leks that have not been sampled, while leks shown as black dots have been
sampled in 2009–2012. Leks shown as crosses are the optimal categorical retrospective lek sampling
locations under the constraint that no more than 10 additional leks are sampled in 2013. Leks shown
as open circles are the optimal latent Gaussian retrospective lek sampling locations under the same
constraint.

to study the ability of the latent Gaussian design criterion to approximate the full
categorical criterion. The predicted categorical observations were compared with
the true simulated categorical observations, and the MSPE was computed as the
number of leks where the predicted allele was not the true simulated allele. This
process was repeated 1000 times, with results shown in Figure 3.

In Figure 3(a), we show the categorical and latent Gaussian design criteria for
300 random designs. It is clear that the categorical and latent Gaussian design
criteria are not always in agreement. This is evident in Figure 2 as well, where there
is very little overlap between the optimal categorical and latent Gaussian designs.
Figure 3(b) shows the simulation MSPEs for the optimal latent Gaussian design
and the optimal categorical design for all runs in the simulation study. While the
optimal categorical design (MSPE = 2451) does, on average, predict better than
the optimal latent Gaussian design (MSPE = 2459), the difference is slight. This
indicates that the latent Gaussian design criterion may be an effective substitute
for the more computationally intensive categorical design criterion.
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FIG. 3. Simulation study comparing the categorical (φcat) and latent Gaussian (φLG) design cri-
teria. The latent Gaussian design criterion φLG shows little correlation with φcat (a). The optimal
designs from Section 5.4 were compared by simulating categorical observations on the entire lek net-
work and comparing predictions from the optimal design with actual simulated observations. While
the optimal categorical design results in better predictions than the latent Gaussian design (b), the
difference is slight.

6. Discussion. We have proposed a multinomial model with latent spatial ran-
dom effects for microsatellite allele data and illustrated how optimal retrospective
spatial designs can be obtained for landscape genetic studies. We defined spatial
covariance between leks based on a graphical lek network, with edge weights a
function of Euclidean distance between leks. This model was developed to account
for the lekking behavior of greater sage-grouse that results in a spatial constella-
tion of breeding nodes [Knick and Hanser (2011)], and will be appropriate for other
species which have clearly defined breeding areas or population locations. Alter-
nately, a landscape graph could be specified where the edge weights are defined by
the local landscape features [e.g., Cushman and Landguth (2010), Cushman et al.
(2006), McRae (2006), McRae and Beier (2007), McRae et al. (2008), Spear et al.
(2010)], and connectivity is defined under an isolation by resistance or least-cost
path (LCP) approach. Both the IBR and LCP approaches imply a nonstationary
spatial covariance, with the nonstationarity a function of landscape characteristics
hypothesized to facilitate or impede gene flow. Hanks and Hooten (2013) parame-
terized the edge weights in an ICAR spatial model based on landscape covariates,
and made inference on parameters related to the resistance of different landscape
covariates using a Bayesian approach.

We have not included fixed covariate effects in our latent model (2), rather we
have modeled only population-level allele prevalence (μ�k) and latent spatial ran-
dom variation ηs�k . If the loci used in the analysis are from genes influenced by
selection for specific landscape features, then a linear predictor x′

sβ�k could be in-
cluded in the mean of (2), where xs is a vector containing landscape characteristics
at the sth spatial location, and β�k are allele-specific regression parameters which
provide indications of the effect of selection on each allele. In the case where the
loci are selectively neutral, there is no reason to assume that allele frequency would
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be linked to the landscape features of the spatial locations where the individuals are
observed. Loci could be classified as being selectively neutral if a regression analy-
sis reveals no significant relationships between allele prevalence and the landscape
characteristics in x.

We also assumed in (3) that the latent allelic spatial effects ηla have the same
spatial covariance matrix �(θ) for each locus and allele. This implies that the pro-
cesses driving spatial variation in allele frequencies are the same for each locus. If
the loci in question have similar mutation rates, then this assumption is likely to
be met, as the remaining microevolutionary processes driving spatial variation in
allele frequencies (e.g., mating, survival and movement) should be shared across
loci. If mutation rates are highly variable between loci, then (3) could be general-
ized to allow for loci-specific covariance matrices [e.g., η�k ∼ N(0,��)].

While genetic data were collected from 2009 to 2012, we did not include a
temporal component in our model. The main assumption implicit in collapsing
over time is that the mean lek-specific allele probabilities {ps�k} are constant from
2009–2012. One could consider allowing the spatial allele probabilities to vary
over time, but because no leks were visited more than once, we proceeded with this
simplifying assumption. Additionally, before the start of the 2013 season, geno-
typed feather samples were only available for leks in the southwestern half of the
sage-grouse range. When genotype data are available from the northeastern half of
the range, the analysis could be performed with more complete observations.

Other considerations reflecting our a priori understanding of the metapopulation
structure could also be considered in the sampling design. If population delineation
is likely to be small across the range of the species, then regular spatial coverage
might be preferred. If directional climate change or habitat change is shifting the
species distribution, areas at both the trailing and leading edge may be important
to sample, as selective pressures may be greater in these locations. Even in a stable
species distribution, edge or peripheral populations tend to have smaller effective
population sizes, and thus are subject to more change due to random processes, po-
tentially making them of higher importance for sampling [Schwartz et al. (2003)].
Thus, any process that could cause a lek to be small and subject to drift (e.g., close
to energy development or agricultural tillage), or to be large and under unique se-
lective pressures, could be a cause for prioritization of that lek in the sampling
process. Similarly, the large geographic range of sage-grouse means that different
populations may be subject to different selective pressures. Areas that are in eco-
logically unique habitats may be important to sample to assess if unique genetic
adaptations (e.g., local adaptation) have occurred. Cryptic species, subspecies or
distinct populations segments can be found by sampling these areas. The design
criteria proposed in this manuscript focus on minimizing the global uncertainty in
our understanding of population genetics. Future work will consider local design
criteria that emphasize understanding changes on the fringes of a population.

The use of a network model assumes that we know the location of all sage-
grouse leks across the study region. In many situations, it would be more real-
istic to assume that there are subpopulations at many unknown locations across
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the study region. In this case, the latent spatial processes could be modeled using
a continuous Gaussian random field instead of the discrete-space network model
used in this paper. Nonstationary spatial covariance could be modeled using spatial
deformation approaches [e.g., Schmidt and O’Hagan (2003)] or convolution-based
covariance functions [e.g., Calder and Cressie (2007)]. Hierarchical spatial model-
ing of landscape genetic data provides new opportunities to provide inference for
landscape effects on gene flow within a formal statistical framework.
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SUPPLEMENTARY MATERIAL

Full conditional distributions (DOI: 10.1214/16-AOAS929SUPP; .pdf). Here
we provide full conditional distributions for all parameters in the hierarchical sta-
tistical model with latent reduced-rank spatial random effects.
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