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Circuit Theory and Model-Based Inference for
Landscape Connectivity

Ephraim M. HANKS and Mevin B. HOOTEN

Circuit theory has seen extensive recent use in the field of ecology, where it is often applied to study functional connectivity. The landscape
is typically represented by a network of nodes and resistors, with the resistance between nodes a function of landscape characteristics.
The effective distance between two locations on a landscape is represented by the resistance distance between the nodes in the network.
Circuit theory has been applied to many other scientific fields for exploratory analyses, but parametric models for circuits are not common
in the scientific literature. To model circuits explicitly, we demonstrate a link between Gaussian Markov random fields and contemporary
circuit theory using a covariance structure that induces the necessary resistance distance. This provides a parametric model for second-order
observations from such a system. In the landscape ecology setting, the proposed model provides a simple framework where inference can be
obtained for effects that landscape features have on functional connectivity. We illustrate the approach through a landscape genetics study
linking gene flow in alpine chamois (Rupicapra rupicapra) to the underlying landscape.

KEY WORDS: Conditional autoregressive models; Gene flow; Landscape genetics; Nonstationary spatial covariance.

1. INTRODUCTION

Circuit theory has been successfully used to study connec-
tivity in a wide range of fields, including molecular chemistry
(Zhu and Klein 1996; Klein et al. 2004), collaborative recom-
mendation (Fouss et al. 2007), communications network anal-
ysis (Tizghadam and Leon-Garcia 2010, 2011), social network
analysis (Kunegis, Lommatzsch, and Bauckhage 2009), and ran-
dom walks on a graph (Chandra et al. 1996; Volchenkov 2011).
Circuit theory has also seen extensive recent use in landscape
ecology, where it has been theoretically linked to animal move-
ment and gene flow in heterogeneous landscapes (McRae 2006;
Cushman et al. 2006; McRae and Beier 2007; McRae et al.
2008; Urban et al. 2009; Cushman and Landguth 2010; Dyer,
Nason, and Garrick 2010; Lookingbill et al. 2010; Owen-Smith,
Fryxell, and Merrill 2010; Rayfield, Fortin, and Fall 2010; Saura
and Rubio 2010). In these latter cases, the landscape is specified
as a raster grid with connectivity between grid cells determined
by landscape characteristics and modeled based on circuit the-
ory (Figure 1). Circuit theory provides a flexible framework
for modeling nonstationary connectivity, and shows promise for
predicting effects of landscape and environmental change on
connectivity (e.g., Storfer et al. 2007; Spear et al. 2010).

A key challenge in modeling landscape connectivity using cir-
cuit theory is to estimate the relative resistance values of various
landscape characteristics (e.g., Spear et al. 2010). In applications
of circuit theory other than landscape ecology, resistance values
are typically known, or all resistors in the circuit are assumed
to have equal resistance. In these cases, the focus is typically on
exploratory analysis of the connectivity implied by viewing the
system as a circuit, rather than on estimating resistance values
based on observations. In contrast, the goal in landscape ecolog-
ical applications of circuit theory is to understand the impact that
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different landscape characteristics have on connectivity. Obser-
vations are typically second order, and come in the form of an
observed pairwise distance matrix representing the process un-
der study (e.g., spatial gene flow in landscape genetics). The
most common approach used to estimate resistance values for
different landscape characteristics is to choose between a set
of prespecified candidate resistance values for each landscape
covariate hypothesized to have an effect on connectivity (e.g.,
Cushman et al. 2006; Cushman, McKelvey, and Schwartz 2009).
Each set of candidate resistance values is used to create a hypoth-
esized resistance distance matrix between the observed spatial
locations in the study, where the resistance distance is computed
based on circuit theory. The correlations between each of the
hypothesized distance matrices and the observed distance ma-
trix are computed, and the set of candidate resistance values that
results in the highest correlation to the observed distance ma-
trix is chosen (e.g., Cushman et al. 2006; Cushman, McKelvey,
and Schwartz 2009; Wang, Savage, and Bradley Shaffer 2009;
Shirk et al. 2010), with significance assessed through Mantel
permutation tests (e.g., Legendre and Fortin 2010).

One major drawback of this approach is that there is no obvi-
ous way to assess the uncertainty in the parameter estimates for
the resistance values of the landscape covariates. This is a criti-
cal point, as the results of spatial connectivity studies are being
used to influence policy decisions (e.g., Theobald, Crooks, and
Norman 2011) and predict the results of landscape change over
time (e.g., Spear et al. 2010).

Our goal is to put the estimation of resistance values from
observed genetic distance matrices within a model-based frame-
work. Recent work by McCullagh (2009) shows that observed
squared-Euclidean distance matrices can be modeled using the
generalized (or intrinsic) Wishart distribution with a spatial co-
variance matrix as a parameter. However, it is not immediately
obvious how to parameterize a covariance matrix in a way
that models connectivity based on circuit theory. As circuits
are based on a graph or network of nodes, it seems natural to
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Figure 1. Illustration of the use of circuits to model spatial connectivity. The landscape is seen as a raster grid where connectivity between
adjacent grid cells is a function of local landscape characteristics, and is computed using circuit theory. In the hypothetical landscape (a), both
the forest and the river impede connectivity. In the corresponding circuit (b), the raster cells are seen as being nodes connected by resistors, with
thicker resistors graphically representing higher resistance and reduced conductance between nodes.

consider spatial statistical models with discrete spatial support,
such as Gaussian Markov random field (GMRF) models (e.g.,
Rue and Held 2005). In what follows, we make use of intrinsic
conditional autoregressive (ICAR) models (Besag 1974; Besag
and Kooperberg 1995) for modeling spatial connectivity based
on circuit theory. We show that the GMRF with ICAR covari-
ance structure can be seen as a spatial model for a Gaussian
process with connectivity defined by circuit theory, and that
the expected squared difference between observations from an
ICAR model is exactly the resistance distance defined by cir-
cuit theory. The ICAR covariance matrix is also identifiable in
the generalized Wishart model for observed distance matrices,
making it an appealing choice for modeling spatial structure
when the observations come as pairwise distances. This link
between circuit theory and ICAR spatial models provides a
computationally efficient framework for modeling circuits with
Gaussian error and making inference on resistance values in the
circuit based on observed data. Circuits and GMRFs both have
a natural graph structure, but to the best of our knowledge this
link between GMRFs with ICAR structure and circuits has not
been described in the literature.

Our article is organized as follows. In Section 2, Graphs,
Circuits, and Resistance, we review graph and circuit theory.
We then review how circuit theory is used to model gene flow
in Section 3, Landscape Genetics. In Section 4, Distance and
Covariance, we review the relationship between a covariance
matrix and the mean squared distance between observations.
We also review how a symmetric positive semidefinite (SPSD)
matrix can be used to calculate the resistance distance of a
graph, and discuss the generalized Wishart model for observed
squared distance matrices. In Section 5, Gaussian Markov Ran-
dom Fields for Circuits, we show that an ICAR covariance
induces the circuit theory resistance distance on a graph. This
provides a framework for modeling observations with connec-
tivity defined by circuit theory. We also discuss modeling in
the case of partial or repeated observation of the nodes in the
circuit. In Section 6, Application, we illustrate our approach
through a simulation example and then use our approach to ex-
amine gene flow in alpine chamois (Rupicapra rupicapra) in the
Bauges mountains of France. Finally, in Section 7, Discussion,
we discuss possible extensions to our approach.

2. GRAPHS, CIRCUITS, AND RESISTANCE

An undirected graph (G, A) is a collection of m “nodes”
G = {G1,G2, . . . ,Gm} and the “edges” or “edge weights” A =
{αij } that are the connections between the nodes. If nodes i
and j are first-order neighbors, denoted i ∼ j , then αij > 0 is
a measure of their connectivity, with larger values leading to
stronger connectivity between nodes. If nodes i and j are not
first-order neighbors (i �∼ j ), then αij = 0. The graph is said to
be undirected if the edge weights are symmetric: αij = αji .

An electrical circuit can be represented by an undirected graph
where the nodes G are connected by a set of resistors A. Ohm’s
law expresses the relationship between the resistance (R) of a
resistor and the current (I) that flows through the resistor when
a voltage (V) is applied as V = I · R. The conductance αij of
the resistor connecting neighboring nodes i and j is the current
I that would flow through the resistor if it were removed from
the circuit and a one-volt charge (V = 1) was applied across
the resistor. The resistance R of the resistor is the inverse of the
conductance: 1/αij .

A voltage applied across any two nodes i and j, which may
or may not be directly connected (first-order neighbors) in the
circuit, results in a current flow through the circuit. The effective
resistance �ij between nodes i and j is then defined as the
resistance of a single resistor that would admit the same current
flow if the voltage were applied across it (e.g., Dorf and Svoboda
2004).

The effective resistance �ij is a distance metric on (G, A)
(Klein and Randić 1993) that incorporates all possible pathways
through the graph, where distance decreases with the addition
of new pathways throughout the graph.

3. LANDSCAPE GENETICS

Landscape genetics is the study of the effects of landscape
on genetic diversity (Manel et al. 2003). Understanding how
the landscape affects the genetic connectivity of a population
of organisms can provide insight into the proper management
of the population, the potential spread of disease through the
population (e.g., Wheeler, Waller, and Biek 2010; Wheeler and
Waller 2010), and the effects of climate or landscape change on
population connectivity (e.g., Spear et al. 2010). Linking genetic
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information (e.g., microsatellite data) to the landscape using a
formal statistical model has been a continual challenge in the
field of landscape genetics (e.g., Storfer et al. 2007; Spear et al.
2010). Spatial clustering methods (e.g., Guillot et al. 2005; Chen
et al. 2007; Durand et al. 2009) are commonly used to identify
genetic boundaries, but are typically based on the assumption
of a homogeneous underlying landscape, with any link to the
underlying landscape made post hoc (e.g., Wheeler, Waller, and
Biek 2010). Approaches based on isolation by distance (Wright
1943; Spear et al. 2005; Broquet et al. 2006) hypothesize that
gene flow is based on a random walk in a homogeneous land-
scape, and thus that a genetic distance metric computed from
observed genetic information is correlated with the straight-line
distance between observed locations.

As an alternative to straight-line distance, various effec-
tive distances, including the resistance distance from circuit
theory, have been used to reflect the varying permeability
of a heterogeneous landscape to gene flow. In these cases,
the landscape is viewed as an undirected graph with raster
cells {G1,G2, . . . ,Gm} for nodes and edge weights {αij , i =
1, . . . , m , j = 1, . . . , m} defined by the landscape character-
istics of the raster cells. McRae (2006) showed that there are
theoretical links between the resistance distance of the circuit
representing the heterogeneous landscape and the genetic dis-
tance between animal populations. The fixation index Fst is a
measure of genetic dissimilarity between subpopulations based
on comparing the diversity of randomly chosen alleles within
each subpopulation to the diversity found within the entire pop-
ulation (Holsinger and Weir 2009). If we assume that each node
in the graph (e.g., each raster cell Gi on a landscape) contains
a sub-population, then pairwise Fst values can be computed for
each pair of nodes. The major finding of McRae (2006) is that
under a random walk model of animal movement and gene flow
on an undirected graph (G, A), the resistance distance of an
analogous circuit is proportional to linearized Fst . That is, if F

ij
st

is the pairwise fixation index between the ith and jth node in G,
then the resistance distance �ij between those two nodes is

�ij ∝ F
ij
st

1 − F
ij
st

(1)

(see McRae 2006 for details). Thus, resistance distance is pro-
portional to a common formulation of genetic distance between
subpopulations. This relationship between gene flow and cir-
cuit theory is known as the “isolation by resistance” hypothesis
(Cushman et al. 2006; McRae 2006; McRae and Beier 2007;
McRae et al. 2008; Cushman and Landguth 2010; Spear et al.
2010).

While the circuit theory model of gene flow (McRae 2006)
is formulated at a population level, with the assumption that
each grid cell on a landscape contains a subpopulation, it is
often applied to individual-level genetic data (e.g., Cushman
et al. 2006; Cushman and Landguth 2010). In effect, the ob-
served genetic information of an individual is viewed as a real-
ization of genetic information in the theoretical subpopulation
in the grid cell. Pairwise genetic distances between individu-
als can be thought of as observations of the resistance distance

between the grid cells where the individuals were observed,
with noise.

As an alternative to the resistance distance, some landscape
genetic studies compare the “least-cost-path” (LCP) distance
to the genetic distance between populations. In an LCP anal-
ysis, the effective distance between two nodes is the smallest
possible resistance of a single path through the graph that con-
nects the two nodes. Thus, using LCP distance to model animal
movement and gene flow is based on the assumption that ani-
mals know the landscape fully and are able to pick the “best”
path between any two locations of their choosing. An analysis
based on resistance distance, instead of LCP distance, assumes
that the effective distance between two locations is based on a
weighted average of all possible paths through the graph that
connect the two locations. Using resistance distance to model
animal movement and gene flow is based on the assumption that
animals move through the landscape at random, with move-
ment choices being based only on the local environment, as
reflected in the connectivity of the graph. At small temporal
scales, movement is affected by memory, interactions with other
animals, and many other factors not directly related to the local
environment. At large temporal scales (i.e., genetic time), the
assumption that the environment drives population-level move-
ment and gene flow may be more plausible, lending credence to
the use of resistance distance. Studies of observed genetic data
have found that the circuit-based resistance distance is gen-
erally better correlated with observed genetic distance than is
LCP distance (e.g., McRae and Beier 2007). However, the LCP
distance can be computed much more efficiently than the resis-
tance distance, allowing analysis of larger landscapes at finer
resolutions.

Inference on resistance values of landscape characteristics is
typically achieved using a correlation analysis. An observed ge-
netic distance matrix is compared with a number of possible re-
sistance distance matrices that result from various hypothesized
resistance values for landscape characteristics. The hypothe-
sized resistance values that result in the highest correlation with
the observed genetic distance are selected.

We seek to improve the main features of this approach in two
ways. First, little or nothing is learned through this approach
about the uncertainty pertaining to the estimated resistance val-
ues. Second, the process of estimating the resistance values
requires a grid search of the parameter space, and consequently
a large number of candidate resistance values may need to be
examined. For example, if the goal is to estimate the resistance
to spatial gene flow due to p distinct landscape characteristics,
a grid of hypothetical resistance values for each characteristic
would need to be specified. If we consider a modest 10 hy-
pothetical values for each resistance value, we would need to
calculate the resistance distance and resulting correlation with
observed data for each of the 10p combinations of hypothesized
values. The number of hypothetical values could grow much
higher, depending on the degree of precision required.

Our goal is to put the estimation of resistance values from ob-
served genetic distance matrices within a model-based frame-
work. After developing a suitable model, Bayesian statistical
methods will allow for estimation of the posterior distribution
of the resistance values of landscape characteristics, providing
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point estimates through posterior means and estimates of uncer-
tainty through posterior credible intervals.

4. DISTANCE AND COVARIANCE

Covariance matrices and distance matrices both contain in-
formation about the connectivity between locations indexed by
the matrix rows and columns. In this section, we review a link
between covariance matrices and distance metrics, show how
an improper (rank-deficient) covariance matrix can be used to
induce the resistance distance � on the graph (G, A), and re-
view recent developments in the modeling of observed distance
matrices.

4.1 Induced Distance Matrices

We will refer to the space of symmetric positive semi-definite
(SPSD) matrices of dimension m × m as SPSD(m). Let G =
{G1, . . . ,Gm} be a set of m locations (e.g., nodes in a graph)
and let � ∈ SPSD(m) be an SPSD matrix with components
(�ij ), i, j ∈ {1, 2, . . . , m}. It is helpful to think of �ij as the
covariance between the ith and jth locations in G. Also, let ej

be the m × 1 column vector with the jth element equal to 1 and
all other elements equal to 0. The metric defined by

Dij = �ij (�) = (ei − ej )′�(ei − ej ) (2)

= �ii + �jj − 2�ij

is a critical transformation in both circuit theory and in the
modeling of observed distance matrices. In Section 4.2, we
will show how a particular matrix � results in Dij being the
resistance distance of the graph. In Section 4.3, we will follow
McCullagh (2009) and use the transformation (2) to formalize
the modeling of observed distance matrices. We first list some
properties of (2) that will be important in our effort to model
observed genetic distance matrices using covariance matrices
based on circuit theory.

If we collect the {Dij } in an m × m matrix D, the transforma-
tion (2) can be written in matrix form. Let d� = diag(�) be a
column vector with elements equal to the diagonal elements of
�, and 1 be a column vector with all elements equal to 1. Then

D = �(�) = −2� + d�1′ + 1d′
� (3)

is a linear transformation from SPSD(m) to the space of m × m

matrices that are negative definite on contrasts. We will say that
the covariance matrix � induces the distance matrix D = �(�)
on the set of locations G.

This transformation � has an intuitive interpretation in the
case where � is a covariance matrix. Let y be an m-dimensional
random variable with common mean μ (i.e., μi = μ, i =
1, 2, . . . , m) and covariance matrix �. Then the induced dis-
tance �ij (�) is a variogram: the expected squared distance
between the observations at locations i and j:

E[(yi − yj )2] = var(yi) + var(yj ) − 2cov(yi, yj )

= �ii + �jj − 2�ij

= �ij (�).

While this interpretation only holds when � is a covariance
matrix, the induced matrix �(�) is a distance for a class of
rank-deficient SPSD matrices. To see this, we first examine
the null space or kernel of the operator �, which is the set of

� ∈ SPSD(m) such that �(�) is the zero matrix. McCullagh
(2009) noted that the null space of � is the space of additive
symmetric matrices S = {Sm×m : Si,j = vi + vj , v ∈ Rm}. We
clarify this statement in the case where � ∈ SPSD(m).

Proposition 1. For � ∈ SPSD(m), the transformation �(�)
is a linear transformation with null space equal to {� : � =
c11′ , c ∈ R}. (Proof given in Appendix A.)

We will denote the null (column) space of a matrix � as
N (�). If � is of full rank, or if N (�) is the space spanned by
the 1 vector, then �(�) is a distance metric on G × G. That
is, D = �(�) is symmetric (Dij = Dji), satisfies the triangle
inequality (Dij + Djk ≥ Dik), and is zero only for the distance
from a location to itself (Dij = 0 iff i = j ).

If N (�) is the space spanned by the 1 vector, then � is or-
thogonal to the null space of � and the transformation � is
invertible. Note that this invertibility does not hold for any � of
full rank. This will be important in Section 4.3 where we dis-
cuss the identifiability of covariance matrices in the generalized
Wishart model for distance matrices induced by the transforma-
tion � in (3).

4.2 Inducing the Resistance Distance of a Graph

The effective resistance matrix � = (�ij ) of a circuit rep-
resented by the undirected graph (G, A) can be computed by
constructing an SPSD matrix that induces �. Kirchoff’s current
law (e.g., Dorf and Svoboda 2004) states that the electrical cur-
rent flowing into a node must equal the current flowing out of
the node. Applying Kirchoff’s current law to the graph (G, A)
leads to the formation of the Laplacian matrix (e.g., Babić et al.
2002) of the graph:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
j �=1

α1j −α12 −α13 · · ·

−α21

∑
j �=2

α2j −α23 · · ·

−α31 −α32

∑
j �=3

α3j · · ·
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

The Laplacian matrix Q is of dimension m × m, and each
row sums to zero. The null space N (Q) is the space spanned by
the 1 vector, and Q is singular with rank m − 1. The generalized
inverse of the Laplacian Q is Q−, which is also of rank m − 1.
As shown by Klein and Randić (1993), the effective resistance
between the nodes of (G, A) is the distance induced by the SPSD
matrix Q−:

�ij = (ei − ej )′Q−(ei − ej ). (5)

Generalized inverses are not unique, but the correspondence
between the null space of the Laplacian matrix Q and the null
space of the transformation (2) results in a useful invariance.

Proposition 2. The resistance distance �ij = (ei − ej )′

Q−(ei − ej ) is invariant to the choice of generalized inverse
Q− of the Laplacian matrix Q. (Proof in Appendix A.)
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This invariance was not noted by Klein and Randić (1993),
though various generalized inverses have been used to compute
the resistance distance (e.g., Babić et al. 2002; McRae 2006).

4.3 Modeling-Induced Distance Matrices

The observations in our landscape genetics example are ge-
netic distance matrices, which we are viewing as distance ma-
trices induced from an underlying spatial covariance motivated
by circuit theory. The distributional properties of distance ma-
trices induced by the transformation (3) have been studied by
McCullagh (2009). We briefly review the results of McCullagh
(2009) here, and then discuss identifiability in models for ob-
served distance matrices.

Let yi ∼ N (μ1,�), i = 1, 2, . . . , ν be ν independent real-
izations from a Gaussian process with common mean μ and
covariance matrix �. If we concatenate the observations as
Y = [y1, y2, . . . , yν], then S = YY′ is Wishart distributed with
ν degrees of freedom and covariance matrix �:

S = YY′ ∼ Wν(�).

McCullagh (2009) defined the generalized Wishart distribu-
tion as follows. V is said to come from a generalized Wishart
distribution with ν degrees of freedom, covariance matrix �,
and kernel K:

V ∼ GWν(K,�),

if for any linear transformation L such that the null space of L
is K (N (L) = K), L′VL is Wishart distributed:

L′VL ∼ Wν(L′�L).

McCullagh (2009) then showed that induced distance matri-
ces (3) can be modeled using the generalized Wishart distribu-
tion. Let S ∼ Wν(�) and consider the induced distance matrix
D = �(S). Consider an m × (m − 1) matrix L with full col-
umn rank and N (L) spanned by 1. For example, L could be a
full-rank matrix of contrast vectors:

L = [e2 − e1, e3 − e1, . . . , em − e1].

Then L′1 = 0 and it is easy to see from (3) that

L′(−D)L = L′(2S − d�1′ − 1d′
�)L

= L′(2S)L,

which is Wishart distributed with covariance matrix L′(2�)L.
Then, by definition,

− D = −�(S) ∼ GWν(1, 2�). (6)

The likelihood of an observed distance matrix D under
this model can be obtained by evaluating the likelihood
[L′(−D)L | ν, L′(2�)L] in the Wishart distribution L′(−D)L ∼
Wν(L′(2�)L), where the bracket “[·]” notation indicates a prob-
ability distribution. Alternately, McCullagh showed that this
likelihood can be obtained equivalently by using a projection
A = I − 11′�−1

1′�−11
onto the space of m × m matrices orthogonal to

the null space of the transformation �. The resulting expression
for the likelihood does not rely on the choice of L:

[−D|2�, ν] ∝ |�−1A|ν/2 · exp

{
1

4
tr(�−1AD)

}
, (7)

where the determinant | · | is the product of all nonzero eigen-
values.

As the transformation �(S) is invariant to the addition of a
constant matrix c11′ to S, the likelihood (7) is invariant to the
addition of a constant matrix c11′ to �, and � is not identi-
fiable in general. While McCullagh (2009) was not concerned
with identifiability (see McCullagh 2009, p. 635), our goal is to
parameterize and estimate a spatial covariance matrix � that de-
scribes gene flow under a circuit theory model for connectivity.
Identifiability of � is important in this endeavor.

The fact that the generalized Wishart distribution is defined
on distance matrices induced by applying the transformation
(3) to observations from a Wishart distribution implies that the
covariance matrix � in the generalized Wishart model (6) will
be identifiable if the transformation (3) is invertible. The fol-
lowing proposition follows directly from Proposition 1, where
we describe the null space of the transformation (3).

Proposition 3. In the generalized Wishart model (6), � is
identifiable if and only if the space spanned by 1 is contained
in N (�).

This implies that only a rank-deficient covariance matrix �

will be identifiable. We also note that the deficiency implied
here is identical to the null space of the Laplacian matrix (4) of
the graph under circuit theory. We now specify a GMRF with
a covariance matrix that will be identifiable in the generalized
Wishart model for distance matrices and that will induce the
resistance distance on the graph, matching the second-order
structure defined by circuit theory.

5. GAUSSIAN MARKOV RANDOM FIELDS
FOR CIRCUITS

GMRFs are used extensively in statistical modeling, espe-
cially for spatial and temporal processes (Rue and Held 2005;
Lindström and Lindgren 2008; Bolin et al. 2009). GMRFs on a
graph G are characterized by the conditional independence of
any two nodes that are not first-order neighbors when condi-
tioned on all other nodes in G. This conditional independence
results in a sparse precision matrix, and sparse matrix methods
can typically be applied to any statistical analysis using GM-
RFs (Rue 2001; Rue and Held 2005; Rue, Martino, and Chopin
2009). This allows for highly efficient computation, and can
make inference possible at a finer spatial or temporal resolution
than might be possible using a non-Markovian random field.

Our goal is to specify a GMRF on the graph (G, A) with a
covariance matrix that induces the resistance distance matrix �.
The result is a statistical model for observations from a graph
with Gaussian error and expected squared distance between
observations equal to the resistance distance of the graph.

Consider a random variable y = [y1, y2, . . . , ym]′ on the m
nodes G = {G1,G2, . . . ,Gm} and define the conditional distri-
bution of yi given all other values in y as

yi |y−i ∼ N

⎛
⎝∑

j∼i

wij yj , κi

⎞
⎠ (8)

wij = αij∑
l∼i αil

, κi = 1∑
l∼i αil

.
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Conditionally, each observation is normally distributed with
mean equal to a weighted average of all nodes that are first-
order neighbors j ∼ i, where the weights are proportional to
the conductance αij of the edge connecting the nodes.

The conditional specification in (8) satisfies the Markov prop-
erty and is a GMRF. In particular, y follows an intrinsic Gaus-
sian conditional autoregressive (ICAR) model on the graph
(G, A) (Besag and Kooperberg 1995; Rue and Held 2005). Us-
ing Brooks Lemma (Besag 1974; Besag and Kooperberg 1995),
the joint distribution of y is

y ∼ N (0, Q−), (9)

where the precision matrix Q is exactly the Laplacian matrix
(4) of the graph (G, A). Then the generalized inverse Q− is an
SPSD matrix that induces the resistance distance � on the graph
(G, A), and the mean squared distance between observations
from the ICAR process (9) is the resistance distance of the
graph.

The ICAR model (9) is proper under the constraint that y′1 =
c for some constant c ∈ R. If we observe ν independent real-
izations yi ∼ N (0, Q−), i = 1, 2, . . . , ν, with y′

i1 = 0, and con-
catenate the observations as in Section 4.3: Y = [yi , y2, . . . , yν],
then S = YY′ ∼ Wν(Q−) is proper under the constraint that
S1 = 0. Under this constraint, S is orthogonal to the null space
of the transformation � (3), and the transformation to D = �(S)
is invertible. The elements of D are the sum of the squared dif-
ference in observations Djk = ∑ν

i=1(yji − yki)2 subject to the
constraints that y′

i1 = 0. Under this model, each element Djk

of the distance matrix D has mean ν�jk , the resistance distance
�jk between the jth and kth nodes in the graph G multiplied by
the number of pairwise observations ν.

This provides a natural model for observed distance matrices
with connectivity modeled by circuit theory:

− D ∼ GWν(1, 2Q−), (10)

where Q is the Laplacian of the graph (G, A), or, equivalently the
ICAR precision matrix of the graph (G, A). From Proposition
3, Q is identifiable, and the observations in D can be thought of
as observations of the resistance distance, with Gaussian noise.

5.1 Partial and Repeated Observation

We have assumed so far that the circuit in question is fully
observed. That is, an observed effective distance Dij is obtained
for each pair of nodes in G. In practice, however, it will be
common to have observations from only a small subset of the
nodes, and multiple observations may come from a single node.
In a spatial analysis, for example, the study domain may include
thousands of raster cells, each of which is considered a node in
the resistance surface (G, A). If we obtain a set of spatially
referenced observations, multiple observations may lie within
one raster cell, and, depending on the number of observations
in the study, only a small fraction of the raster cells (perhaps
dozens or hundreds) will contain observations. In the case where
only a subset of the nodes is observed, we want to preserve
the sparse nature of the precision matrix Q and the associated
computational efficiency of the GMRF.

The precision matrix Q is sparse, but the generalized inverse
Q− will typically be dense. For large m, it is impossible to
even store a dense m × m matrix in many standard computing

environments, so we wish to avoid the express calculation of
Q− for the whole graph.

Consider the case where we have only n observations from the
m nodes in G, with m >> n. While we will relax this assump-
tion later, let us initially assume that the observations arise from
distinct nodes with no two observations from the same node.
Without loss of generality, let the observed nodes be indexed
by the first n rows and columns of Q. The goal is to compute
the n × n precision matrix � of the observed nodes. Since the
generalized Wishart distribution is invariant to the choice of gen-
eralized inverse of Q (Proposition 2), we can pick a convenient
form for the generalized inverse by computing the inverse of
the full-rank (m − 1) × (m − 1) upper-left submatrix of Q and
setting all entries in the mth row and column equal to zero. In
this formulation, the precision matrix � of the observed nodes
can be obtained through partitioning the generalized inverse in
block form and computing a Schur complement (e.g., Harville
2008). The advantage of this method is that we can use sparse
matrix methods that are computationally efficient and do not
require the explicit computation of large dense matrices (Rue
2001). Details of this computation are given in Appendix B.

In the case where multiple observations are obtained from a
single node of G, a nugget effect can be introduced to the covari-
ance structure (Besag, York, and Mollié 1991; Lindström and
Lindgren 2008; Cross et al. 2010). Let y = [y1, y1, . . . ynobs ]

T

be the vector of nobs observations from the graph (G, A), and
let si ∈ G be the node of the ith observation, i = 1, 2, . . . , nobs.
Since there may be repeated observations in some nodes, the
total number of nodes of G for which we have observations is
nnodes ≤ nobs. Let �nodes = �−1 be the nnodes × nnodes covari-
ance matrix of the observed nodes, and let K be an nobs × nnodes

matrix with Kij = 1 if si = j , that is, if the ith observation yi

comes from the jth node of G, and Kij = 0 otherwise. Then the
covariance � of the nobs observations is

� = K�nodesKT + τ I,

where connectivity between the nodes of G is modeled based
on circuit theory (�nodes) and τ is a spatial nugget parameter
representing the variability in observations obtained from the
same node in G.

We can then model an observed distance matrix D as arising
from a generalized Wishart distribution with covariance matrix
of the observed locations �,

− D ∼ GW(1, 2�). (11)

The covariance matrix � is dependent on the edge weights
{αij }, and may contain a nugget effect τ to account for repeated
observations.

5.2 Modeling Resistance

We now turn to the parameterization of the edge weights {αij }
of the graph (G, A) in terms of landscape covariates. In doing so,
it will be helpful to consider a few links between circuit theory
and random walks on the graph. In a circuit, the edge weights are
the conductances between neighboring nodes in the graph. If we
consider a continuous-time random walk on the graph (G, A),
the edge weights {αij } are proportional to the rate at which a
random walker transitions from node i to node j. As landscape
covariates are typically available in gridded form, each node in G

D
ow

nl
oa

de
d 

by
 [

C
ol

or
ad

o 
St

at
e 

U
ni

ve
rs

ity
] 

at
 1

2:
16

 1
5 

M
ar

ch
 2

01
3 



28 Journal of the American Statistical Association, March 2013

is a grid cell in the study area. The rate of transition from cell i to
cell j could be driven by many factors, including the environment
at the starting cell i, the environment at the neighboring cell j, and
local environmental gradients (Hooten et al. 2010). To maintain
the links to circuit theory, however, the transition rates must be
symmetric (αij = αji) and nonnegative. This ensures that (G, A)
is an undirected graph, and also ensures that the conditional
specification (8) of the ICAR model results in a GMRF. As the
edge weights must be symmetric, we cannot model drift due
to migration or other directional factors using circuit theory.
Forcing the edge weights to be symmetric implies that we are
modeling connectivity of a system that is stationary. While this
assumption may be unreasonable for individual organisms at
short time scales (e.g., Hanks et al. 2011), there is more support
for it at a population level and at long time scales (e.g., genetic
time).

To specify symmetric edge weights, we consider an average
of the landscape covariates at adjacent cells. This is motivated
by considering the straight-line path between the centers of the
two adjacent grid cells. Half of this path lies in each cell, and
we can hypothesize a transition rate (or edge weight) that would
be related to an average of the landscape covariates in the two
cells. If xi is a vector of p landscape characteristics of the ith
cell, and β is a p-vector of parameters related to the effect that
each landscape characteristic has on gene flow, then the edge
weights {αij } could be modeled as

αij =
⎧⎨
⎩exp

[
1

dij

(x′
i + x′

j

2

)
β

]
, j ∈ N (i)

0 , j �∈ N (i),
(12)

where dij is the straight-line distance between the centroids of
cells i and j. In this model, connectivity is a function of the land-
scape characteristics of both cells (xi , xj ), the distance between
the cells (allowing for differing distances between neighbors in,
for example, a queen’s neighborhood), and the conductance pa-
rameters β. Using an exponential link function ensures that the
{αij } are nonnegative, and allows for convenient interpretation
of the conductance parameters β. If βh < 0, then an increase in
the hth landscape characteristic results in a greater resistance to
gene flow, while if βh > 0, then an increase in the hth landscape
characteristic results in less resistance to gene flow.

Finally, assigning prior distributions to the coefficients β and
nugget parameter τ ,

β ∼ N (μβ,�β), (13)

τ ∼ IG(a, b), (14)

results in a statistical model (11)–(14) that can be fit us-
ing Bayesian techniques (e.g., Markov chain Monte Carlo,
MCMC). In both the simulation example and data analysis
that follow, we have specified a diffuse, mean-zero prior for β:
β ∼ N (0, 106I) and a relatively diffuse inverse-gamma prior for
τ : τ ∼ IG(10, 100). Samples from the posterior distribution of β

and τ can be obtained using random walk Metropolis–Hastings
updates in an MCMC sampler. After proposing a value for β or τ ,
the proposed value is used to compute the resulting precision ma-
trix � of the observations. The candidate β or τ value can then
be accepted or rejected with the typical Metropolis–Hastings
probability (e.g., Gelman et al. 2004).

One potentially useful extension to (12) is a varying-
coefficient model (Hastie and Tibshirani 1993). For simplicity,
consider one covariate x. The edge weights for neighboring cells
could be modeled as

αij = exp

[
1

dij

(
β(xi) + β(xj )

2

)]
,

where the functional regressor β(x) is typically modeled as
a linear combination of nspl spline basis functions {φk, k =
1, . . . , nspl} : β(x) = ∑nspl

k=1 γkφk(x). This specification gives a
flexible framework for examining nonlinear relationships be-
tween conductance and the covariate x.

6. APPLICATION

We now apply our approach, first in a study of simulated data,
and then to observed genetic data.

6.1 Simulation Example

Our approach for inference on gene flow across a heteroge-
neous landscape can be illustrated through a simulation exam-
ple. A 100 × 100 landscape grid was created with a mix of con-
tinuous and discrete landscape characteristics (Figure 2). True
values were assigned to the parameters β pertaining to the effect
that each landscape characteristic has on gene flow, as well as
for the nugget parameter τ . To simulate locations of organisms
on the landscape, 300 completely spatial random locations were
chosen and linked to grid cells. The covariance matrix �sim of
these 300 locations was based on a rook’s-neighborhood con-
nectivity between grid cells (i.e., first-order spatial neighbors)
and the conductances {αij } specified by the landscape charac-
teristics and true β values. We simulated 10 realizations from
a mean-zero Gaussian random field with covariance �sim, and
calculated the squared-Euclidean distance between these real-
izations. The resulting pairwise distances between locations are
proportional to the linearized pairwise Fst values that would be
observed from the analysis of microsatellite alleles from 10 loci
of each organism.

The simulated pairwise distance matrix was used to fit the
model (11)–(14). We used an MCMC algorithm to obtain 10,000
posterior samples of β and τ from four separate chains with dis-
tinct starting values. The posterior distributions for β and τ

both indicate agreement with the true specified values (Table 1),
providing evidence that the proposed model is able to recover
resistance parameters in similar situations to that of our appli-
cation data discussed in the following section.

Table 1. Simulation example results for connectivity parameters in
the resistance surface

True Posterior Lower 95% Upper 95%
Parameter value mean CI bound CI bound

Intercept 2 1.364 0.744 2.015
Covariate 1 −5 −4.127 −6.340 −1.939
Covariate 2 0 0.040 −0.971 1.067
Covariate 3 1 1.386 0.815 1.901
Nugget 0.5 0.519 0.474 0.621
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Figure 2. We simulated a resistance surface using two discrete cover types (a) and (b) and one continuous covariate (c). In the simulation
study, Covariate 1 was set to impede connectivity (a), Covariate 2 was set to have no effect on connectivity (b), and Covariate 3 was set to facilitate
connectivity (c). The resulting landscape conductance is shown in (d). Observations from the landscape were simulated (e), and inference on the
contribution of each landscape covariate to connectivity was made (f).

For comparison, we also employed a correlation analysis, the
most common existing method in landscape genetics studies
(e.g., Cushman et al. 2006; Cushman, McKelvey, and Schwartz
2009; Wang and Xia 2009; Shirk et al. 2010). This method
requires specifying hypothesized resistance values, then com-
puting the correlation between the observed genetic distance
matrix and the resistance distance matrix that is the result of the
hypothesized resistance values. We note that since this method
relies on correlation, the intercept term in our model can be seen
as a constant multiple of the distance matrices, and will have
no effect on correlation. For the remaining three covariates, we
employed a grid search of possible parameter values. Models
with integer-valued parameters ranging from −6 to 3 were tried,
resulting in 1000 candidate models for gene flow. The resulting
1000 hypothesized distance matrices were tested for correlation
with the observed (simulated) genetic distance matrix, with the
correlation being expressed as Mantel’s z statistic as computed
in the “vegan” package (Oksanen et al. 2012) in the R statistical
computing environment (R Development Core Team 2012). The
five models with the highest correlation are shown in Table 2.
The model with the true parameter values used in the simulation

was ranked 13th out of the 1000 hypothesized models, and is
shown in bold in Table 2.

The correlation approach was able to identify the large nega-
tive effect of Covariate 1, and correctly identifies that Covariate
2 has no effect, but had some trouble with Covariate 3. This
highlights the need for a measure of uncertainty about the es-
timates of parameter values, as is obtained from the posterior

Table 2. Simulation study results for the correlation method

Model rank Mantel’s z Covariate 1 Covariate 2 Covariate 3

1 0.1450 −4 0 −1
2 0.1423 −4 0 −2
3 0.1421 −4 0 0
4 0.1416 −5 0 −1
5 0.1416 −5 0 0
...

...
...

...
...

13 0.1378 −5 0 1
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Figure 3. Spatial locations (a) of 335 alpine chamois (Rupicapra rupicapra) in the Bauges mountains, France. A landscape genetic analysis
of these chamois using a varying-coefficient model for the effect of elevation reveals that gene flow is impeded by low-elevation valleys and
mountain peaks and facilitated by mid- to high-elevation terrain (b). The posterior mean conductance of the landscape to gene flow is shown in
(c), with lower values corresponding to increased resistance to gene flow.

credible intervals of resistance parameters β from the general-
ized Wishart model (Table 1).

6.2 Spatial Gene Flow in Alpine Chamois

The alpine chamois (Rupicapra rupicapra) is native to the
mountains of Europe, and is a conserved species in France.
Chamois live at moderately high altitudes and have adapted to
living in steep, rocky terrain. Jombart (2012) recently studied
spatial gene flow among chamois in the Bauges mountains of
France (Figure 3(a)). Their analysis, based on spatial principal
component analysis (Jombart et al. 2008), concludes that gene
flow in chamois may be impeded by lower elevation terrain
(e.g., mountain valleys), possibly due to the increased risk of
predation. The analysis of Jombart (2012) does not explicitly
incorporate the landscape; rather, the results of the spatial prin-
cipal component analysis are overlaid on the landscape, and
post hoc inference is obtained for the effects of landscape char-
acteristics (elevation in this case) on gene flow. To illustrate our
approach to inference for gene flow based on circuit theory and
the isolation by resistance hypothesis, we reanalyze the data of
Jombart (2012) using our Bayesian model (11)–(14). This ap-
proach allows us to explicitly model and estimate the resistance
that landscape characteristics (like elevation) have on gene flow
in alpine chamois, something not possible using the approach
of Jombart (2012).

Jombart (2012) studied microsatellite allele data from nine
loci for 335 individual chamois. These data, together with spatial
locations for each individual animal and elevation data on a
104 × 80 grid, where each grid cell measures 200 m square,
were obtained from the “adegenet” package (Jombart 2008) in
the R statistical computing environment (R Development Core
Team 2012).

To examine the effect of elevation on gene flow in alpine
chamois, we compared four competing models using deviance
information criterion (DIC). The first model contained only an

intercept term, hypothesizing no effect of elevation on gene
flow. The second model contained an intercept term, as well as
a linear effect for elevation in (12). The third model contained
an intercept term, as well as linear and quadratic terms for
elevation. The fourth model is a varying-coefficient model in
elevation, in which we specified a B-spline basis expansion for
the effect of elevation, using seven equally spaced knots. This
results in a flexible model of the effect that elevation has on
gene flow. The varying-coefficient model could be difficult to
implement using the correlation approach common in landscape
genetics studies, as multiple hypothesized values for each of the
parameters related to the spline basis functions would have to
be specified.

We found the grid cell each animal was located in using the
“raster” package (van Etten 2012) in R, and computed pair-
wise genetic distances between the chamois in the study using
the mismatch genetic distance of Smouse and Peakall (1999).
The resulting genetic distance matrix was used to fit each of
the four models. For each model, we obtained 20,000 posterior
samples using an MCMC algorithm from two separate chains
with distinct starting values. Convergence was assessed using
the potential scale reduction factor R̂ (Gelman et al. 2004),
which compares the within-chain variance to the between-chain
variance. The resulting R̂ values were less than 1.1 for all pa-
rameters in each of the four models, indicating convergence to
the stationary posterior distribution.

To compare the four models, we used the DIC of Spiegelhal-
ter et al. (2002). The DIC of the varying-coefficient model for
elevation was −2208, much lower than the DIC of the intercept-
only model (DIC = 8939), the linear model for elevation (DIC =
7244), or the quadratic model for elevation (DIC = 5963). This
indicates strong support for the varying-coefficient model of
the effect of elevation on gene flow. Posterior inference for
the log-conductance of a grid cell as a function of elevation is
shown in Figure 3(b), with upper and lower 95% credible lim-
its. The posterior mean conductance of the study area is plotted
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in Figure 3(c). This plot reflects the nonlinear relationship be-
tween elevation and gene flow. Higher elevation terrain (from
about 1000 m to 1750 m) generally facilitates gene flow in
alpine chamois, while lower elevations (valleys), and very high
elevations (mountain peaks) impede gene flow. Jombart (2012)
found that higher elevation terrain generally facilitates gene
flow in alpine chamois using their spatial principal component
analysis. Our model-based approach expands on their results
by providing rigorous uncertainty estimates about the param-
eters related to gene flow, something not typically obtained in
landscape genetics studies.

7. DISCUSSION

Using circuit theory to model connectivity on a landscape
requires viewing the continuous landscape as a graph (G, A).
While this is a simplification, recent advances in GMRF theory
have shown that GMRFs can be used to approximate solutions
to stochastic partial differential equations on a continuous sur-
face (Lindgren, Rue, and Lindström 2011). The connectivity
implied by circuit theory on a graph is analogous to a diffusion
process on a continuous surface with heterogeneous diffusiv-
ity. Statistical models based on diffusion processes have been
used extensively to model spatio-temporal processes on contin-
uous surfaces (e.g., Hooten and Wikle 2008; Wikle and Hooten
2010), and could be used to model many of the systems that are
currently modeled using circuit theory. The main advantage of
viewing the landscape as a discrete graph is the ability to use
computationally efficient GMRFs like the ICAR model (7) used
in our analysis.

The link between circuit theory, GMRFs, and genetic dis-
tance allows for an efficient approach to simulate pairwise ge-
netic distances on a heterogeneous landscape (e.g., Landguth
and Cushman 2010). Using (9), simulated resistance distances
can be transformed to simulated linearized pairwise Fst values,
which can provide significant information about population ge-
netic structure across the landscape. This may be particularly
useful in predicting the effects of landscape change on subpopu-
lation separation. For example, inference concerning parameter
values β for a resistance surface related to gene flow could be
made using the model (11)–(14). The effect of changes to the
landscape, such as the addition of a road or the removal of ex-
isting open space, on subpopulation separation could then be
predicted using inferred values of β and a modified resistance
surface reflecting the changes to the landscape.

While simulation is possible at extremely high resolutions,
inference becomes increasingly computationally intensive as
the landscape resolution increases. In practice, we have found
that inference for 250 × 250 landscape grids is feasible with
standard computing resources (e.g., a machine with 4 GB RAM
and a 1.67 GHz quad-core processor), but inference for larger
grids requires increased computing capabilities. This resolution
is adequate for many studies, but larger landscapes may not be
well approximated by such a coarse discretization. Examining
methods for increasing computational efficiency and thus al-
lowing inference at higher resolutions is the subject of ongoing
research.

The link between circuit theory and GMRFs has many poten-
tial applications. For example, agent-based models for a binary

process on a graph (Hooten and Wikle 2010) provide a highly
flexible framework for modeling dynamic systems with discrete
support. The evolution of agent-based systems is based on tran-
sition probabilities between neighboring nodes, and could be
equivalently modeled as a resistance surface by envisioning a
circuit with resistors connecting nodes. Circuit theory provides
a flexible model for evaluating connectivity, and the link we
have presented between circuit theory and GMRFs provides a
natural framework that can provide inference for resistance val-
ues in systems modeled by circuits, and thus the methodology
we propose here has wide applicability.

APPENDIX A: PROOFS OF PROPOSITIONS

For Proposition 1, note that � ∈ SPSD(m) implies that there is a
singular value decomposition � = ∑m

i=1 λiuiu′
i , where {λi ≥ 0} are

the eigenvalues and {ui} are orthonormal eigenvectors. Then we can
rewrite (2) as

Dij = �ij (�) = (ei − ej )′�(ei − ej )

= (ei − ej )′
(

m∑
k=1

λkuku′
k

)
(ei − ej )

=
m∑

k=1

λk[(ei − ej )′uk]2.

As λk ≥ 0, each term in the sum above is nonnegative. From this, �
is in the null space of the transformation � if and only if �ij (�) = 0
for all i = 1, . . . , m and j = 1, . . . , m, which in turn is true if and only
if either λk = 0 or uk = c1 , c ∈ R for each k = 1, . . . , m. Since the
uk are orthogonal, we conclude that �ij (�) = 0 for all i and j if and
only if � = λ11′.

Proposition 2 is a direct consequence of the lemma that a′Q−a is
invariant to the choice of generalized inverse Q− if and only if a is
orthogonal to N (Q) (see Graybill 1983, pp. 134–135; Seber 2008, pp.
130–131). The null space of the Laplacian Q is the space spanned by
1, and each contrast ei − ej is orthogonal to 1.

Proposition 3 is a direct consequence of Proposition 1.

APPENDIX B: DETAILS OF THE COMPUTATION OF
THE PRECISION MATRIX

Consider the case where we have n observations yi, i = 1, . . . , n

from the m nodes in G, where m >> n and let the observed nodes be
indexed by the first n rows and columns of Q. Let Q∗ be the (m − 1) ×
(m − 1) upper-left submatrix of Q. Then, since Q is of rank m − 1,
Q∗ is of full rank and invertible. The inverse of Q∗ then forms the
(m − 1) × (m − 1) upper-left submatrix of the generalized inverse Q−1,
with entries in the mth row and mth column of Q−1 being set to zero.
In this formulation, the covariance matrix of the n observed nodes in
G is just the n × n upper-left submatrix of (Q∗)−1. This submatrix can
be found by partitioning Q∗ in block form:

Q∗ =
[

Q∗
11 Q∗

12

Q∗
21 Q∗

22

]
, (B.1)

where Q∗
11 is the n × n block of Q corresponding to the n observed

nodes of G, Q∗
22 is the (m − n − 1) × (m − n − 1) block of Q corre-

sponding to the m − 1 unobserved nodes, after the removal of the mth
row and column, and Q∗

12 = (Q∗
21)T is the n × (m − n − 1) block of

Q∗ relating the observed nodes to the unobserved nodes. The preci-
sion matrix � of the n observed locations is the Schur complement
(Harville 2008) of Q∗

22: � = Q∗
11 − Q∗

12(Q∗
22)−1Q∗

21. As Q∗
22 is of di-

mension (m − n − 1) × (m − n − 1), we also wish to avoid the explicit
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calculation of the inverse (Q∗
22)−1 when computing �11 in (12). This

can be accomplished by first computing the Cholesky decomposition:
Q∗

22 = UT U, which can be found efficiently using sparse matrix meth-
ods (Bates and Maechler 2011). We then compute V = (UT )−1Q∗

21 by
solving the n linear equations UT V = Q∗

21. As UT is lower triangular,
this can be solved efficiently using forward substitution. The precision
matrix of the observed nodes is then obtained by

� = Q∗
11 − VT V. (B.2)

[Received January 2012. Revised August 2012.]
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Babić, D., Klein, D., Lukovits, I., Nikolić, S., and Trinajstić, N. (2002),
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Besag, J., York, J., and Mollié, A. (1991), “Bayesian Image Restoration, With
Two Applications in Spatial Statistics,” The Annals of the Institute of Statis-
tical Mathematics, 43, 1–20. [27]

Bolin, D., Lindström, J., Eklundh, L., and Lindgren, F. (2009), “Fast Estimation
of Spatially Dependent Temporal Vegetation Trends Using Gaussian Markov
Random Fields,” Computational Statistics & Data Analysis, 53, 2885–2896.
[26]

Broquet, T., Ray, N., Petit, E., Fryxell, J. M., and Burel, F. (2006), “Genetic
Isolation by Distance and Landscape Connectivity in the American Marten
(Martes Americana),” Landscape Ecology, 21, 877–889. [24]

Chandra, A., Raghavan, P., Ruzzo, W., Smolensky, R., and Tiwari, P. (1996),
“The Electrical Resistance of a Graph Captures its Commute and Cover
Times,” Computational Complexity, 6, 312–340. [22]

Chen, C., Durand, E., Forbes, F., and Francois, O. (2007), “Bayesian Clustering
Algorithms Ascertaining Spatial Population Structure: A New Computer
Program and a Comparison Study,” Molecular Ecology Notes, 7, 747–756.
[24]

Cross, P., Heisey, D., Scurlock, B., Edwards, W., Ebinger, M., and Brennan,
A. (2010), “Mapping Brucellosis Increases Relative to Elk Density Using
Hierarchical Bayesian Models,” PLoS One, 5, e10322. [27]

Cushman, S., and Landguth, E. (2010), “Scale Dependent Inference in Land-
scape Genetics,” Landscape Ecology, 25, 967–979. [22,24]

Cushman, S., McKelvey, K., and Schwartz, M. (2009), “Use of Empirically De-
rived Source-Destination Models to Map Regional Conservation Corridors,”
Conservation Biology, 23, 368–376. [22,29]

Cushman, S. A., McKelvey, K. S., Hayden, J., and Schwartz, M. K. (2006),
“Gene Flow in Complex Landscapes: Testing Multiple Hypotheses With
Causal Modeling,” The American Naturalist, 168, 486–99. [22,24,29]

Dorf, R., and Svoboda, J. (2004), Introduction to Electric Circuits, Hoboken,
NJ: Wiley. [23,25]

Durand, E., Jay, F., Gaggiotti, O., and François, O. (2009), “Spatial Inference of
Admixture Proportions and Secondary Contact Zones,” Molecular Biology
and Evolution, 26, 1963. [24]

Dyer, R., Nason, J., and Garrick, R. (2010), “Landscape Modelling of Gene
Flow: Improved Power Using Conditional Genetic Distance Derived From
the Topology of Population Networks,” Molecular Ecology, 19, 3746–3759.
[22]

Fouss, F., Pirotte, A., Renders, J., and Saerens, M. (2007), “Random-Walk
Computation of Similarities Between Nodes of a Graph With application
to Collaborative Recommendation,” IEEE Transactions on Knowledge and
Data Engineering, 19, 355–369. [22]

Gelman, A., Carlin, B. P., Stern, H., and Rubin, D. B. (2004), Bayesian Data
Analysis (2nd ed.), Princeton, NJ: Chapman and Hall/CRC. [28,30]

Graybill, F. (1983), Matrices With Applications in Statistics, Belmont, CA:
Wadsworth Inc. [31]

Guillot, G., Estoup, A., Mortier, F., and Cosson, J. F. (2005), “A Spa-
tial Statistical Model for Landscape Genetics,” Genetics, 170, 1261–
1280. [24]

Hanks, E., Hooten, M., Johnson, D., and Sterling, J. (2011), “Velocity-Based
Movement Modeling for Individual and Population Level Inference,” PLoS
ONE, 6, e22795. [28]

Harville, D. (2008), Matrix Algebra From a Statistician’s Perspective, New
York: Springer-Verlag. [27,31]

Hastie, T., and Tibshirani, R. (1993), “Varying-Coefficient Models,” Journal of
the Royal Statistical Society, Series B, 55, 757–796. [28]

Holsinger, K., and Weir, B. (2009), “Genetics in Geographically Structured
Populations: Defining, Estimating and Interpreting fst,” Nature Reviews
Genetics, 10, 639–650. [24]

Hooten, M., and Wikle, C. (2008), “A Hierarchical Bayesian Non-Linear Spatio-
Temporal Model for the Spread of Invasive Species With Application to
the Eurasian Collared-Dove,” Environmental and Ecological Statistics, 15,
59–70. [31]

Hooten, M. B., Johnson, D. S., Hanks, E. M., and Lowry, J. H. (2010), “Agent-
Based Inference for Animal Movement and Selection,” Journal of Agricul-
tural, Biological, and Environmental Statistics, 15, 523–538. [28]

Hooten, M. B., and Wikle, C. K. (2010), “Statistical Agent-Based Models for
Discrete Spatio-Temporal Systems,” Journal of the American Statistical
Association, 105, 236–248. [31]

Jombart, T. (2008), “Adegenet: A R Package for the Multivariate Analysis of
Genetic Markers,” Bioinformatics, 24, 1403–1405. [30]

——— (2012), “A Tutorial for the Spatial Analysis of Principal Components
(spca)Using Adegenet 1.3-4,” Vignette for the R package ‘adegenet’. Avail-
able at http://adegenet.r-forge.r-project.org [30]

Jombart, T., Devillard, S., Dufour, A. B., and Pontier, D. (2008), “Reveal-
ing Cryptic Spatial Patterns in Genetic Variability by a New Multivariate
Method,” Heredity, 101, 92–103. [30]

Klein, D., Palacios, J., Randic, M., and Trinajstic, N. (2004), “Random Walks
and Chemical Graph Theory,” Journal of Chemical Information and Com-
puter Sciences, 44, 1521–1525. [22]
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