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Abstract

The rising introduction of invasive species through trade networks threatens
biodiversity and ecosystem services. Yet, we have a limited understanding of
how transportation networks determine spatiotemporal patterns of range
expansion. This knowledge gap may stem from two reasons. First, current
analytical models fail to integrate the invader’s life-history dynamics with het-
erogeneity in human-mediated dispersal patterns. Second, classical statistical
methods often fail to provide reliable estimates of model parameters, such as
the time and place of species introduction and life-history characteristics,
due to spatial biases in the presence-only records and lack of informative
demographic data. To address these gaps, we first formulate an age-structured
metapopulation model that uses a probability matrix to emulate human-mediated
dispersal patterns. The model reveals that an invader spreads radially along
the shortest network path, such that the inter-patch network distances
decrease with increasing traffic volume and reproductive value of hitch-
hikers. Next, we propose a hierarchical Bayesian statistical method to esti-
mate model parameters using presence-only data and prior demographic
knowledge. To show the utility of the statistical approach, we analyze zebra
mussel (Dreissena polymorpha) expansion in North America through the
inland commercial shipping network. Our analysis suggests that zebra
mussels might have been introduced before 1981, indicating a lag of 5 years
between the time of introduction and first detection in late 1986.
Furthermore, using our statistical model, we estimated a one in three chance
that they were introduced near Kingsville (Ontario, Canada), where they
were first reported. We also find that survival, fecundity, and dispersal dur-
ing early life (1-2 years) play a critical role in determining the expansion suc-
cess of these mollusks. These results underscore the importance of fusing
prior scientific knowledge with observation and demographic processes in a
Bayesian framework for conceptual and practical understanding of how inva-
sive species spread by human agency.
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INTRODUCTION creates a small-world structure (Hu & Zhu, 2009), leading

Biological invasions are a major component of the global
environmental crisis. Burgeoning trade and commerce have
led to a surge in the establishment and spread of invasive
species (Hulme, 2009; Meyerson & Mooney, 2007), altering
the functioning and composition of global ecosystems.
Invasions have resulted in trillions of dollars in damage to
human health, infrastructure, and production services
(Diagne et al., 2021; Turbelin et al., 2023) and are one of
the leading drivers of species extinctions (Bellard
et al., 2016). Even more alarming is that the pool of inva-
sive species is expected to increase over the next century as
new trade routes emerge (Seebens et al., 2018). Therefore, a
major theoretical and practical challenge in invasion sci-
ence is to understand how human transportation patterns
interact with life-history dynamics to determine the spread
of an invasive species (Lewis et al., 2016).

Early efforts to model invasions were based on
integrodifference equations (IDE) (Kot et al., 1996;
Lutscher, 2019) that used fat-tailed redistribution kernels
to emulate long-distance dispersal by human transporta-
tion (Hallatschek & Fisher, 2014). The IDE models are
conceptually attractive because they can be combined
with = structured demographic models (Neubert &
Caswell, 2000) and permit analytical solutions (Bateman
et al., 2015). This allows researchers to understand inva-
sion patterns intuitively and provides valuable insights
into managing invaders with complex life histories. For
example, a Gaussian IDE model predicts a radially (line-
arly) expanding 2D (1D) invasion front (Kot et al., 1996),
such that the species’ arrival time is a linear function of
distance from the origin (Skellam, 1951). Moreover, man-
agers can conduct sensitivity analyses to identify which
life-history parameters should be targeted to slow or stop
invasion (Neubert & Caswell, 2000).

Despite the conceptual simplicity of IDE models, they
have two major limitations. IDE models assume that species
dispersal is directionally random (i.e., isotropic) (Thompson
et al., 2021), and the shape of the dispersal kernel does not
change from location to location (i.e., spatially invariant)
(Hallatschek & Fisher, 2014). However, human-mediated
dispersal patterns are highly heterogeneous owing to the
complex topology of transportation networks (Banks
et al., 2015). Transportation networks are characterized by a
local cluster of densely connected neighbors and a few
long-distance connections between clusters. This feature

to anisotropy and spatial invariance in dispersal patterns
(Wolf et al., 2019). Consequently, the patterns of invasions
may appear spatially less coherent, and, as such, distance
from the origin might not be a suitable predictor of species
arrival time (Horvitz et al., 2017).

These limitations of IDE models are well recognized
(Hallatschek & Fisher, 2014; Thompson et al., 2021), and
several mathematical approaches have been developed to
address them (Hui & Richardson, 2017). Among these
approaches, metapopulation models are gaining popularity,
in part due to their success in describing the spread of infec-
tious diseases through human transportation networks
(Brockmann & Helbing, 2013; Colizza et al., 2006; Gautreau
et al., 2008; Iannelli et al., 2017; Rvachev & Longini, 1985).
Broadly, metapopulation models consist of discrete patches
(such as a lake or a county) within which the population
changes according to a demographic model and edges
that connect these patches to capture heterogeneous dis-
persal patterns of invaders. Because of this flexibility,
metapopulation models have been used to study the
expansion of invasive species through a wide range of
human transportation mechanisms (Carrasco et al., 2010;
Chapman et al.,, 2016; Ferrari et al.,, 2014; Floerl
et al., 2009; Seebens et al., 2019).

However, these implementations of metapopulation
models are conceptually impenetrable because researchers
often err on the side of realism by creating parameter-rich
computational models that incorporate minute species
and transportation-specific details. As a result, it becomes
challenging to decipher what aspects of species biology
and transportation networks determine the broad-scale
patterns of invasions and what general underlying ecologi-
cal principles characterize these patterns (Brockmann &
Helbing, 2013; May, 2004).

Building simple conceptual models of human-mediated
invasions is only one part of the challenge. To make these
models useful, we also need statistical methods to estimate
model parameters (and corresponding uncertainty) to
answer questions such as where and when the species was
introduced and what makes a given species a successful
invader. Answering such questions is critical for formulat-
ing management actions to contain and eradicate invaders.
However, estimating model parameters is challenging
because species distribution data are often fraught with
errors and biases (Isaac et al., 2014; Johnston et al., 2023).
For instance, most commonly available species occurrence
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records are gathered by opportunistic sampling rather than
structured surveys that report both the presence and
absence of species. Such types of opportunistically collected
data, referred to as presence-only data, typically suffer from
irregular spatial sampling, making it hard to narrow down
the location of species introduction. Even when sampling is
structured, a species may remain undetected during the
establishment phase, making it challenging to infer the time
of species introduction (Crooks, 2005).

Another potential issue in estimating parameters may
arise if multiple combinations of two or more parameters
produce the same ecological outcome. For example, two
species with different life-history strategies can generate
the same spread patterns (Bateman et al., 2015). This
issue of non-identifiability of parameters makes it statisti-
cally challenging to infer the life-history tactics of an
invader, which, in turn, can limit our ability to determine
which life-history parameters play an outsized role in the
species spread and, therefore, should be the target of
management efforts (Crouse et al., 1987).

Recent theoretical and computational advances in
applied Bayesian statistics provide avenues to overcome
these hurdles (Gelman et al., 1995; Hobbs & Hooten, 2015;
Hooten & Hefley, 2019; McElreath, 2020). Bayesian
models learn parameters using a data model and a param-
eter model. The data model (or the likelihood) is a proba-
bilistic generative model of observed data. For invasions,
this generative model is a multi-level process in which the
occurrence data are linked to latent parameters, such as
invaders’ abundance, via an observation model that
describes how the data were collected. These abundances
are then, in turn, linked to demographic parameters via a
mechanistic model of invasion (Hooten et al., 2007
Wikle, 2003). This hierarchy offers two advantages. First,
the information from data to demographic parameters
flows through an observation model where one can explic-
itly express the generative process of how spatial biases
and detection errors arise in the presence-only data.
Second, because the information obtained from the data is
imprecise due to the probabilistic nature of the generative
process, the hierarchy allows biogeographers to propagate
the uncertainty in the data model to inform parameter
estimates. This may allow one to obtain a reliable estimate
of parameters, such as where and when the species was
introduced in the alien territory, even when sampling is
spatially unstructured.

In contrast to the data model, the parameter model
(i.e., prior) characterizes our uncertainty about the parame-
ters before the data are collected. Intuitively, a parameter
model is an expression of our prior scientific knowledge.
For example, population biology dictates that a successful
invader will have a positive growth rate. Therefore, we can
constrain the growth rate to take only positive values a

priori. Similarly, a biologist may have additional informa-
tion about the invader or a closely related species, such as
its life-history parameters, based on previous studies on the
invader in its native range or a closely related species. By
including this information via a parameter model, Bayesian
models can disentangle otherwise non-identifiable parame-
ters (Neath & Samaniego, 1997). Together, the data and
parameter models provide a rigorous framework to estimate
model parameters and quantify the uncertainty in those
parameters, which can be used to inform probabilistic pre-
dictions and decision-making.

In this study, we aim to fill the aforementioned theo-
retical and statistical gaps to understand the spread of
invasive species by human movement. We first formulate
an analytically tractable age-structured metapopulation
model to gain a conceptual understanding of how com-
plexity in human transportation networks determines the
spatiotemporal patterns of species spread. We ask how the
properties of the transportation network and species’
life-history tactics determine the invasion path and arrival
time. Next, we propose a hierarchical Bayesian model to
estimate the parameters of the metapopulation model
using presence-only data and prior scientific knowledge.
We tailor our mathematical and statistical models to ana-
lyze the expansion of zebra mussels (Dreissena polymorpha)
in the inland waterways of North America via the commer-
cial shipping network. We identify the time and place of
zebra mussel introduction, the invasion route, and the
life-history parameters that are most critical for their spread.
Despite our focus on zebra mussels, the conceptual insights
offered by the metapopulation model and the statistical
guidance to analyze empirical data are general and broadly
applicable.

Zebra mussels

Zebra mussels are freshwater bivalves native to Eastern
Europe and were likely introduced in the Great Lakes by
the release of contaminated ballast water (Nalepa &
Schloesser, 2013). Post introduction, zebra mussels have
dramatically altered North America’s water ecology and
local economy. These mollusks are filter feeders that pri-
marily consume planktonic algae and microzooplankton,
thereby changing the energy flow and structure of food
webs in water bodies where they reside. They are notori-
ous biofouling organisms (Ludyanskiy et al., 1993)—their
active byssal apparatus allows them to attach to hard sub-
strates at very high densities that can impede the func-
tion of human infrastructure, resulting in an annual loss
of half a billion dollars (Warziniack et al., 2021). Due to
these negative impacts on biodiversity and the economy,
zebra mussels have earned a spot in the International
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Union for Conservation of Nature’s list of 100 of the
world’s worst invaders (Lowe et al., 2004). Therefore,
understanding the expansion characteristics of zebra
mussels can help us slow or stop their spread and may
provide insights into managing other emerging invasions.
However, due to detection errors and unstructured
sampling of zebra mussels, tracing the invasion pathway
and identifying the time and place of their introduction
are challenging. They were first detected during a
large-scale survey in 1988 in Lake St. Clair (Hebert
et al.,, 1989). However, the rediscovery of a 1986 letter
exchange between Pembina Explorations Ltd. and the
Ontario Ministry of Natural Resources suggests that a col-
ony of mussels was present in Lake Erie near Kingsville,
Ontario, Canada (Carlton, 2008). In subsequent years,
zebra mussel detections spiked at distant locations across
the Great Lakes (GBIF.org, 2022; USGS, 2022)
(Appendix S1: Figure S1). By 2010, they were detected
and established in most of the inland commercial water-
ways from the Great Lakes to the Gulf of Mexico, impli-
cating hitchhiking by hull fouling of barges and tugs as
putatively the primary mechanism of continental-scale
dispersal (Johnson & Padilla, 1996). These established
populations in commercial waterways are, in turn, fuel-
ing over-land range expansion to isolated water bodies
through recreational boating (Johnson & Carlton, 1996).

FORMULATION AND RESULTS OF
THE METAPOPULATION MODEL

To model the continental-scale range expansion of zebra
mussels in North America, we consider an environmen-
tally homogeneous metapopulation with k patches (or
locations) connected by the commercial shipping net-
work. For zebra mussels, these locations can correspond
to a port or a collection of ports in some fixed area. At
each location, the zebra mussel population is structured
by age, such that the population dynamics are governed
by the following matrix difference equation (Hunter &
Caswell, 2005):

k
Neii—A [Nm- +1BY_, aiNij— qUN,J} GY

N, is a vector of the population in different age classes at
location i and time t, y is the total number of voyages
that ships take in one-time step, B is a diagonal matrix
with  elements corresponding to age-dependent
hitchhiking rate, and A is the Leslie matrix that captures
age-dependent life-history schedules of zebra mussels
such as reproduction, survival, and mortality (Leslie,
1945). When the invader population is structured by

ontogenetic stages, we replace the Leslie matrix with the
Lefkovitch matrix to capture stage-dependent life-history
events (Lefkovitch, 1965). Dispersal of propagules is
weighted by g;;, where g;; is the fraction of voyages from
patch i to patch j, such that 37,5, . ,q; = 1.

Using port call data from MarineTraffic, we estimate
weights, g;;, at a 50-km resolution and simulate the hypo-
thetical spread of zebra mussels originating near
Kingsville (Ontario, Canada) (brown point in Figure 1C),
where mussels were first detected in late 1986 (Carlton,
2008). We find that the arrival time of the species is corre-
lated with river distance from Kingsville (R2:O.89;
Figure 1A), with an expansion from the Great Lakes to the
Gulf of Mexico (Figure 1C). Although these patterns are
broadly consistent with the predictions of 1D Gaussian IDE
model (Kot et al., 1996), we can gain a better understanding
of invasion patterns (e.g., route of invasion and arrival time)
by exploiting the hidden underlying structure of the trans-
portation network (Brockmann & Helbing, 2013; Iannelli
et al,, 2017) and elucidating how the network structure
interacts with species life-history characteristics.

To do that, we assume that for human-dispersed spe-
cies, the dispersal inputs to a population contribute much
less than local reproduction. This allows us to approxi-
mate N;; as a scalar multiple of the stable-age distribu-
tion (w; proportion of individuals in each age class),
N;; = x;;w, where

Aw=)w, (2)

and A is the species growth rate (Caswell, 2001).
Intuitively, this approximation allows us to project
Equation (1) onto w, which simplifies the matrix differ-
ence equation to a scalar difference equation:

k
Xt+1, Zk{xz,i +Dezj¢iqjixt,j = qyXt,i|- (3)
In Equation (3),
vIBw
De = y va (4>

is effective dispersal, and v’ is the reproductive value

(total number of offspring born to an individual from
their current age onward), which is given by

viA=n". (5)

We use the superscript T to denote the transpose of a
vector or a matrix (see Appendix S1).

The scalar approximation provides an intuitive way to
interpret the metapopulation model by partitioning the pop-
ulation dynamics into two hierarchical levels. The upper
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A deterministic simulation of the spread of zebra mussels originating from Kingsville, Ontario (brown point), on the

geographical and network space. On the network space, (B) the shortest network distance from the origin (Equation 9) shows an almost perfect
linear association with the species arrival time (Equation 10). (D) Visualizing species spread on the network space yields radially expanding
wavefront—reminiscent of integrodifference equation models (Kot et al., 1996). In contrast, on the geographical space, (A) the river distance

from Kingsville is a relatively weaker predictor of the time of zebra mussel arrival, and (C) the pattern of expansion is spatially less coherent. In
plots (A) and (B), the best-fit line is constrained to pass from zero because, at time zero, the invader is at the location of the introduction.

level of the hierarchy is the spatial dynamics model
(Equation 3), describing how a population with no age
structure spreads along the transportation network. The
lower level of the hierarchy is the life-history model
(Equations 2, 4, and 5), describing the age-dependent
life-history strategies of an individual, such as the prob-
ability of survival, probability of dispersal, and

fecundity. The conceptual advantage of using the sca-
lar approximation is the realization that the
age-structured metapopulation model in Equation (1)
effectively yields the same spread patterns as the spa-
tial dynamics model with no age structure in which
the growth () and dispersal (D,) rates correspond to the
dominant eigenvalue of the Leslie matrix (Equations 2
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and 5) and mean age-specific propagule pressure
weighted by the reproductive value (Equation 4), respec-
tively. Thus, the life-history model, expressed in terms of
age-dependent life-history parameters, produces scalar out-
puts A and D,, which are inputs to the spatial dynamics
model. This link between population level (D, and A) and
life-history parameters (A and B) highlights the impor-
tance of incorporating age or stage structure in invasion
models (Bosch et al., 1990; Bosch et al., 1992; Neubert &
Caswell, 2000). For example, everything else being equal,
species for which individuals disperse at their peak repro-
ductive value (e.g., age of maturation) spread faster due
to higher effective dispersal (D,).

To simplify the model further, we define
xZT = [x11 X2 ... Xx], Which allows us to express the joint
population change in all locations as

xtTJr 1= }»xtTP, (6)
where P is a probability matrix. The non-diagonal ele-
ments of the matrix, Py = D.qy;, correspond to the propor-
tion of mussels dispersing from patch i to j in one time
step. Note that the structure of the metapopulation model
in Equation (6) bears a remarkable resemblance with
IDE models (Kot et al., 1996). In both models, the popu-
lation at the next time step is a product of population
growth rate and dispersal. In IDE models, dispersal is
captured using a redistribution kernel, which integrates
to unity. Similarly, in the metapopulation model, we cap-
ture dispersal using a probability matrix P (hereafter
referred to as the redistribution matrix) in which each
row sums to unity. But, unlike redistribution kernels, the
redistribution matrix can capture spatial invariance and
anisotropy in dispersal patterns.

Next, assuming Ny, , mussels are introduced at loca-
tion n at time f,, the population after ¢ time steps is
given by

xI'=x,\ el P!, (7)

where x,, =vI Ny, ,/vTw is the effective initial population
and e! is a row vector with all zero elements except at
index n, where it takes value one. The population change
is a product of exponential growth, x;A’, and a t-step
transition probability, el P', that encapsulates the dis-
persal trajectory of zebra mussels by the inland shipping
network (Kulkarni, 2016). Intuitively, e P is the proba-
bility of finding a zebra mussel at a given location after ¢
time steps via any path originating from n.

A natural question is whether multiple paths contrib-
ute to zebra mussel arrival because they might be equally
likely or if a single path has the dominant contribution to
the expansion process? And, if the latter were the case,

what would determine this path? In principle, the invader
can arrive at a location by infinite paths. However, not all
paths are equally probable. Human transport networks are
highly heterogeneous, so there is usually a single fastest
path to the destination (Brockmann & Helbing, 2013;
Gautreau et al., 2008).

To understand what determines this path, we define
network distance from location i to j as

log\ logh
dij_W( I )zlog( D )—108(117—%’ (8)

ij e

where W is the Lambert W function and y, is the
Euler-Mascheroni constant (Gautreau et al.,, 2008).
This definition of distance emerges naturally from the
theory of discrete stochastic processes (Kulkarni, 2016)
and provides an intuitive way to visualize and under-
stand human-mediated invasions. For one, this notion
of distance suggests that, on the network space, two
locations are close if they exchange a high traffic volume
and the hitchhikers have high reproductive value (i.e.,
high D,).

Now consider a set of all paths from n (origin) to m
(destination)—TI",,,,. We postulate that the zebra mussel
will arrive at m via the shortest network path (1),
which maximizes the product of dispersal probabilities
along the path (Bagnara et al., 2022; Brockmann &
Helbing, 2013; Gautreau et al., 2008; Iannelli et al., 2017).
As such, the total network distance traveled is given by

D= > dy, 9)
(i.j) € Dot

and the time of the species’ arrival is

SPy :% (10)
" logh

Although mussels can arrive by alternate paths, their
contribution diminishes exponentially with increasing
network distance such that the shortest path is the major
contributor to the most probable distance.

SP;

Dy = —log) e Pm, (11)
where D3P is the network distance along the ith shortest

path from n to m (Iannelli et al., 2017).

Indeed, when we simulate the arrival time of zebra
mussels from all possible paths, we find a strong linear
relationship between the shortest network distance
from the origin and arrival time (R?> =1.00; Figure 1B),
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with a mean error of about 2% (Appendix S1: Figure S2A).
This supports our assumption that even though a species
may travel along multiple paths due to the heterogeneity
in the human transportation networks, the shortest
network path is the primary route of invasion. In fact,
the linear relation also holds even when we consider an
individual-based model with stochastic age-dependent
dispersal, reproduction, and survival to simulate arrival
time (Appendix S1: Figure S2B) (also see Jamieson-Lane &
Blasius, 2020 for theoretical results on the stochastic
version of the model). These findings explain why the
physical distances may be less appropriate to infer
species arrival time (Padilla et al., 1996) (Figure 1A).
And, interestingly, visualizing species spread on the
network space yields a radially expanding wavefront
(Figure 1D)—reminiscent of IDE models—even though
on the geographical space, the spread patterns may
appear less coherent (Brockmann & Helbing, 2013;
Horvitz et al., 2017).

FORMULATION OF THE
HIERARCHICAL BAYESIAN MODEL

To estimate the parameters of the metapopulation model,
we specify a hierarchical Bayesian model with three
levels—(1) an observer model that describes how varia-
tion in “true” abundance translates to invader presence
data; (2) a spatial dynamics model that describes spatio-
temporal variation in “true” abundances of the invader;
(3) a life-history model to describe survivorship, fecun-
dity, and dispersal schedules of the species. These
sub-models form a hierarchy in that the output of the
life-history model is the input for the spatial dynamics
model, whose output is the input of the observer model
(Pagel & Schurr, 2012).

In a Bayesian framework, this hierarchy is
implemented by partitioning the likelihood into
the product of probabilities corresponding to each
sub-model by conditioning (Berliner, 1996). Then,
using the Bayes rule, the posterior distribution of
parameters is expressed as the product of the likelihood
(informed by data) and the prior (informed by beliefs
based on expert opinion or scientific experiments
conducted by others). This posterior is a high-dimensional
joint probability distribution of parameters, which is used
to infer parameter expectations and uncertainties (Gelman
et al, 1995). We follow the recommended Bayesian
workflow guidelines to specify the model, evaluate the
output, and make inferences (Gelman et al., 2020). We
outline the main components of the three sub-models in
Figure 2 and summarize how these sub-models are
linked hierarchically in the section below. For the full

statistical model, including implementation details,
statements, relationships between parameters, and
priors, see Appendix S1: Table S1.

Observer model

To characterize the presence-only data for zebra
mussels (GBIF.org, 2022; USGS, 2022), we define an
indicator data variable y,; that takes value one if mussels
are reported within a 25-km radius of location i at time ¢
and zero otherwise. When y,; =1, the location is sam-
pled, and mussels are detected. However, when y,; =0, it
can imply one of two things—either a location was not
sampled or, when sampled, the mussels were not
detected. Implicitly, this data model neglects false posi-
tives, which may be reasonable as these datasets are sub-
ject to quality controls before cataloging. We model this
data-generative process as a mixture of two components
(see Miller et al., 2019). Location i is sampled with proba-
bility p! and, given that the location is sampled, mussels
are detected with probability pff (see observer model in
Figure 2). Cumulatively, this yields

¥,; ~ Bernoulli(p} pff). (12)

We assume sampling probability is constant over time
but can vary with location, such that nearby locations
have similar sampling probabilities. To account for this
spatial information, we model the joint distribution of
sampling probabilities across locations as a multivariate
normal distribution.

By ByBi]” NMVNormal<pﬁ,K>, (13)

where logit ™' (B;) =p! is the sampling probability at loca-
tion i, logit ™" Mp | is the mean sampling probability on
the logit scale, and K; is the covariance between location
i and j. We use an RBF kernel

Kij = T]2€_D"2j/2p2 + Sij('52, (14)

to model covariance, D; is the geographical distance
between locations i and j, and §; is the Kronecker delta
function. The hyperparameter p is the length scale of cor-
relation, n is the maximum covariance between two loca-
tions, and o provides extra covariance when i=j.
Modeling spatial correlation in sampling probabilities
using a multivariate normal distribution allows partial
pooling, thus providing a more robust estimate of
sampling probabilities for locations where data are
insufficient. Assuming =, is the per-mussel detection
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FIGURE 2 A conceptual diagram describing the hierarchical structure of the Bayesian model. The observer model (top) links the
presence data, y,;, with zebra mussel abundance, x,; (Equations 12 and 15). The spatial dynamics model (middle) describes population
change due to local growth and dispersal by the shipping network (Equation 16). Finally, the life-history model (bottom) describes how
zebra mussel survival, fecundity, and dispersal schedules (A and B) determine the population level parameters—growth rate, A, and effective
dispersal, D, (Equations 2 and 4). These sub-models form a hierarchy in the sense that the output of the lower level is the input of the level
above (Pagel & Schurr, 2012). The illustration was made by Upasana Sarraju.
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probability, the detection probability of the species at
location i and time ¢ is

Xti

Py =1—(1—m)™, (15)

where x;; is the local abundance of mussels. The joint
model of sampling and detection allows us to estimate
heterogeneity in sampling as well as the zebra mussel
abundance as it expands.

Spatial dynamics model

To model changes in the abundance of mussels (via all
routes), we use the spatial dynamics model in Equation (6)
(see spatial dynamics model in Figure 2), with a slight
modification—at high density, the population saturates to
the carrying capacity. We achieve this by reformulating
the spatial dynamics model as

x!,, =xTGP, (16)

T
where Gt:diag({}»l"‘m/K AL mxe/K )J‘xak/K} ) is

the Ricker growth matrix (Ricker, 1954) with carrying
capacity K. Although density dependence does not affect
arrival statistics because of exponential growth at the
expanding front, it helps avoid numerical pathologies

during  inference. Recall, P;jx;= Deqij, where
D, =yv'Bw/vTw. We assume x;, mussels are introduced
at n such that x; =xe;.

Next, by setting the effective initial population to one
(ie., x;, =1), we can estimate the earliest time of intro-
duction. Unfortunately, the nature of the observation and
spatial dynamics models do not allow us to infer #,. At
carrying capacity, the detection probability is approxi-
mately 1 —e~ %K, Therefore, even though the product of
m, and K is identifiable, these parameters are individually
non-identifiable, which implies that we can only estimate
local mussel abundances relative to carrying capacity. In
other words, we cannot estimate x;, and, consequently,
cannot identify ). We can remedy this situation through
a parameter model by constraining carrying capacity.
Studies estimate that the carrying capacity of quagga
mussels (a species similar to zebra mussel in its biologi-
cal characteristics) varies between 10 and 100 thousand
individuals/m? (Cross et al., 2011). This estimate of car-
rying capacity is consistent with the observed fouling
density of zebra mussels (Griffiths et al., 1991). Using
quagga mussel carrying capacity as a prior for zebra mus-
sel carrying capacity, we can calculate the time, 75, when
the population at origin is 10~°K or 1-10 individuals/

km?. Assuming t, > to, We use T, as a proxy for the time
of zebra mussel introduction.

Life-history model

We model local patch dynamics using a Leslie matrix A
with four age classes of width 1 year,

F, F, F3 F4
St 0 00O
A=lo s, 00 | 17)
0 0 S35 8,
and diagonal hitchhiking matrix

B=diag([Bi; By Bss Bu]') (see the life-history
model in Figure 2). Because multiple combinations of
life-history parameters yield the same A and D,, the pres-
ence records cannot constrain the elements of the Leslie
(A) and hitchhiking (B) matrices. We circumvent this
limitation by assigning informative priors on age-specific
survivorship probability (S;) and fecundity (F;) based on
estimates from literature (Casagrandi et al., 2007)
(Appendix S1: Table S1). We also constrain the estimates
of age-specific hitchhiking rate (B) using published data
on the shell length of randomly sampled zebra mussels
on a commercial vessel (Keevin et al., 1992). Based on
the allometric relationship between zebra mussels’ age
and shell length, the data suggest that attached mussels
were older than 1year. Therefore, we assume that the
hitchhiking rate is very low for age class 1 (Bi; = 0) and
remains constant after (B, = B33 = By, = B). We also con-
sider an alternate hypothesis of a constant hitchhiking
rate for all age classes (Appendix S1: Figure S3).

RESULTS OF THE HIERARCHICAL
BAYESIAN MODEL

We implement the above statistical model in the Stan
language (Carpenter et al., 2017). Internally, Stan sam-
ples from a probability distribution using the no-U-turn
sampler (Hoffman & Gelman, 2014), which is an efficient
implementation of the Hamiltonian Monte Carlo MCMC
algorithm (Neal, 2011).

Model testing

The choice of prior can play a notable role in Bayesian
models (Gelman et al., 2020). On the one hand, strong
priors can resolve non-identifiable parameters such as
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the elements of the hitchhiking and Leslie matrix. On the
other hand, vague priors on transformed parameters can
lead to unrealistic expectations on the outcome scale. For
example, vague hyperpriors of the covariance function
(Equation 13) can lead to a highly informative U-shape
prior on the probability scale, thereby biasing estimates
of sampling probabilities. For these reasons, we evaluate
and refine our priors by simulating invasion outcomes
using parameters drawn from the prior distribution. Our
choice of prior yields biologically realistic invasion out-
comes and parameter values.

Next, to test if the statistical model works as
intended, we generated synthetic data according to the
generative model described above (Equations 12-17)
and then fit the statistical model to the synthetic data.
Diagnostics reveal that the MCMC chains converge
and yield reliable estimates of means and interquartile
ranges. For most parameters, the actual value lies
within the 95% credible interval. Posterior predictive
checks confirm that the predicted time of first detec-
tion (Figure 3A) and the number of zebra mussel detec-
tions at a location (Figure 3C) are consistent with
synthetic data. Importantly, we can reasonably predict
the time (using 7o as a proxy; Figure 4A) and the loca-
tion of the introduction (Figure 4C; actual values are
marked with an asterisk).

Data analysis

We fit the statistical model to zebra mussel occurrence
data recorded from January 1980 to December 2019
(GBIF.org, 2022; USGS, 2022). Diagnostics reveal that the
MCMC chains converge and yield reliable estimates of
parameter means and interquartile ranges. To evaluate
the model fit, we performed posterior predictive checks.
We found that the predicted time of first detection and
the number of zebra mussel detections at a location are
consistent with real data (Figure 3B,D).

The model fit provides two insights about the initial
phases of zebra mussel expansion. First, the bulk of the pos-
terior distribution of to—the time when the effective pop-
ulation size (x,, or V' N, ,/vTw) of the zebra mussels at
the location of introduction is between 2.5 and 25k (or
1-10 individuals/km?*)—lies before 1981 (Figure 4B).
Assuming that the initial size of propagules introduced at
the location of origin was less than the number of zebra
mussels at time 7, the statistical model suggests that
these mollusks might have established before 1981 and
went undetected for at least 5years until late 1986
(Carlton, 2008). Based on the model assumption of deter-
ministic exponential growth, the observed lag between
the time of introduction (inferred using 7, as a proxy)

and first detection can be attributed to detection failure
at low abundances (Crooks, 2005).

Second, we find that zebra mussels were likely intro-
duced in Lake Erie (Figure 4D) and not in Lake St. Clair
(Hebert et al., 1989). However, within Lake Erie, the statis-
tical model and occurrence data are consistent with multi-
ple regions as possible locations for origin (Figure 4C). In
fact, there is only a one in three chance that mussels were
introduced near Kingsville, where they were first detected
(Carlton, 2008) (Figure 4D). This feature is also present in
synthetic data simulations: The statistical model attributed
a nonzero probability of introduction at a location that
was not the true location of introduction (true location is
marked by an asterisk in Figure 4C). This uncertainty in
the location of origin stems from uneven spatial sampling,
as zebra mussels could have been introduced at a less fre-
quently sampled location and later dispersed and detected
at a more frequently sampled location.

Next, we numerically performed elasticity analysis to
ask how small perturbations in life-history parameters (A
and B) change the arrival time. We find that the arrival
time (Equation 10) is most sensitive to the transition
probability from age class 1-2 (S;), the hitchhiking rate
of individuals in age class 2 (B,;), and the fecundity of
individuals in age class 2 (F;). Specifically, a 1% change
in these parameters (S;, B,,, and F,) will slow the expan-
sion rate by approximately 0.1% (Figure 5A). Managers
can use this information to formulate targeted manage-
ment policies that maximize positive ecological outcomes
(e.g., slow the spread rate) for a specified amount of mon-
etary resources. Elasticity analysis also reveals another
important and often neglected aspect of species spread—
not all age groups contribute equally to species dispersal.
The stable age distribution for zebra mussels is skewed
toward early life stages, while reproductive value is
skewed toward later life stages (Appendix S1: Figure S4).
Cumulatively, these two trends, with the assumption
that the hitchhiking rate of mussels is very low for age
class 1 (Keevin et al., 1992), suggest that age class 2 is the
main contributor to effective dispersal (Figure 5B).

DISCUSSION

We show that the metapopulation dynamics of an
invader (Equation 1) can be simplified into a redistribu-
tion matrix with an underlying exponential growth
model (Equation 6), such that the effective dispersal (D,)
and growth rates (A) are a function of life-history parame-
ters (Equations 2 and 4). This hierarchical formulation of
the metapopulation model offers several advantages for
conceptually understanding drivers of human-mediated
invasions.
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FIGURE 3 Posterior predictive checks for synthetic data (left column) and real data (right column) suggest that the predicted time of

first detection (A and B) and the number of detections of zebra mussels (C and D) at a particular location are consistent with the observed

time of first detection and the number of confirmed detections, respectively. In both plots, the points represent the median value of the

estimate. For gray (black) points, the observed data lie inside (outside) of the 95% credible interval. The black line represents the perfect

match between the data and the statistical estimate.

First, by expressing the dispersal process as a redistribu-
tion matrix, we can capture the spatial heterogeneity in the
dispersal process and exploit the properties of probability
matrices to describe the expansion patterns using the
concept of network distances (Equation 8). Specifically,
the invasion path corresponds, with high probability, to the
shortest network path from the origin such that the arrival
time is a linear function of the network distance along this
path (Equation 9; Figure 1B). Furthermore, visualizing the
invasion path on the network space produces a radial
wavefront (Figure 1D), which is geometrically analogous to

the radial spread patterns produced by the Gaussian
IDE models in the geographical space (Brockmann &
Helbing, 2013; Kot et al., 1996).

Second, splitting the metapopulation model into spa-
tial and life-history dynamics provides new insights into
what makes an invader successful. It is widely accepted
that increasing propagule pressure decreases demo-
graphic extinctions (Dennis, 1989) and increases the
chances of successful establishment. Therefore, every-
thing else being equal, introductions with larger propa-
gule pressure have a higher probability of establishment
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FIGURE 4 The plots show the posterior distribution of time (A and B; using 7, as proxy) and place of zebra mussel introduction

(C and D) for synthetic (left column) and real data (right column). Fitting the Bayesian model to synthetic data generated from known
parameter values recovers the 7o (A) and location of the introduction (C) (true parameter values are marked with an asterisk). Analyzing
the real data suggests that zebra mussels might have been introduced before 1981 in Lake Erie (B)—at least 5 years before the first
confirmed detection in late 1986 (Carlton, 2008). However, within Lake Erie, the statistical model identifies multiple locations where the
mussels could have been introduced (D). Interestingly, there is only a one in three chance that mussels were introduced in Kingsville,
where they were first detected in 1986.
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FIGURE 5 (A) Elasticity or proportional sensitivity analysis shows that the arrival time (Equation 10) of zebra mussels is most sensitive
to transition probability from age class 1-2 (S;), hitchhiking rate of individuals in age class 2 (By,), and fecundity of individuals in age class 2
(F2). (B) Not all age classes contribute equally to zebra mussel dispersal (Equation 4). Age class 2 has the highest relative contribution to
effective dispersal, D,.

(Lockwood et al., 2005; Simberloff, 2009). However, this onward (Caswell, 2001). Therefore, even when two intro-
assertion ignores that not all propagules are equal. ductions have the same propagule pressure, the age compo-
Propagules in different age classes (or ontogenetic stages) sition of propagules can vary, leading to variation in the
have different reproductive values—the number of off-  probability of establishment (Engen et al., 2005). Corollarily,
spring an individual produces from their present age  an invader that disperses at peak reproductive value

85U8017 SUOWILLOD 3A1T81D) 3ot dde 8Ly Aq peusenof afe safole VO ‘88N JO Sa|NJ o4 Akeid178U1IUO /8|1 UO (SUOIPUOD-PUR-SLLIBY/LIOD"AB | 1M AeIq 1 BUI|UO//SdNL) SUORIPUOD PUe SWie | 38U 89S *[G202/0/70] Uo ARiqiTauljuo A8 |1 ‘seteiqi]sexs L JO AisieAun Ag £000. W38/200T 0T/I0p/wod A8 im Arelq1jpuluo's funofess//sdny wouy pepeojumod ‘T ‘5202 ‘STOLLSST



ECOLOGICAL MONOGRAPHS

| 13 0f 17

(e.g., age of maturity) is more likely to overcome demo-
graphic stochasticity and, consequently, expand faster
(Equation 4). This logic also provides quantitative predic-
tions about how evolution by spatial sorting might proceed
at invasion fronts (Shine et al., 2011)—evolution will select
for individuals that hitchhike with transportation vessels
at the age of peak reproductive value or individuals with
higher reproductive value when they hitchhike or both.

Finally, a deeper understanding of the synergy between
life-history and spatial dynamics allows one to ask novel
ecological questions such as “By how much is it necessary
to decrease fecundity at age two to stop an invasion?” or “Is
it better to inspect vessels for dispersers at early or later
life stages?” (Neubert & Caswell, 2000). This knowledge
allows managers to identify and target the most respon-
sive life-history parameters to maximize resources
(Buhle et al., 2005).

Next, we propose a hierarchical Bayesian model to
estimate the parameters of the metapopulation model
using commonly available presence-only data. We
showed that when dealing with such data, one needs to
account explicitly for spatial biases in the data collection
procedure (Equations 12-14). Failure to do so can lead to
spurious parameter estimates and inferences. For
instance, because of uneven spatial sampling, some loca-
tions are sampled more often. As a result, it is possible
that an invader could have been introduced at a less fre-
quently sampled location and later dispersed and, subse-
quently, detected for the first time at a location where the
sampling was relatively frequent. In such a scenario,
using the location of first detection as the location of origin
may be inaccurate and produce misleading projections of an
invader’s path and arrival time. Our analysis of zebra mussel
expansion in North America confirms that this scenario is
very likely. As expected, based on early detections of zebra
mussels (GBIF.org, 2022; USGS, 2022) (Appendix SI:
Figure S1), the Bayesian model suggests that zebra mussels
were likely introduced in Lake Erie (Figure 4D). However,
within Lake Erie, the origin of zebra mussels is uncertain—
the statistical model suggests that there is only a one in
three chance that these mollusks were initially introduced
in Kingsville, where they were first detected (Carlton, 2008).
Remarkably, the statistical model facilitated these inferences
with sparse detection data—the survey data only had ~6%
confirmed detections—demonstrating the value of a mecha-
nistic statistical approach to learning from limited and
unstructured occurrence datasets.

Our statistical approach also highlights that some
parameters cannot be inferred from the occurrence data
when multiple combinations of parameters yield the
same invasion outcome. We show that these
non-identifiable parameters can be resolved by imputing
knowledge from previous studies and the dynamics of

sister species in the form of priors. We use this technique
to constrain zebra mussel’s life-history parameters and
carrying capacity, which, in turn, allowed us to make two
important inferences. First, the expansion rate of zebra
mussels is most sensitive to values of fecundity and dis-
persal in age class two and survivorship from age one to
two (Figure 5A). Second, zebra mussels might have been
introduced in North America before 1981 (inferred using
To as a proxy for the time of introduction; see Figure 4B),
indicating a lag of 5Syears between the introduction and
first confirmed detection in 1986. Although such lags are a
common feature of invasions (Crooks, 2005), they are noto-
riously hard to estimate from data. Thus, using informative
priors and explicitly modeling the observation and popula-
tion processes may allow us to estimate invasion parameters
that are otherwise challenging to infer (Hobbs &
Hooten, 2015).

There are several possible avenues to build on our
work. In the metapopulation model, we ignore niche con-
straints imposed by spatial variation in environmental
conditions (Peterson et al., 2011). The environment can
also vary in time due to diurnal and seasonal fluctuations
(Lande & Orzack, 1988). Variation can also stem from
demographic stochasticity associated with reproduction
and dispersal (Engen et al., 2005). Mechanistically incor-
porating these sources of variation in population dynam-
ics may provide us with a more realistic understanding of
invasion patterns.

On the statistical front, too, many opportunities exist
to improve inferences. We showed that one can obtain
reliable parameter estimates by explicitly modeling the
observation process. However, these improvements come
at the expense of precision. To improve precision, we need
standardized biodiversity sampling, which currently exists
for only a few taxa due to high cost (Pardieck et al., 2020;
Pollard et al., 1994). Standardized species observations can
be automated with developments in e-DNA, audio and
video sensor technology, and advances in computation
(Besson et al., 2022; Keitt & Abelson, 2021). Such auto-
mated schemes are scalable, cost-effective, and can collect
standardized species data at broad spatial scales with high
temporal resolution. In congruence, to use these data
sources in our Bayesian models, we also need to develop
observation models that can link these novel datasets to
latent parameters of the invasion model.

There is also a need to improve data collection on
human transportation pathways for species whose dispersal
is tightly associated with specific transportation mecha-
nisms. Examples of such pathways include the spread of
insects through the transport of firewood (Solano
et al., 2021) and plant material (Fenn-Moltu et al., 2023), the
introduction of exotic animals through international pet
trade (Gippet & Bertelsmeier, 2021), and the transport of
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mosquitoes with used tires (Yee, 2008). However, when
transportation data are absent, we can model the weights of
the dispersal network using a mechanistic model of human
movement (Simini et al., 2012; Stouffer, 1940; Zipf, 1946).

Finally, the most useful extension of our statistical
framework is hierarchically linking the metapopulation
model of invasion with a management model (or policy)
(Yemshanov et al., 2009), such as establishing check-
points to intercept hitchhikers (Zook & Phillips, 2012)
or chemically eradicating an invader (Fernald &
Watson, 2013). Because Bayesian models provide a prin-
cipled way to quantify uncertainty in parameters
(e.g., vital rates and abundances), adding a management
model within the Bayesian hierarchy allows managers
to propagate this uncertainty while evaluating the
cost of implementing different management strategies
and then use decision theory to choose the most
cost-effective strategy (Dorazio & Johnson, 2003;
Williams & Hooten, 2016).
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